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8 1. Introduction

Let =,(G) be the i/-th homotopy group of a topological group
G. For 1<23 and for G=SU(3), SU4), Sp(2), the groups =;(G)
are computed and the results are given by the following table :

- s | a5 |6 |7 ‘ 8 | o 10 ] 1| 12
2(SUBN= Z | 0 Tzl ol zo] 2z | 2z Z | Ze
w(SUN= z | o 0 Zu| 2, | ZmtZo| Z, | Ze
wSspeN=| z |z |z | o |z | o] o zZw | 2z |z+z

i= | 13 ‘ :4-\ 15 | 16 17 18
n(SUBHS  Ze | ZeutZo | Zs Zop+ Z Zy +Z, Zoo+ Z
2(SUMN Z, | Ziw+ Zo | Ziat Zs i”z‘: Z2+ 22+ 2, iwz;f 22t Zs |\ g, ot Zint Zs
2 (SPN=| Z,+Z, | Ziggo Z, Z,+ 2, i Za Zaszo+Zs

. 19 20 21 22 | 23
2 (SUBYS Zin+Zs|  Zeo + Zs Z Zest 2, ZitZ,
i (SUB)E Zia 1 2o | Zeo ' Zo | Zus ¥ Za| Zossot Zot Zot Zo | Zan Zak Zo - Zot 2
2i(SP2)2| Zo4 Zy | Zoh 2ot Zy | Zip v 2o | Ziswot Zo+ Zo 2+ Z,+ Z,

These results are stated in Theorems 4.1, 5.1, 6.1, in which
generators of the 2-primary components are given, The com-
putations will be done by use of the homotopy exact sequences
associated with the bundles SU(3)/SU2)=S° Sp(2)/Sp(1)=S" and
SU4)/SU2)=5°%xS" and the results [7], [3] on the homotopy
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groups of spheres S”. In §2, we shall discuss on properties of the
composition and the secondary composition operators with respect
to the homotopy exact sequences for fibre spaces, in particular,
for S°~-bundles over S”. The homotopy groups of SU(3), Sp(2) and
SU(4) will be computed in §4, §5 and §6, respectively, after
auxiliary computations on boundary homomorphisms in §3.

§2. Homotopy exact sequences for fibre spaces

Let (X, p, B) be a fibre space. Then we have the following
homotopy exact sequence (2.1) associated with the fibre space:

2.1 - m(F)& 7{(X) —&m(B)im_l(F) -,

where F' is the fibre p~'(x,) on a base point x, of B, i:F— X the
inclusion map and A is the boundary homomorphism defined by
the commutativity of the diagram

7i(B) — mi-F) .

Let Ei** be the unit (4 +1)-cube and Si=0Ei"" the unit i-sphere.
The composition @oB=pg*a), Be = (S?), defines a correspondence
B*:7(Y)—>=/(Y) Y=F, X, B, such that it commutes with the
homomorphisms 7, and p, of (2.1), that is,
2.1y ix(@oB) = (1,X)oB and py(aof) = (py)oB.

For the boundary homomorphism A, we have the formula

(2.2) A(@oER) = (A(@)eB,  @em;\(B),

where E: 7 i{(S))—=;,(S'"") is a suspension homomorphism given by
the commutativity of the diagram

7S > 7, (S

N
7 EF S7)

(p’ pinches S¢ and preserves the orientations).
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Theorem 2.1. Assume that @€ z;.(B), BE€ = (S?) and v € = ,(57)
satisfy the conditions (A)eB=0 and Boy=0. For an arbitrary
element 8 of {A, B, v} Cwp(F), there exists an element € ;. (X)
such that

psE = @oEB and i,6 = EoEy.

Proof. Let E%"' (resp. E*'') be the upper-(resp. lower-)hemi-
sphere of S*''. As the definition of the secondary composition
{Aa, B, v}, 8 is represented by a mapping H:S*"'—F such that
H|E*'= Aot, A|S?=acb, ¢|S*=c, H E*"'=a°B, B|S*=boc for map-
pings A:E}** - F, B:E*' — Si, ¢:(E**", S*) —> (E{*', §7) and re-
presentatives a (resp. b, c¢) of Aa (resp. B, 7). We orient (EZ*, S7)
and (E7*', S7) coherently. By the definition of A, there exists an
extension @:(E™*, Si)—=(X, F) of a=a|S? such that poa represents
@, Let b:(E!*, S/ —(E'*', S%) be an extension of . Then poacb
represents aoE@B. Define a mapping G:S/''— X by setting G|EZ"'
=aob and G|E{*'=A. Then G represents an element & of =;,,(X)
such that p,6=aoEB. Let E_c:(E*", S¥)—(E!*', S%) be an exten-
sion of ¢, then Ev is respresented by a mapping FEc given by
Ec|E%'=t¢ and Ec|E**''=E_c. The mapping B gives a null-
homotopy of boc. By use of the homotopy, we see that bot is
homotopic to B rel. S*. It follows that H is homotopic to GoEc.
Therefore we have i,6=E0Ey. q.e.d.

The following lemmas will be used in later.

Lemma 2.2. Let G be a compact Lie group, € xi(G) and
B, B.enSH. If EB,=EB,, then

((o,BI = a0ﬂ2 .

Proof. Let (Eq, p, B;) be a universal G-bundle. Then Ag:
i 1(Bg)—7:(G) is an isomorphism. Let f:S#'— B, be a representa-
tive of Ag'(«) and let (X, p, Si''=X/G) be a principal G-bundle
induced by f. Then A(:; )=« for A:=;, (Si"")— =,(G) and for the
class :;., of the identity of Si''. Then we have @oB = A(¢4,)08,
=A(e;1,°EB)=A(EB,). Similarly, «o8,=A(EB,). Thus «@oB,=caof3,
if EB,=EB,. q.e.d.

For a principal G-bundle (X, p, Si"'=X/G) over Si*', the class
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Aleirr) = X(X)

will be refered as the characteristic class of the bundle. X(X)
determines the bundle up to equivalence [6].

Lemma 2.3. Let i=2 and let C, be the class of finite abelian
groups without p-torsion (p: a prime). Assume that gX(X)=q'X(X")
for integers q, q' prime to p. Then =(X) and =(X') are C,-
isomorphic to each other for all j. In particular, if the order of
X(X) is finite and prime to p, then =iX) is C,isomorphic to
7 (S B 7 (G).

Proof. It is sufficient to prove the case ¢’=1. Let a=X(X),
then the bundle (X, p, Si*") is induced by a mapping f as in the
previous proof. Let g:Si*'—Si*'" be a mapping of degree gq.
Then the composition fog induces a bundle (X", p, Si*') with
X( X" =A(ge;,)=gX¥(X)=X(X"). Thus X" is equivalent to X’ and
7 {X")=n{X’) for all j. Consider the homomorphism between the
exact sequence (2.1) and that of (X", p, Si™"), induced by g. The
homomorphism is identical on = F)==G) and C ~isomorphic on
7 (S"*")==B) by Serre’s C-theory [5]. Then it is C, ~isomorphic
between =;(X) and 7 ;(X”)~=,(X’) by the five lemma.

If ¢ is the order of X(X) and it is prime to p. Then X(X")=0
and hence X’ is equivalent to the trivial bundle Si''xXG. The
last assertion follows. q.e.d.

Now we consider the case G=S° (=Sp(1)=SU(2)). We may
consider that the classifying space Bs® is an infinite dimensional
quaternion projective space S*vevue®u---. Let i:S*— B¢ be the
inclusion map. In the diagram

Ag
7Ty |-|(Bs3) E— ”;1(53)
\\i* o L// E
7Ty I(SJ) ’
the relation
Asa(i*(Ea)) =« ) Qe n,n(SS) )

holds for the case @=¢,. Then it follows from (2. 2) that the relation
holds for arbitrary element « of =,(S®. Define a homomorphism
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E* : m,0,(SY) — 7,(SY)
by setting

Let #:S"—S* be Hopf’'s fibre map. # is the attaching map
of ¢. Thus hyr,, (S") is contained in the kernel of E*. By con-
cerning the isomorphism

E+hy: z,(SPn, (S =~ =, (S, we have
(2.3) E*oE = the identity and hy—image = the kernel of E* .

