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nonperfect rings
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In this note we offer a theorem which purports to characterizing
the ring of Witt vectors built over a nonperfect ring of prime charac-
teristic p provided that the extraction of p-th root is possible within
the latter ring.

The formulation of the theorem as well as essential ideas for its
proof were made known to the writer in 1966 by M. Nagata while
both of us were in Pisa, Italy. The writer now undertakes to publish
the result by furnishing details.

1. Throughout let K denote a commutative ring with 1 having
prime characteristic p. Let W(K) denote the Witt vector ring of
infinite length over K.

Theorem 1. Let A be a commutative ring with 1, complete
and separated with respect to the topology defined by the ideals
{prA; v=1,2,---}; suppose that p is not a zero-divisor and that
A/pA=K. Then the following are equivalent:

a) The Frobenius morphism x— x* is bijective from K to
K (i. e. K is perfect);
b) A is canonically isomorphic with W(K).

The implication a)=>b) is rather classical; an interesting version
of proof due to M. Lazard is found in Serre’s Corps Locaux, Chap.
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II, §5, pp. 45-49 (Hermann, Paris: 1962).
The part b)= a) was remarked to the writer by M. Poletti,

and it can be readily verified.

2. Before proceeding to the main result of the paper, we fix
notations as follows: If x is an element of a commutative ring then
% will invariably denote the residue class of x modulo p. Another
note: For typographical reasons, the p*th power of an entity X
will always be denoted by X*®,

Theorem 2. Let R be a commutative ring with 1, complete
and separated with respect to the topology defined by the ideals
{p’R; v=1, 2, ---}; suppose that R/pR—=K and that the Fro-
benius movphism x—x* of K is surjective (ie. K*=K). Then:

A) There is a (canonical) surjective ring homomorphism ¢:
W(K)—R if and only if

for every ac K with a**=0 for a positive integer n, there
(x) {is a bER with b=a such that pb* =0 (mod p") for all
0<ls<n—1.

B) In case the condition of A) is satisfied, the homomorphism
¢: W(K)—R is an isomorphism if and only if p'c=0 for a
positive integer n and for a cE R implies ¢*”=0 in K.

The next lemma is the key to all.

Lemma. Let R, K be as in Th. 2 and assume the condition
(%) to hold. Let x, y be elements of K, and let {x,; ,=0,1,2,--:},
{3,;v=0,1,2, -} be sequences of elements in R such that (x,)*
=% (3)=7F for all 0<v<<oo. Then, the limits lim x*®,

V->o00

lim y*© exist; if ¥ =3"", then p"lim x**=p" lim y**.

v=>co v—>o00 y—>oo

Proof of the lemma. Let z,=%,—7y,; by assumption, we have
(Z)P M =xo 5= whence there exists z,& R for each v with
Z,=2, such that p°z:“*~2=0 (mod p"") for 0<s<m-+v—1. Now
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start out with the relation x,=y,+2z, (mod p), and take the p’th
powers of both sides to obtain

v PR
2=+ ‘:L:‘(f-’ > ez (P,

But, if p*<i<<p**'<pv, then it is easily verified that (f V>EO (p™.
It follows that

p(f’ V>z£= P * X (an integer) X 2:®z,*®=0 (p"*)

and, consequently, p"x2”’=p"y:* (mod p"**), which would prove
prlim 22 =p"lim y:* provided that the limits exist. But the exis-
tence of lim x2’, say, can be easily seen if one takes an obviously
convergent sequence wW,=2xX, W, -+, W,, .-+ in R with (ml)”=u_),,
(0<v<Coo) and apply the foregoing to the sequences {x,}, {w.}
to get xV=w!® (p”) for all v. This proves the lemma.

Proof of Theorem 2. A) Assume the condition (*) to be true.
Let x= K be given, and find a sequence {x,; v=0,1,2, -} in R with
(,)"=% for all ». Define a mapping x#: K—R by n(%)=1im 2.
By the lemma, x(x) is well-defined. Clearly x is multiplvi_():;tive:
w(ZF)=pn(@)u(F) for all %, ye K. Also, evidently, u(x)=%. Fur-
ther, if 1: K—R is a mapping with the last two properties, then
(@) =1(a,)*™ for every choice of a sequence {a,} with (a,)"”=a
for all v, whence 1(@) =1lim 1(a,)*®=u(@). We have thus established
that x is the unique muvl_;;plicative cross section of R—R/pR (viz.
a generalized Teichmiiller lifting).