Denote by
zi{X 1 p)
the p-primary component of = ;(X).
The elements v,€ z,(S") and v € =(S*:2) of [7] are charac-
terized by the properties :

Hp) =, HY)=n-0 and 2Ev, = 2v, = E%'.

It is known that H({h})=:, (for suitable choice of the orientation
of S. Then {k}=v,+aEv +bEa for some integers a, b and an
element @ of order 3. Here, we replace », by v,+aEv and v by
(2a+1)»'. Then the above properties hold and hence the results in
[7] still hold for the new choice of », and v

Lemma 2.4. For the above choice of v, and v/, we have that h
represents v+ Ea (« generates =(S*:3)=Z,) and

Vo, (S" 1 2) = Ker E¥*Nnm, (S':2).

Proof. Obviously {h}=v,+E(ba). b==0 (mod 3) since mod 3
reduced power operation ®' is not trivial in quaternion projective
plane S*ue® [1]. Then, replacing ba by «, we have the first
assertion and 3v,=v,03i,= {h}°3:,. Since S” is an H-space, 3t,08=38
for all B€ =,..(S"). It follows that 3i,07,..(S":2)=7,,,(S":2). Thus
we have

V0, 11(S7: 2) = v,030,0m,,.(S7: 2) = hym, (S": 2)
= Iy (SN 7, 1(S*: 2)
= Ker E*nx, ,(S*: 2), g.e.d,
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Consider a principal S*-bundle (X, p, S”=X/S®) over S” and its
boundary homomorphism

A (ST — 7S .
Theorem 2.5. For o€, (S") and Be€ =;, (S, we have

A(aef) = E*(E(Aa)oB).
In particular, A(a) = E*¥(E(Ae,)ot)

Proof. Let f:S*"—Bg=S"ue’u--- be a mapping which induces
the bundle (X, p, S™). Since iy : #,(S*)—>=,.(Bs) is equivalent to
E* and it is an epimorphism, there exists a mapping f’:S"—S*
homotopic to f in Bsg. From the commutativity of the diagram

7 511(S™) (S5
S+ /é l f*//'As3
75.(S) —F> 7;,.(Bs),

it follows A(cto8) = Agfy(@oB) = Ag( f(@)oB) = Aglix f(a)B). In
particular, Agiy fi(a@)=Aa=E*E(Aa)=Agi E(Aa) by (2.3). Thus
i fi(@)=ixE(A) and A(aoB)=ANixE(Ad)oB)=E*(E(Ad)eB).
q.e.d.
Theorem 2.6. Assume that &€ n;(S™), BE€ n (S and v & =, (S7)
satisfy the conditions

E(Aa) = E(Ai,)ea, E(Aa)oB =0 and Boy=0.

For an arbitrary element & of {E(Ac), B, v}, there exists an element
& of wi{X) such that

DP5(8) = Ao and i (E*8) = oy,

where py: w{X)—>nAS") and iy: 7 (S*)—>=(X) are the homomor-
phisms in (2.1).

In order to prove the above theorem, we consider, in general,
a principal G-bundle (X, p, B=X/G) which is induced by a map-
ping f:B—B; from a universal G-bundle (E;, p, B;). Let Z,=
B:;\J,BxI be a mapping cylinder of f. Let F:X—-E; be the
induced bundle map and Zr=E;\ /X xI a mapping cylinder of F.
Then the projections of the bundles define a mapping p:(Z,, X)
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—(Z;, B). E; and thus Zg are contractible. It follows that
0:mi(Zp, X)— wi(X)

are isomorphisms for all ;. Define a homomorphism
P:2(X)—— n;(Z;, B)

by the formula P=p,00"'. Then it is verified directly that the
following diagram is commutative :

= 7l(G) —— 7 X) —— 7dB)—— 7;(G) = -+
2.4 Ag P A
(2.4) o . ; P

v = w;4(Bg) ]—*’ 7T H(Zf’ B) — #{(B) — wi{Bg) = -+ .

Since A, are isomorphisms for all i, so are P, by the five
lemma. That is,

(2.5) the two sequences in (2.4) are equivalent.

Proof of Theorem 2.6. Consider a mapping f’:S*—S' in
the proof of Theorem 2.5 which represents E(As,), and let Z,=
S*\JS"x I be a mapping cylinder of f/. Natural maps induce the
following homomorphism of two exact sequences :

. 5 ,
e (S s (2, S~ (51 L S
e i ‘ i

J w0 w S
= (B2 7 (2, S7) 7,(S™) =25 7i(BsY) .

In the upper sequence, we apply a similar discussion as in the
proof of Theorem 2.1. Then we have that for an arbitrary element
6 of {fi(a), B, v} ={E(A), B, v} C 7y, (S, there exists an element
& of n;.,(Zp, S") such that

08 = aof3 and ;.6 = &oF,
where ¥ is the inverse image of y under 0 : =, (E’/"", $7) == #,(S).
Define € by the formula €=P-'(i,»&). Then we have
D4E = puP (ip€) = 88 = aof |
and 4 (E*8) = iy(As3i,+8) = P jy(iy8)= P~'ipn(jyd) = P~1ip(€ o)
= (P7'(i;»€))ey = o,
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by the commutativity of (2.4) and the above diagram, (2.3) and
by the property P~ '(ao¥)=(P~'a)oy of P. q.e.d.

§3. The boundary homomorphisms for the fiberings
SU((3)/SU(2) and Sp(2)/Sp(1)

We shall apply the theory of the previous section to the
bundles (SU(3), p, S’=SU(3)/SU(2)) and (Sp(2), p, S'=Sp(2)/Sp(1)),
where SU(2)=Sp(1) = S°.

The boundary homomorphisms

A 2fS) —> 2(SY) and A : (ST — 7S

are epimorphisms, since 7, (SU(3))=0 [6] and =«(Sp(2))=0[1] (see
also [2]). Therefore, the characteristic classes of the above two
bundles are generators of =,(S®)=~Z, and =,S®)=Z,, respectively.
The elements 7, and »* of [7] are generators of =,(S®:2)==,(5"
and 7,(S®:2)=Z, respectively. Then we have

Lemma 3.1. i). For the homomorphisms A : 7z(S®)—=; (S,
we have A(Ea’) = p,oa for o’ € m; (S
and Aa = E*(g5,0) Jfor aex(S%.
7,00 € Er;_(S*) if and only if nicH(@)=0 and whence E(AQ)
= 7,00,
ii). For the homomorphisms A : z(S") — =;_(S%), we have
A(Ed) = xvoa for o’ €m;_ (S°:2)
and Aa = EX(£Evoa), E(Ax)= xEvo« Jor aex(S:2).
Proof. The first two assertions of i) follow immediately from

(2.2) and Theorem 2.5, where Ai=1,. By the exactness of the

sequence

E H
i -:(S%) 7i(S*) 7(S)

0@ € Em; (SY if and only if H(no)=0. H(yect)=H(Enoa)—
E(n,Xn.)oH(a)=n% H(«) by Proposition 2.2 of [7]. If nea=ES,
then E(Aa)=E(E*EB)=EB=n,°a by (2.3).
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In ii), replacing =+ by A¢,, the similar assertions are true.
Then it is sufficient to prove the relations

E(Ay)oa = +Evoax and H(EvVoea) =0 for a€z(S":2).

Since E*'=2y; and 2v(i=0, we have H(EVoa)=E(vXv)oH(a)
=450 H(a)=0. There exists an odd integer # such that 3ta=c,
since the order of @ is a power of 2. 3ta=(3f:)oc since S’ is
an H-space. Then we have E(Ay)oa=E(A)o(3te,)oct=3t E(As,)ok
=(xEv)oa= 4 (Evoa). This completes the proof of the lemma.

We introduce necessary results on the homotopy groups of
spheres. According to [7], we denote, for odd #,

N EZCY if i=mn,
e {m(s":z) if idn.
Then the results on =7 for #=3,5, 7 are listed in the following

table :

(3.1)
i—= |uv2| 3] 4| s | s 7|s|9\10|11[12

nli = 0 0 0 0 z Z, Z, Zg 0 0 Z,

generators 4 N7 3 vy vi

M= | 0 | 0 | Z | Z | Z | Z | Z | 2| 2| 2| 2z

generators ls s ng Vs vsng | Vsm3 | VE a”’ €5

n = 0 z Z, Z, Z Zy Zs 0 0 Z, | Zy+Z,

generators I 73 7% v Ve | Y7k €3 | M3, 7aés
i= | 13 14 15 16

wly = Zy VAR AL A Zy+Z,+2,+ 2, Zs+27Z,
generators o 0Ny V1, & a'nie, V3, M7, Mt V1010, T7is

p Zy+Zy+2Z, Zy+Z, Zy+2,+ Z, ZyA Zy+ Z,
generators) V3, I, Tk Vs0g, Nsle (s VsVs, Vses V3, VslMs, Vslls€q

o = Zi+ Z, ZAZ,1 7, Zo+ 2, Z
generators €y Malty Wy €3Vi1, V€ Vi, V76Er Vet
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i 17 18 19 20
Cdem | Zdz | o z | Zo4
generators Cry TaVis Y7010¥17 0'014, K7
. Zo+ 2. Zo+ 2 Zo+ Z, ZotZs
generators|  viosviz, ViTsMs vale. ViPalic oIV, % 45014, Tsée
P o= | Z z, Z.+27, 242,47,
!gen;;tfi‘rs - Eann o & U302, T3€4 €, /73,7777;1147013 -
i= ’ 21 22 23
ol 2ot Zot Zot Z, 2ot 2,1 2o+ 2, 24 2,1 2o 2,
generators|  p”, 0'Vy, 0'€y, € o'ty EC, 17010, MiEs |0/ 714ttss, VaKios Hey TaMe017
= Z+2Z,+ 27, Zs+ 2o+ Z, Zy+2Z,
genera;or.; Vsks, Hsy NsM6015 (5016, Vs€a, Tslls {5y VsieOpr —
n? %* Z V2,4 Z, ZyZy E;I—Zz
genemtarsl Hay, Ve, Nally ﬁ,:. Vv 16045 V61016, V'l

Here, we use the notations of [7]. For the simplicity, we

omit the symbol “o” of the composition operator.

given in [7] except the group =3; which is given in [3].

Proposition 3. 2.

have the following table:

The results are

i). For the homomorphism A : =}, — =%, we

a= Ms 7% Vs VsTls VsT§ Vi o 33 vi Hs Ns€e
da=| 7% 2y V76 v'nE 0 ‘ 0 0 N3€4 0 ' Nally 2¢
a= V508 st (s VsV V5€s v Vslig
da= esv+ VEg 2 V' g mod v'7ger 0 V67 0 VNelq
a= | Vs7s& V50gl1s Vsllslte | VsCa VsPgVe v €5 M504
da—= 0 egv} 0 0 0 0 73€4 N3l4013
a= | 75€ | Vsks #s | 7sie015 | (5016 VsEs | 7sle (s Vslg0y7
da= | 2¢ | Ve | malty | 200y | VUeos | O 2u | vVigmod B | B=V7e17016
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ii). For the homomorphisms A : =1, —=*, i==6, we have the
following table:

a= 77 7% 141 vi a T Uy &7 i v3
da= V76 VN 0 0 2¢’ 0 &3Vqy V'eg 0 0
a= dr | W% | Vi | Tams | G Vivie | viowlis | 0’0y | & o’ 'V
da—= | Vps |[Vnser| O [ Vysuel 0O &40, 0 0 ke 0 0
a= | dey | & o'py | EC 1016 | M7€s | O'Nraltis V7K10 7 N7 18017
da= 0 Ve 0 0 V 16015 0 0 0 Vg V' Y6 lt7016
Proof.

i). It follows directly from the formula A(Ea’)=n,0c’ of
Lemma 3.1, i), that the table is true for =9, &, u,, &, uo.,, ;.
The relation 5v,=v7, in (5.9) of [7] implies the formula

A(y,0ER) = vy 8 for Benx].

Then the cases a=v,, v, V&, Vetse, Ysityo1, Tollow immediately.
The cases a=v;n%, v} are obvious, since =j=n=},=0, hence the cases
a=y3 vi follow.

We have also

A(v,p,) = V9D, = Vg€ wiovi = 0 by (5.9) of [7],

A(v,p,v,) = A(vsP,)ov,, = 0 by (2. 2),

A(vt) = vnl, € VE *ns = vvsonlys by Theorem 7.9 of [7]
Cmyomyy =0,

A(very) = Ve, = V&, by (10.23) of [7],

A(vE,) = vnl,=vvopi, by Lemma 12. 10 of [7]

€ zloogis = 0.

The relations 7}=2v", 73&=2&, nius=2u, 7i€.=28 and 7ig,
=27 are obtained in (5.3), Lemma 6.6, (7.7), Lemma 12.3 and
Lemma 12.4 of [7] respectively. Then the cases @=293, .8, 9.,
NettsT s, M:Ce and z.7, follow.

We have also
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A(Vs"hes) = DI"I%‘SB = ”/(ZES‘S/)E 275:1{6 =0
and A(”sﬂx/“‘g) = V,W%/”B = V/(ZEalu‘/) € 27’?7 =0,

by Theorems 7.7 and 10.3 of [7].

The remaining cases: a=d", vo,, §;, v.o 0., PV, E04, &5, A(Q)
are verified directly from i) of the following Lemma 3.3, in virtue
of Lemma 3.1, i) and (2. 3).

ii). It follows directly from the formula A(Ea’)= tv'oa’ of
Lemma 3.1, ii) that the table is true for a=v,, 9%, &, m, 7.5,
Nafbys o5 [0 s, Th and N1 17

Obviously v'vs€ z§=0. Thus we have

A(v,cEB) = £v'y08 =0 for Be=].

Then the cases a=v,, v, v}, vo,, v,o,v, and v, follow.

The relations v'5,=&p,, and #&,=vo} are obtained in (7.12)
and Lemma 12.10 of [7]. Then the cases a=vp,, 5, and 2.5,
follow.

Next we prove

3.2) Evoo’ = 2E& = 72€,
By Lemma 5.4, Lemma 5.14 and (7.10) of [7], we have
EXEVo0’) = dvg, = E¥(93,) = E*2E€).
By Lemma 3.1, ii), Evee’=FEA(¢’)€ E#3;. It is seen in Theorem
7.3 of [7] that E*|E=%;: E=3s— n% is a monomorphism. It follows

the relation (3. 2).
Applying the homomorphism E* to (3.2), we have

A(O'/) = E*E(AO") = E*(Ev oo") = E*E(z&l) = 28 = 773

If 28=0, then A(¢/oE*B)=&2EB=0, and the cases a=oa'y,,,
o'n?,, o'by,, ', &, o'n,u, follow immediately.

We have E¢’'=0o'%,,5, in (12.4) of [7]. Then the case a=FE¢’
follows. We have &o0,,=0 in Lemma 10.7 of [7]. Then

A(d'a,) = A(o)o,, = ni€o, = 0.