We now define ¢: For each Witt vector (%,, %y, -+, X,, -**)
S W(K)y let gO(Eo, .;_Cl’ “tty En) “')::/1(20)_'_/1(}{(_1))1)4_ "'+:U(E5(—"))p”
+ ... Here, for each 1<n<Toco, X4~ denotes any one of possibly

many p"th roots of ¥, in K. By virtue of the lemma, the choice
of p™th root does not affect u(F:"")p", and we find ¢ well-defined.

Proof that ¢ is a ring-homomorphism may be carried out exactly
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the same way as in the standard Witt theory. We omit the proof,
referring the reader to Serre (Jloc. cit.). Finally, for a given
y=>ou(@)p’, we find o(¥,, Vi, -+, ¥, ---)=y. This shows
the surjectiveress of ¢. We have thus derived the existence of the
desired ¢ from the condition (*). The converse being obvious, the

proof of A) is done.

B) Let ¢ be as above, and suppose that (%, %, -+, X, **)
=pu(Z) + p(XA)p+ o+ p(E)p"+ - =0. Then u(%,)=%=0; if
Xo=-+=%,.,=0, then p"[u(Z™) + u(x:7""P)p+-++] =0, and the hypo-

thesis gives (% ")*»=7%,=0. Conversely, if ¢ is an isomorphism,
p'c=0 for c€ R=W(K) clearly implies ¢¥”=0. This concludes the
proof of Theorem 2.

Remark. In the statement of Theorem 2, the modulus p” ap-
pearing in (*) may be replaced by p™™ where « is an arbitrary, in-

teger-valued, monotone increasing function of n.

3. In connection with the essential assumption, K’=K, of
Theorem 2, we observe the following fact:

Proposition. Let K be a commutative ring with 1 having
prime characteristic p. One can then build a commutative ring
K with 1 which is closed under the p-th root operation (I?”zl?)
and an injective ring-homomorphism KS K.

Proof. For each a= K let X, be an indeterminate. To the
finite field F, of p elements adjoin the family {X,; a= K} of inde-
terminates to obtain the polynomial ring F,[X]=F,[X,; a€K].
Next adjoin to the last ring all the formal p*-th roots X#*™ of the
X,'s and form the ring F,[ X, X*C] = F,[ XXV, , X7, s a€ K.
Now corsider the surjective ring-homomorphism F,[X]— R defined
by X«—a, and call J its kernel. Let fbe the extension of J to

F,| X+, viz. 7=]F,[X'('°°)]. We then obtain a diagram
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TS FIX2) 20 B=F,[ X1 /]
tU tu 1

onto

JSEIx] 2% Kk

At this point we remark that the ring F,[ X*“ =] viewed as F,vector
space has a basis consisting of monomials in the X,’s with each X,
having an exponent of type

m_x m_y

ot + Mg+ e+ 7, P

» p p
with 0<m;<p—1 for all i. Let F,[X]* represent the set of all
F,linear combinations of the monomials X Z--- X for which at least
one of the a, -+, s is not a p-adic integer. Evidently, F,[X]* is an

F,[ X]-module and, furthermore, it gives a direct sum decomposition

F,[X*]=F,[X]+F,[X]*

as F,[X]-modules. That having been said, one can now prove that
JOF,[X]1=]. Indeed, if fibi+ -+ f.b.€ F,[ X] with f,€ F,[ X*~=)]
and b, ] for all 1<i< m, then for each { make a decomposition f;
=futfu, fn€EF,[X], foeF[X]* so as to get fibi+-+f.b.,
=f1ib1+ -+ fubn) + (frobi+ o+ fr2b,) 5 evidently fioby + -+ + fobn=0
since fib;+ -+ +f.b,€ F,[ X], which yields the result ]VDF,,[X] =].
As a consequence the ring-homomorphism K—K is injective. q.e.d.
In conclusion let us observe that the K we have constructed is

noncanonical and possesses no uniqueness property.
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