The remaining cases: a=¢,, «,, p”’ follow from ii) of the
following Lemma 3.3 in virtue of Lemma 3.1, ii) and (2. 3).
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Lemma 3.3. i).

o =0, w0, = E(Ey,, +V'E),
74Vs0g¥15 = E(esy%l) » 7,85 = E(”//‘s) mod E(V/’7687) ’
"74PIV =V, 7,801 = E(”/:U'eo'ls) ’

7]4?5 = E(’)/:T"’s) mod E(”"’?s/‘ﬂ'w) .
ii). v&,=0, (EY)x,=E& and Evp’'=0.
Proof. 1i). The relation 5,06""=0 is already obtained in (7.4)
of [7].
We have g0, = Evigo,
= Evi(e'n,+0,+€&) by (7.9) of [7]
= EA(c"n,,+5,+&) for A of ii)
= E(&p,+VE),
and NYs0g¥15s = E(83V%1+V,86V14) = E(Eavfl)
since &v,,=0 by (7.14) of [7].
Next, we have
774?56 7]40{’)5’ 8l’ay Eo'l}l by the definition of :5
C {ns, 84, Ea’}, by Proposition 1.2 of [7]
:{EV/"]M 8"8! Eo-/}l
and Evu,€ Ev'o{n,, 2¢,, E*""}, by Lemma 6.5 of [7]
C{EVY'n;, 2¢, 4Ec"}, by Lemma 5.14 of [7]
C {Ev'n,, 8, Ec’}, by Proposition 1.2 of [7].
It follows
7.8 =Ev'p, mod Ev'n,cEx{s+ nsoE*e" .
neomis is generated by 5079, 7o, and 9&,. 70'n,=(45.)y,=0 by
(7.4) of [7]. vpo,=vvi=A(})=0 by (7.3) of [7]. =4oE%’'=
wgo(20,)=27500,=0 by Lemma 5.14 of [7]. Thus we have that
Ev'noEnls+nioE%’ is generated by E(v'35,), and
2k =EWw) mod EMng,).
It follows from the relation &o0,,=0 in Lemma 10.7 of [7]

7,806 = E(V o) .
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By (10.12) of [7], #3-H(pWV)=7%304{,=0. It follows from
Lemma 3.1, i) n,opVe€ Exdy. E*(n,op"Y)=n2Ep")=2n,0Ep"” =0 by
(10.15) of [7]. It is seen in Theorem 12.6 of [7] that E?|Eni,
is a monomorphism. Thus we have

"74°PW =0.
For &,, we have, similarly to &,

785 € no{Es, Buy, 200},
C{n&s, 8uigs 20} = {EV p,+2xEV'nE, 8,4, 20,5},
C{EY' tt,, 8uy5, 20}, + X{EV' 9.5, 8uyg, 20,6}, , =0orl,
Eva,€ EvoE*{u,, 2t,,, 80}, CEVo{m,, 2¢,, 80,6},
CA{EY tb;, 8y, 20},
Ev&u,€ EvE o{n, 2u, 8o},
CAEVYEms, 20, 80}, = {EV' &, 20y, 805}, .

Thus né,=Eva,+xEv&u, mod G,

where G=EVu,0En};+ Ev' 7, oE=};+nt020, is generated by the
following elements: Evu.5,, Ev'u.E, EvV'nEDys, Ev'nES,, nirola,,
c274,=0 (c¢f. Theorem 7.1 of [7] and [3]). ww»., € E*z}s=0 by
Theorem 7.6 of [7]. Then

Ve = EZ/"5°E2{"14) /T “13} by Lemma 6.2 of [7]

= Ez{:u'sy Yigs 77:7}°u21 by PI'OpOSitiOIl 1.4 of [7]
C E’mlyov, C4nliov,, by Theorem 10.3 of [7]
C 4=, =0 by Theorem 12.7 of [7].

By use of the anti-commutativity of the composition operator and
the relation 5,,+&,,=7,0,, in Lemma 6.4 of [7],

81["15 = /"’7816 = 716017+ P16 = 17014 -

We have also #,6&,,=n.65,=7Y09,Y7s=0 by Lemma 12.10 and
(5.9) of [7]. Consequently, we have obtained the relation

"7455 = E(u/ﬁ's) mod E("'/"lslbv"-lﬁ) .
ii). We have
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V'L € vo{y,, 8, Ec’} by the definition of ¢,
= —{v, v, 8i}oE’c’ by Proposition 1.4 of [7]
C7loE% = 0.

It follows »'&,=0.
The relation E€ =Evok, is given in Lemma 12.3 of [7].
Next we have

Ev'op” € Ev'o{d’, 8¢, 20}, by the definition of p”
C{EV o0/, 8t,,, 20},
= {n3&, 8u,, 20}, by (3.2)
{ni, 85, 20}, = {73, 0, 20}, =0.

Thus Evop” € nijoEx3, + nts020,,. From table (3.1) and Proposition
3.2, i), we have that n3cE=}, is generated by niuo,, and 7inSg,=
27,E¥=0. We see in Theorem 7.3 of [7] that 2=}; is generated
by 2Ex =niw,. It follows that

Evop” = x(nimos) for x=0or1.

Now, consider the composition 7,0p’€ #8,. We have H(n,op’)
=n3s080,=0. It follows that 5,0p’€ E#};. By Lemma 10.9 of [7],
E*(ngop)=n30E(2p,5) =29,,00,,=0. The kernel of E°: »];— =i} is
generated by o'u,, E{’ and 7,5, since Theorem 12.6 and Theorem
12.10 of [7]. It follows that 5dop’=75%(n,0p’) is a linear combina-
tion of the following three elements:

”I%Eo-,ll’xs = ,’]6(41;7)#15 =0 by (7. 4) of [7] ’
"l%Ezé‘/ = 'IlgE‘T"l/w‘E" =0 by (12° 4) of [7] ’
ying, = AE, = 0 by (5.7) of [7].

Therefore, we have obtained
nsop’ = 0.

We have E¥Evop”)=E"WoE(2p")=E*"2v)oEp’'=E(nip’)=0 by
(5.5) and the page 107 of [7]. It follows that

4x(&m ) = EX(xnipmo ) by (7.14) of [7]
. EJ(EV,“P“) =0.
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This implies x=0 and
ED/OP// — 0 s
since the element ¢{,0,, is of order 8 by Theorem 12.8 of [7].

Consequently the proof of Lemma 3.3 and hence Proposition
3.2 is established.

§4. The homotopy groups =, (SU(3)) for i<23

In this section, we shall prove the following

Theorem 4.1. The homotopy groups =;(SU(3)) for i <23 and
generators of their 2-primary components arve listed in the follow-
ing table:

i— 1,2 3 4 ] 5 6 7 8 9
7 (SU(3))= 0 z | o z |ziz| o | z+z | =z
gen. of 2-comp. Tals [2¢] iV [2¢5Jovs
i= ‘ 10 ‘ 11 12 13 14
m;(SU(3))== Zy+Zss Z, Zit+Zs Zy+Zs VAR A VA
gen. of 2-comp. Lvsng] [+£] [o"] ixe’ [v&Jovaa, tatt’
i= ‘ 15 16 17
7;(SU(3))= Z+2Z, Zy+ 2o+ Zez+ Z,g Zy+ Zy+ 7,5
gen. of 2-comp. [2t5]evs08 [2t5]oCs, [vsms ] [v&lovt, [vsmseo]
i= ‘ 18 ‘ 19 20
r;(SU(3))= Zy - ZoV 215\ 25 VARV AE Y AT AN ZyA 2y Zis+ Z4
gen. of 2-comp. ix€y, [vsstty] [0 ]o01z, [vsPslovis [otV], i€
i ‘ 21 | 22 ‘ 23
7:(SU(3))= ‘ PAV AN Zy¥Zy 1 Zny ZAZy+ 2,
gen. of 2-comp. | ixtt'0yy ' i, [2¢5 Jovsns [2t:]°¢5016, [vses] \

Here, we denote by [ an element of =, (SU(3)) such that p.[a]=
a e 7z(S°) and [« € #:(SU3) : 2) for i >5. The following relations
hold :
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(4' 1) 2[”%] = i*83, 2[0-/”] = i*,ua , 2([”%]01)11) = i*83v11 ’
2([0"o0y,) = inmon, 2[PV]=ism,  mod i, .
Since X(SU(3))=A¢, =7, is an element of order 2, we have, by
Lemma 2.3, isomorphisms

7i(SUQE) : p) = m(S* XS’ 2 p) == =S’ : p) D wi(S”: p)

for odd prime p and all ;. Then the above results on the odd
components follow immediately from the following table :

4.2)

i= 1,2,3,4,5‘ 6 ‘ 7 ‘ 8 | o 101112 13]14
odd comp. of 1 (SH=| 0 zZlolo|zlzs|l o] ol 2|z
odd comp. of m;(S° = 0 0 0| Z 0 0 0 Zys 0 0

i= 15 | 16|17 ] 18] 19] 2| 2| 2]z

odd comp. of m;(S*)=| O Z3 Zys | Zis Z Zs Zy Z33 0

odd comp. of Ti(S)=| Zy | Zea | O | Zy | Zs | Zis | O 0 | z

The table is given by Chapter XIII of [7] and [3].
Consider the exact sequence (2.1) for the bundle (SU(3), p, S°
=SU(3)/S*). Then it induces an exact sequence

(4.3) )
0—>Coker (A : 7., — %) —X > i(SU(3) : 2) L%, Ker (A7t —7,,) >0,

for i >5. We see also the exactness of (4.3) holds for i<<5 if we
replace #z;(SU(3):2) by =, (SU(3)). Then we easily have the results
in Theorem 4.1 for i<3.

By concerning the table (3.1) and Proposition 3.2, the follow-
ing lemma is directly verified.

Lemma 4.2. i). The homomorphisms A : =5, — =% are epimor-
phisms for i=4,5,7,8,9,10,15,16,17,23. For the other values of
i, 3<i<24, we have the following table of the cokernel of A :

i= | 6 l 1 | 12 | 13 \ 14 18 | 19 | 2 | 21 | 22
Coker 4= ‘ nlznlzlzl|l 2z |z 2|2z 2| 2
repr. of gene.. v &3 U3 & I, E3vyy €3 | Ma301a | € Us | Mou | W
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ii). The homomorphisms A : =% —=t_, are monomorphisms for
i=4,6,7,9,13,21. For the other values of i, 3< i< 24, we have
the following table of the kernel of A :

i= 5 8 10 11 12 14 15 16 17
Ker. 4= V4 Z, Z, Z, Z, Z, A Zy+2Z, Z,+ 2,
generators 2 | 2v5 | vgmE | 2 a” v | 2vs08 | 2(5, vsDs v, Vss€s

i= 18 19 20 22 23
Ker. 4= Z, Z,+27, Z, Z, Z+ 2,
generators VsTgllo vsCsy VsUsVie pv 2v5kg 2506, V5€s

Now we compute =;(SU(3):2) by dividing into three cases
of i.

Case 1: i=4,6,7,9,13,21. For these values of 7, it follows
from the exactness of (4.3) and ii) of Lemma 4.2 that =;(SU(3):2)
is isomorphic to the cokernel of A :#%,,—=? under the injection
homomorphism 7,. Thus Theorem 4.1 is established for these
values of i, by i) of Lemma 4. 2.

Case 2: i=5, 8, 10, 15, 16, 17, 23. For these values of i, it
follows from the exactness of (4.3) and i) of Lemma 4.2 that
2{(SU(3):2) (=(SU(3)) if {=5) is isomorphic to the the kernel of
A : 28— =%, under the projection homomorphism p,. Thus The-
orem 4.1 is established for these values of i, by ii) of Lemma 4.2,
the naturality (2.1)Y and by the following relations :

(4.4) 2u00, = 2v;, ugovo, = 200, , 2u0l = 2,
and 2u,080,, = 280, .

In general, E(2i,0a)=2Ea=E(a) for a€ »{S*). For /=8 and
i=15, the homomorphisms E : 7(S°)— 7;,,(S°) are monomorphisms
[7]. It follows the first two relations of (4.4). For {=16, the
kernel of E is generated by v,+v& (by (7.7) of [7]). Thus
2408, =28+ x(vsb, +v;5,) for x=0 or 1. By the exactness of (2.1)
and by i) of Proposition 3.2,

0 = A( ]‘)*([255]0(5)) = A(2¢,8)
= A28+ x(vsPs +v.5)) = xv'n€, .
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It follows that x=0 and hence 2&,=2:0f,. We have also 20,0,
=(2&,)0,=2¢.0,.

Case 3: i=11, 12, 14, 18,19, 20, 22. In this case, we have to
determine the extension (4. 3).

First consider the case i=11. By Lemma 4.2, we have an
exact sequence :

0= Z, 5 2 (SUB) : 2) 2% 7 0.

The first Z, is generated by &, and the second by »i. By (6.1)
of [7],

E{"/u "'g, 21’11} C {"75v U%; 2‘12}1 = 85+775°E7t§2+27t13(85) .

27, {S*)=0 since = (S*)=Z,. mn,oEn}, is generated by E(5,00"").
no0o’’=0 by (7.4) of [7]. Thus {7, ¥, 2¢,,}, consists of a single
element &=FE&,. Then &€ {n,, vi, 2i,} since E : 7,(S*)— 7,(S°) is
a monomorphism. By Theorem 2.6, there exists an element
a€ 7, (SU3)) such that p(a)=vi and i,85,=1i,E*E=a02:, =2,
a=[v¥] or a=[vi]+i,E=3[vi]. Therefore we have proved

7u(SU): 2) = {[]} = Z, and 2[%] = i,é,.

Consider the case i=12. Similarly as above, it is sufficient
té prove
ity = ixE¥{n,, o, 20,5} .
We have E*{7,, 0", 2.} C {ne, E*"", 2u,}} ,
= {ns, 2E0”, 2.,.}, by Lemma 5.15 of [7]
= {75, 2¢,0E0”’, 20}, .

By use of relation #,5,=v2 of [7;(7.3)] and Lemma 6.5 of [7],
we have
s € {"76v 2, Eza'm}l = {"76) 24, EO'”°2”14}1
C {ns, 20,0E0”, 20}, .

The secondary composition {7, 2¢,0Ea”’, 2.}, is a coset of n,oEx=$,
+27,(S*)=n,cE=$, which is generated by #,,=vi=FE%} and 7.6,=
E*(n&). Since E?: 7 (S")—=z(S°) is a monomorphism, we have
E*{n,, 0", 20,} = g+ {n,€&} by (2.3) and Lemma 2.4. iy (nE)=
i*(A&)=0. Thus i, E*{zn,, ¢, 2u,}=i.m, and we have proved
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7 {SU(3) : 2)={[¢""])=Z, and 2[¢"""]=ixp,.
For the case i=14, we have an exact sequence :

0> 2,87, — 2 (SUB): 225 2, 0,

where Z,®Z, is generated by i,u’ and i (&v,) and Z, by vi. The
first relation of (4.1) implies the third one: 2([vi]ov,,)=(2[¥%])ov,,
=1,(&)ov,=14(&¥,). Then we have the result =,(SU(3): 2)={[»Z]
ovy, iy} =Z ,BZ,.

Consider the case i=18. We have to prove that the sequence

0 = {i45} — mulSUB) : 2) -5 om0
splits. By Lemma 6.5 and of [7],

VsMyfbs € V5740 {"79v 20, 8‘710}5
C {vsma, 204, 80}s .
The last secondary composition is a coset of vpioE’z3;+ 3,080,
= {vsn38,,, 8(vis, )} ={4vio,}=0. Thus {v3, 2¢,,, 80,}; consists of
vematte, Since 2[vgn3]=0, the secondary composition {[»%3], 2,
80}, is defined and

p*{[”sﬂgl 2y, 80—10}5C {p*[usngl 21y, 8(710}5 = VsNgfly «

Then we may choose [v7yu,] as an element of {[¥n§], 26, 80}s.
We have
20vene] € {[vsmil, 2010, 80 }50204
C [vsni]oE{2¢,, 80y, 2¢,5}
C [vma]e{2e,, 8oy, 26,5},
and 0=8c,,07,,€ {2t,,, 80, 2¢;;}, by Corollary 3.7 of [7]. It
follows that 2[ vy, |=0 mod [vsn3]o7,(S")o2¢,.
Since 7,(S*)02s,,=27,(S")=0, it follows that 2[vinmu,]=0 and

therefore the above sequence splits.
For the case /=19, we have an exact sequence :

0> Z,— =SUB): 2) 2% 2,82, -0,

where Z, is generated by i4 (s, and Z,PZ, is generated by
vt, and vipw,. The relation v,=26"0,=FE(¢"a,) in (10.7) of
[7] implies that v,{,=¢""s,, mod v, since the kernel of E: 3,
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— 7§, is generated by v,5v,. So, we may replace v,&, by o"o,.
Then it is sufficient to prove the relations:

p*([o-,//]o-lz) = oo, 2([0-///]0-12) = i*([&30']2) ’
p*([”sf’s]"m) = o, and 2([”5’78]0”16) =0.
But these relations follow from (2.1Y, 2[¢""]=i.u, and 2[»,]=0.
Consider the case i=20. By Lemma 4.2, we have an exact
sequence :

0—>Z,PZ, > m(SUB):2)—>Z,— 0.
For the results #,(SU(3) : 2)={[p"V], i4&'}, it is sufficient to prove
the last relation 2[ p"V]=i,%, mod i,& of (4.1).

By the definition of z,,
»=E"p,€ EN{ILLEI’ 2., 80—12} <, 2¢, 8o

By (3.9) of [7],

<y 2, 86> +<80, p, 20> +<2:, 8o, >

=, 21, 80D +400 2, p, 20> +<{ps, 80, 20> =0

mod @oG,+80°G,,+2G,,. 2G,,=0 since G,,=Z,DZ,DZ,DZ,. 805G,
+400 2, p, 20> C2G,, : 2)=0 since G, =Z,. woG, is generated by
uE=n*p=nus, by Theorem 14.1 of [7]. Thus we have

=<, 2, o> = {u, 8c, 2> mod yuo .
Similarly, we have
w €<, 26, 80 = {1, 80, 21> .
By (3.7) of [7],
B € {7, {8a, 2t, 86>, 20>+, 8, {2, 80, 20>> .
By (3.10) of [7],
{2, 80, 26> C 800G, +-2G, = 0.
By the definition of p'V,
E=pVe E~{a", 2t,,, 8c,} C<{8c, 2¢, 8> .

Thus we have that {7, E~p'V, 2:> consists of Z and 7+ npo.
It follows from the relation E~{»,, p'V, 2:,} C —<5, E~p", 2¢>

”glf\ {"74: Plvy 2‘12} =T, mod {"74/1'50-”} +Ker (l':oo : 7’31 nd G17) .
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In Theorem 12.7 and Theorem 12.17 of [7] we see that Ker (E~: =5,
—G,,) is generated by v,o’oc,, and EE&. It follows that

ﬂgof\E*{'I]“ PIV» 2‘12}5/7’3 mod {"73/"40-137 E’} ’
and E*{"h» PIV’ 2"12} =y, mod {77311'40'13» g/} +27720(SS) .

Apply Theorem 2.6, then we have that there exists an element
PV such that
2LpV]=i,z, mod iE’,

where iy7.0,0,,=0. ‘

For the case /=22, we have an exact sequence :

0—>2Z,—> 7, (SUA4):2)—>Z,—0.
By Lemma 2.2,
2([2e5Jovsrey) = [205]02(very) = [24]0 = 0,

since E(2vc,)=2v.x,=0 by Theorem 12.7 of [7]. Thus the above
sequence splits.

§5. The homotopy groups =,(Sp(2)) for i<23

In this section we compute the groups ={(Sp(2)) and the results
are stated in the following

Theorem 5.1. The homotopy groups =(Sp(2)) for i<23 and
generators of their 2-primary components are listed in the following
table :

i= L2| 3 | 4| 5] 6 7 ] 8,9 10 11
n;(Sp(2))= 0 VA Z, Z, 0 VA 0 Zs+Zys Z,
gen. of 2-comp. ixts | Ta7s | 1473 [12¢] [v] ixEs

= 12 13 ! 4 | s { 16
7;(Sp(2))= Zy,+2Z, Zt+2Z, ZwstZios | 22 Z,+2Z,

gen. of 2-comp. | ixtty, ix73€s | [Vilovie, ixmatts [207] ‘[0/7714]

Lo madeoms, [vilevd,

i= 17 18 19

n;(Sﬁ(Z))_—"—! Zg"‘Zﬁ Zg+22+2315 Zg‘f‘Zz

gen. of 2-comp. [vileass [¢7], ixes 1403012, 157384
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= 20 21

7 (Sp(2, )= ZyvZyvZy AN A

gen. of 2-comp. Lvrdo010¥17 5 Tx71344013 Lo7014]s dx7atis

22 23

—

i Sp2Ne= Zag+Z;+ 23+ 2,

Lo LaPuld [o'sd

2+ 2+ 2,

Lo'mds LEC'] [ma6s]

| gen. of 2-comp.

We denote by [@] an element of ={(Sp(2)) such that p,[a]=
€ (S and, for i==T, [&]€ = (Sp(2): 2).

The following relations hold :
(6.1)  2[v]Jov,, = iy, 4[207] = iy, 8[o'o,] = xiyu'o,

and 8[p" 1= iy,
Since X(Sp(2))=A:, is an element of order 12, we have from
Lemma 2.3 isomorphisms

7{(Sp(2) : p) = w{S'XS* : p) = w(S"p) B=AS": p)
for odd prime p>5 and all i.
For 3-primary components, we quote from [8] the following
isomorphisms :
7(Sp(2) : 3) = =(B(3) : 3)

Then the results in Theorem 5.1 on the odd components follow
immediately from the following table :

for all 7,

(5.2)
i i= 1,2,3,4,5,6,7,8,9| 10 | 11,12,13 | 14 [15,16| 17 | 18
2 p-comp. of =:(S%), p>5 0 Zs 0 Z;| 0 |Zs| Zs
3 p-comp. of n,(S"), p=>5 0 0 0 Zs 0 0| Z
| 3~comp. of =.(B(3)) 0 Z, 0 Zy| O 0| Z
19,20,21 | 22 | 23
0 Zy| 0
i 0 Zs T
- 0 Zy | O




240 Mawmoru Mimura and Hirosi Toda

The table is given by Chapter XIII of |[7], [3] and Theorem
3 of [8].

The exact sequence (2.1) associated with the bundle (Sp(2), p,
S'=Sp(2)/S?) induces the following exact sequence :

(5.3) 0 - Coker (A : #7,,— 73 25 74(Sp(2) : 2) — Ker (A : =7
-7z )—0, for i >7.

By concerning the table (3.1) and ii) of Proposition 3.2, we
have

Lemma 5.2. i). The homomorphisms A : =z}, — =} are epimor-
phisms for i=17, 8,9, 10, 15, 16, 17 and 23. For the other values
of i, 6< i< 23, we have the following table:

i= 11 12 13 14 18 19
Coker. 4 zZ, Zz-ngz Zy+ Zr;ﬂ Z, | Z, | Zy+2Z,
rep. of gene. & L3y M3€s €, N3ty W € 13012, N3€4

i= 20 21 22
Coker. 4 Z,+2Z, Z4+Z, Z, 7
rep. of gene. H3s T3la013 W05 Nally w

ii). The homomorphisms A :zi— =% . are monomorphisms for
i=8,9,11,12 and 19. For the other values of i, 1< i< 23, we have
the following table :

i= 10 13 4 | 1 16 17 18
Ker. 4 Zy Z, Zy Z, Zy+2Z, Zg Zg
generators Vq % 20’ 0'7a o', V3 V7019 {7

= 20 I 21 | 22 23
Ker. 4 272‘777 7 Zg Zg+ 2+ Z, Z,+Z,+ 27, o
generators VeO10V17 0014 07, 0V, 076y 0’1y, EC’, 176 '

We consider ={Sp(2):2) by dividing into three cases.
Case 1; i=8,9,11,12 and 19. For these values of 7, it follows
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from the exactness of (5.3) and ii) of Lemma 5.2 that =,(Sp(2):2)
is isomorphic to the cokernel of A: z],,— =} under the injection
homomorphisms i,. Then Theorem 5.1 is obtained by i) of
Lemma 5. 2.

Case 2: i=10, 15, 16, 17 and 23. For these values of 7, it
follows from the exactness of (5.3) and i) of Lemma 5.2 that
z{Sp(2):2) is isomorphic to the kernel of A:=7—=?_, under the
projection homomorphisms p,. So, Theorem 5.1 is established for
these values of 7, by ii) of Lemma 5.2 and (2.1).

Case 3: i=13, 14,18, 20, 21 and 22. We have to determine
the extension (5.3). We remark that, by Lemma 2.3, we may
consider that the sequence (5.3) is induced from the homotopy
exact sequence associated with an S°-bundle over S’ having the
characteristic class As,=v".

First consider the case i=13. By Lemma 5.2, we have an
exact sequence

0->2Z,PZ,— =Sp2):2) > Z,— 0.

For the result =, (Sp(2):2)={[v,]ovi, txm,}, it is sufficient to
prove the first relation of (5.1): 2[v,]ov,,=iy&. €& € {V, 2y, v} by
the definition of &. Then it follows from Theorem 2.1

2[”7]°V10 = [2”7]0”10 = i*el .

For the case i=14. We have an exact sequence

0= Z,—> w(Sp(2):2) L 2,0,

where the first Z, is generated by i,z and the second by 2¢’.
We have p,(2[207])=40"=120"=p*([12¢,]°c’). It follows

2[20") =[12¢,]0o0” mod iyp’ and 4[20"]=[12:,]cEc” mod 2i.u’ .
By the definition of ¢, and by (7.14) of [7],

+ E*y = 2¢,€ 2{ys, 8y, Ec’},.
We have also

E*{Y, 4¢, 0"} C {205, 44y, 2E0’}, C 2{v;, 8¢y, Eo’},.
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It follows =+ E*xw' =E*{Y, 44, 6"} mod {vs&,, vs7}. Since {v:&;, vsbs}
is complementary to the image of E*: » (S*)—=,(S°) and since
the kernel of E* is generated by &p,, and v'§;, we have

+u = {V, 4¢5, 0’} mod {Epyy, VE} .
Applying Theorem 2.1, we have
4[20'1 =[12¢,JcEc” =i’ mod 20, .
This proves =,(Sp(2):2)={[20"]}=Z,; and 4[2¢"]= +i "
For the case /=18, we have an exact sequence :
0—Z,— m(Sp(2):2) > Z,— 0.

where Z, is generated by i,&, and Z, by ¢,. By Theorem 2.1, we
have

8[?7] = [§7]°8L136 i*{”/: o 8‘17}1
We have, by (7.4) and (5.5) of [7],

{95, Co» Busks = {ns, 486, 20} = {ms, mips, 2012}
= {53, ty, 20,3, = {4vs, @y, 205},
= {2v5, 285, 20,7} = {2v5, 0, 20}
5 0.

Note that the equality holds, since these secondary compositions
have the same indeterminacy 27zls(Ss)zZs. Then it follows that
8[£,]=0, and the above sequence splits.

Consider the case 7=20. We have an exact sequence :

0= Z,BZs— wn(Sp(2): 2) 225 2,0,

where Z,0Z, is generated by iu7, and iyn.p0,, and Z, by v,o,v,,.
Obviously, pu([v.o]ovi)=v,0wwi. E2ow,)=20,,=0 by (7.20) of
[7]. Then it follows from Lemma 2.2 '

2A[voip]ov) = [v.]o(2v1,) = [v,]00 = 0.

This shows that the above sequence splits.
Consider the case i=21. We have an exact sequence :

0 — Z,BDZ,— #n(Sp(2): 2)'_1’i> Z,—0,
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where Z,©Z, is generated by i,u'co, and i,7,%, and Z, is generated
by o’o,,. In the proof of the case ;=14 we have an element [2¢7]
such that p,[20"]=2¢" and i,u'= +4[2¢"]. Thus

p*([ZG"]oo‘“) = 20’0, = p*(2[0,0-14])

and i p'o,=4[20 ]oa,,.
It follows that

8[0'/0'14] = j:l.*lu,’O'“ mod 41‘*72’31 y 41’*7521 = 0 .
Therefore we have 8[o’c,|= +i,u'o,,, and
”21(Sp(2) : 2) = {[0"0'14]’ i*"?aﬁ%} = Z,DZ,.

Consider the case i=22. We have an exact sequence, by
Lemma 5. 2,

0= 7, — wal(S62): 2) 25 202,82, 0,

where Z, is generated by i,z and Z,PZ,PZ, by p”, ¢’p,, and '€,
First we prove that the relation
2[0'/’714] = 2[0-/814] =0
holds for suitable choice of [¢’p,] and [¢’€,]. p([o791]00s)=
o'n,0s=0"9,+0’€, by Lemma 6.4 of [7]. Thus we may choose
[o/5,,] such that if [6’€,] is given then
[0";‘;14] = [0_/614]"'[0—,’714]00'15 .

Since 2[¢'%,,]=0, we have 2[¢’5,,|=2[0’¢,]. Let a be an element
of the secondary composition {[¢7/7,,], 2t:s, vis}:. We have

0/614 € a’o {7]14 y 245, st}l
C {0-/"714) 2"15» V%s}l DP*{["""M], 2”15» V%s}z .

{67145 20,5, v3s}, is a coset of o'y, 0Ex}t+nlsov}s which is generated
by 0-/77140-15:0,’:’14“‘0',814» 0-,77%41’%6:0» 1“'7”?6e 72'390”19=0v V?”fnz’%é‘xs“%ﬁ

=0 and 7,&pis=Emv36=0. Thus
by = 0’6+ x(0'D,,+07E), x=0or 1

Set [0/814] =0+ x([o'/ﬂu] oo;), then ﬁ*[O'/rSM] =d’¢,. We have



244 Mawmoru Mimura and Hirosi Toda

2[0'¢,] € {[o/n1,], 2015, vis}i02¢,,

= —[o'9,]eE{2¢t,,, vi4, 2t} by Proposition 1.4 of [7]
0= —[o'n,]onwis

€ —[o"n.]oE{2¢,,, vi4, 20} by Corollary 3.7 of [7].

Thus 2[0’¢,]=0 mod G, where G=[0"5,JoEz,(S")02¢,,=2[0"7,,]
oEr,(S"*)=0. We have proved the required relation:

2[o’p, ] = 2[¢’¢,] =0.
Next, by the definition of p”,

p*{[Zcr’], 16"147 0'14}1 C {p*[ZO"], 16‘14» 0'14}1
= {20'/, 161’14) 0-14}1
C 2{0-/’ 81’14) 20—14}1 92PH = Zp*[:o,/] .

Thus {[207], 16¢,, o,,},=2[p”] mod G, where G is generated by
147, [207]ep,y, [207]&, and [¢'9,]co,. It is easy to see that
4G=0. Then we have

8[P”] = 4{[20-/]’ 161’147 0'14}1 .
By the definition of %/,

1 2 € iy {ps 4oy, 4ok

C {i*/‘,v 4u,,, 4o},

= +{4[20"], 4¢,,, 40},

C £{[2¢7], 16¢,,, 40},

D> x{[20"], 16¢,,, o,,},04¢,,

= 8[p"].
Thus 8[p”"]==x1i,% mod [206"|om}s + = (Sp(2))edo;. 7, (SPH(2))eda,,
=47, (Sp(2) : 2)oo;=0. [20"]o=}s is generated by [2¢"]-5, and

[207]<&,, which are in i,z}, and of order at most 2. Then we
have

8[p"1=iu® mod 2iy7},, ie., 8[p"]= xim.
By these relations and the exactness of the last sequence, we have

(Sp(2):2) = {[p"], [o'%u], L0761} = Z,,DZ,DZ, .
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The homotopy groups 7,(SU(4)) for i< 23

We shall prove the following theorem mainly by use of the
known results given in the previous sections.
From the fibering SU(4)/SU(2)=SU(4)/S*=5°x S’, we have the
following exact sequence :

(6.1)

e o e fS) s SU@Y) L S D i ST) — e iS)) —> oo

We denote by [@a®dB] an element of =(SU(4)) such that
Pyl aPBl=aPBe z{S*)P=,(S") and if i>>7 and aPLBE =iP~! then
[a®B] e 7(SU4): 2).

Theorem 6. 1.

The homotopy groups = (SU4)) for i< 23 and

generators of thair 2-primary components ave listed in the follow-

ing table.
i= 12| 3 4| 5 | 6 7 8 9
n;(SU4))= 0 VA 0 A 0 VA Zs+Z, Z,
gen. of 2-comp. x€3 [24] [72D6er] | [vsDnq] | [vsPrslons
im 10 | 1 12 13 14
|
n;(SU(4))== Zs+Z,+ 2735 Z, Z+Zys Z, Zy6+Zy+ Z1os
gen. of 2-comp.| [vi], [vsnE] [v2] [o”] [v7dovie [7se6Da’], [v2]ovy,
1= 15 16
I,(SU(4))—5— Zs+Zz+Zg Za+Zz+Zz+Zg+Zg+Zg3

gen. of 2-comp.

[vs®n7]o0s, [0714]

[¢sDurd, [vsPsl, Lo'nuadoms, [valovis, [vs@®nylees

1=

17

18

i (SU))==

Zy+ 2o+ Zo+ 2+ Zs

Zy+Zy+Zy+ 255+ 2,

gen. of 2-comp.

[videoi, [¥E]ovdy, [vemses ], [vs@nrlous

[£71, CvsDnqdoosvis, [vsnats]

1=

19

20

21

m:(SU(4))=

Zo+Zy+ 2,

Zy+Z,+ Zys

Ziet+2Z,

gen. of 2-comp.

[0 ]0012, [vsTs]ovie

LotV], [viJeoiovsn

[o014], (15862 ]
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i= 22 23

7;(SU(4) )= Zw+Zy+Zo+ Zy+ Z o5 Zy+ Zo+Z,+ Z,+ Z,+ 2,
gen. of 2-comp.| [p"], [vsrsDer ], [0'V1], [07€14] :(S@jh]mw’ Lot Lot LECT)

71€8

We have the following relations:

(6.2) 2005] = ix&;, 200" = dyp,, 20y ]ov, = i4€,
8["7586690'/] = i*/"/’ 2[”569717]‘30-3”15 = 0,&;,
200" Joo, = 2[wsfs] = i4psTias 2[p"V] = iy,
8[0-,0-14] = iyp'oy, and 8[9//] = l*ﬁ, .
Consider the bundle SU(4)/Sp(2)=S°. Since the order of its

characteristic class Ay,=1i,7, is 2, we have, by Lemma 2.3, iso-
morphisms

7(SU(4): p) = 7 (S*XSp(2): p) = ={(S": p) B ={Sp(2) : p)

for odd prime p. Then the results for odd components follow
immediately from the tables (4.2) and (5. 2).

From (6.1) we have the exactness, for i_>7, of the following
sequence :
(6.3) 0— Coker (A: %, Dl — =})

; *
LN 7a{SU4): 2)—‘b—> Ker(A: 7P =l — =} )—0.

Obviously, the above A is the sum of the A’s of (4.3) and

(5.3). Then the following lemma follows from Proposition 3. 2.

Lemma 6.2. 1i). For the case i=38,9,10, 15,16, 17 and 23, the
homomorphisms A : =3, D=l —=} are epimorphisms. For the other

values of i, 1< i< 23, we have the following table of the cokernel
and representatives of their gemerators.

i= 1n | 12 ‘ 13 ‘ 14 | 18 ‘ 19 ‘ 20 ‘ 21 ‘ 22
coker. 4= | z, | zo | z | z | z. | =z Z, Z, Z
rep. of gene. €3 U3 ¢ 1’4 & U303 M3 1oy 14

ii). The kernels of the homomorphisms A :=ziPx]— =},
7<i< 23, and their gemerators are listed in the following table:
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s 8 9 10 1 ‘ 12 ‘ 13 14
Ker. 4= Zs Z, Zy+Zg Z, Z, Z, Zs+2Z,
generators vsDnr | (vsDna)ens | vemd, ve V2 a” 1z 7566D0’, V3
i= 15 16
Ker. 4= Zs+2Z, Zs+ 2+ 2,4 Z,+ Z,
generators (vsDn7)008, 0’714 {sDur, vsPs, 0724, v3, (vsD7r)oes
i= - 17 18
Ker. A= Zs+ Zo,+ 2,4+ Z, Zs+ Zy+ Z,
generators V1010, V8, Vslls€a, (VsD77) 0 tg {7y Vslistts, (V50sDT7)ovys
i= 19 | 20 21
Ker. 4= Z,+Z, Z,+2Z, Zs+2Z,
generators v5Cs» VsTslis OV, vi010v17 0014, 75€6D2K7
i= 22 | 23
Ker. 4= Zg+Z4+Zz+Zg Zs‘l‘Zg“I‘Zz‘I‘Zz‘l‘Zz
generators 0y vskgDEr, 0'viy, 0'€y (1sPur)o016, Vséss 0" tt1s, EC’, 748

The results for /<7 in Theorem 6.1 are verified without
difficulties from the exactness of (6.1), so we omit the proof.

We shall compute the 2-primary components. We see that
the above lemma, the exactness of (6.3) and the relations (6. 2)
imply the results for the 2-primary components in Theorem 6. 1.
So, it is sufficient to prove the relation (6. 2).

The first, second, sixth and seventh relations in (6.1) follow
immediately from the corresponding relations in (4.1). The third,
eighth and ninth relations in (6.1) follow from (5.1). From the
second relation of (5.1), we have

4[207] = i p’ (in 7,(SU4))).

Since py[207]=px(2[7:6:P0”]), we have 2[ 7,60 ]=[20"] mod i’
It follows the fourth relation 8[#,&;Pc" ] =1,
It remains to prove fifth relation
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2[“5 SV 7]7100.61)15 = i*83 .
We have

2Lws D nyJoowis = [vs B 9 10200,5 = [vs D 9 ]ovon
and [vs @7, Jov,=[13] mod 2[.}],
since pu([vsDn, Jovey) = viPnw,=vi. It follows
2Ly @ n:Joowis = [¥5]oo,.
By Theorem 2.6, we have
[v3]oow € ixE*{ny, v§, o1} .
By Proposition 1.2 ard (7.19) of [7], we have
E{n,, v, o} CHms, v5, 00h D s, w6, ve00h = {255 ves 2000161
and {65 ver 209016}2 C {75y 206, Tovishs D M55 206, VeTovich: -

The indeterminacy is 9,0Ex}+ 75300+ 7hooevis. 750 E 75 =25027%
=n,02¢0m50=2n5073,=0, by Theorem 10.3 of [7]. #iz00,={E0 .}
=0 by Theorem 7.1 and Lemma 10.7 of [7]. #§o0,w,s= {vsn:Tv:e}
= {v(Ec' 95+ 5+ E)ueb =0 by (7.4), (5.9), (7.17) and (7.18) of [7].
It follows that

2 —
E{"]u Vs, 0'12} = {"/5» 2"5» 1’60-9“16}1
and this consists of a single element. We have
V50 gV1s =— {v%, 26y, x921,1}1 mod V57sllg »

since H(vgywis) = H{»2, 2ty,, v}1},=v5 and the kernel of E is generated
by vsnems, (cf. Theorem 7.7 of [7]). Then

VeTgVis € {V%» 2"12’ V%z}
since E(vymyw,)=0. By Proposition 1.5 of [7],

{"75a 21’5) VGG'QVle}l( € {"75’ 2”6) {Vg, 21’12’ 9%2}})
€ {{7]5» 2us, Vg}; 20y, st} + {"75» {2"5» ”%’ 2‘12}» VES} .

Here we have that {7, 2:, v} consists of the element & by (6.1)
and Theorem 7.1 of [7]. By Corollary 3.7 of [7], we have
0= g2 € {24, vi, 2t} and hence {2¢, v, 20} =27,,(S°). So, we have

{"]5> 2”6) lJ6‘7'9’)16}1 € {85’ 2"13» V%s} + {"]5’ 2« U¥3} .
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By the definition of &, & € {&, 2u,,, v};}. We have also 0€ {z;, «, 0}
C {ns, 20, v35}. It follows
& = {n,, 2¢,, veoovis  mod G,

where G = 9,om,(S%) + 7thoviy =105 =0. By concerning the be-
havior of E in Theorem 10.5 of [7], we have

& = E*{’h’ 21’5) Vso'sl"ls} .
Therefore we have proved that
[ngoo'u = i*E*{"lm 2‘5: X)5‘7'8’)15} :i*gs .

This completes the proof of Theorem 6. 1.

§7. Problems

In the previous computations it seems that the following two
problems are true.

Problem 7.1. Is the following diagram commutative?

7{S?) —> m1(S")

A A
7’;’—1(53) 7l’i+1(53)
N, R /
\E % H

7i4:(S°) «

This is surely true for the suspension elements in z;(S°).
Problem 7.2. Let an element & of =,S°) satisfy the relations
2¢ =0 and Aa =0,

where A is the boundary homomorphism for the bundle SU(3)/S®
=S®  Does there exist an element [&] of ={SU(3)) and an element
B of =(S® such that

Pl =, iB=2[a]l and H(B) = a?

Kyoto University
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