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§1. Introduction

Let [X (t, co); 0 ] be a  strong Markov continuous time one
dimensional branching process defined o n  a  probability triplet

(D, F , P ). Assume the paths to be right continuous and to  have
left lim its. Let the associated infinitestimal generating function be

( 1 ) u(z )=a[h(z )—  z]

where

h(z) = E pz 1, ph o, p i- 1  and 0 < a < 0 0 .
i O i=0

We assume henceforth that for every E>

( 2 ) 1 d z —  .

Under (2 )  the process does not explode in finite time (see Chapter
5 in  [2] ) and thus for any t, X (t, co) is a bonafide random variable.
Further one can now interpret the infinitestimal generating function
as follows. Consider a system where we start with X (0 )  particles
at t= 0, each particle lives an exponential length of time with mean
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son, Wisconsin, under Contract No.: DA-31-124-ARO-D-462 and in part under
Contract N0014 -67-A -0112-0015 and grant NIH 10452 at the Department o f Mathe-
matics, Stanford University, Stanford, California. Original manuscripts of the pre-
sent paper was received by Prof. Yoshizawa on March 15, 1968.
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a  and on death creates (or splits into) a random number o f new
particles whose generating function is h (z )  and all particles behave
independently of each other and identically. We can regard X (t, (0)
as the number of particles in the system at time t.

Because of the Markov property we assume without any loss of
generality that

< 3 ) Pi  ---= O.

I f  we set

( 4 ) f  (t, z )= Û zx ( ")dP(0))

then f  (t, z ) satisfies for any t, u > 0

( 5 ) f  (t +u, z )=f  (t, f  (u, z )),

thus making the fam ily { f ( t , z ) ; t>0 }  a semigroup.
We call u(z ) the inf initestimal generating function of the semi-

group in (5).
The question we wish to answer is how does one translate con-

ditions on h (z )  into conditions on the semigroup f  (t, z ). For ex-
ample, Harris (see Chapter 5 in [2] ) showed that if

drh(z) 
<  C > 0

dzr z=i
then

( 7 ) E  X ' ( t ) —  
 ar f (t

'  

z)
azr

< co
z = 1 -

  

fo r every positive integer r  and t >  O. His method (differential

equations) would fail i f  r  is not an integer.

In this paper we establish an equivalence principle between con-
ditions on the semigroup f ( t , z )  and the infinitesimal generator u(z)
(see Theorem 1 of the next section). As a special case we establish

the following fact

-
( 8 ) EX  (t) log X ( t) <00 < >E j log jp ;  <Do .

i o
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The importance of this problem arises from the face that one
can generalize a number of results on Galton-Watson process (discrete
time) to a continuous time M arkov branching process [X (t, co); 0]

by exploiting the result that for every a> 0 [X(n8,(0); n=0,1,2, • • •]
is a Galton-Watson process. One checks that fo r  every a> 0  the
Galton-Watson process [X(n8, co); n=0, 1 2, • • •] satisfies certain con-
ditions which are usually in terms o f X(8, co). But our initial data
is only u ( z ) .  So the question of equivalence of conditions on u(z)
and f (a ,z )  becomes very relevant here.

The present author after completing this work had a chance to
talk with Howard Conner who outlined a proof o f ( 8 )  in  [ 1 ]  by a
slightly different technique. Here we prove completely a more
general result. P ro fessor S. Karlin showed m e a  purely analytic
argument to establish (8 ) .

§ 2 .  Main Result

Under the set up in § 1 , we have the following.

Theorem 1. Let 0 (x ) be a function from R+= [0,00) to R+
satisfying

(i) 0 ( x )  is nondecreasing and

( * )  ( i i )  cb(x) is convex,

( i i i )  0(xy)_<K0(x)0(y) fo r  some K and all x, y
( K  independent o f x  and y).

Then
E0(X (t))<0.0 fo r  any t>0

< > E o ( i ) P 5 < - 0 •5=0

Remark. In view of Lemma 0  below, Theorem 1  is still valid
when 0 ( x )  satisfies the following more general conditions:

t This fact has been a part of oral tradition in branching processes for a long
tim e. It was put into print recently by H. Conner [1].
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(i) 0 (x )  maps R=  00 ) to R+

(ii) There exists a c > 0  and K > 0  such that 0 (x ) is
convex on [c, 00) and 0 (x y ):< K 0 (x )0 (y ) fo r  x , y
in  [c,00 ) (of course, K  is independent o f x  any y)

(iii) o (x ) is bounded and measurable in  [0 ,c ].

Lemma O. L e t 0 ( x )  be a function on  1?÷=[0 , 00 ) to
satisfying ( * * ) .  Then there exists a ç̂b" satisfying ( * )  and further
f o r  any non-negative measure 12 on the Borel sets of 12+ with
12[0, c] < 0 0  we have

Vo (x )p (d x )< 0 0 < >P (x ),a (d x )< 0 0 .
0 0

Proof. W e need to consider only th e  case  o f unbounded O.
Since o  is convex on [c, 00), bounded in  [0, c ) and lunbounded above
on [0, 00) there exists a  c'>-c such that

(a) o (c ')> su p  o (x )> 1

(b) o is increasing on [c', 00).

Now set O (x )— (c ') for x < c '
= 0 (x ) for x>c'.

Direct verification now shows that this g3 is the desired one. Q.E.D.

Before proving Theorem 1 we establish a  few corollaries.

Corollary 1. For any t > 0  and any (r ,  not necessarily
an integer)

EX(t)<o0
(10)

< >  E i r P i< c o .
5-0

Corollary 2. (Conner [1 ]) For any t > 0 ,
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E Xa (t) log X (0 < c o

 ja  log jtly <00 .
y=0

O f course, the proofs o f  these corollaries a re  t r iv ia l since
x r  ( r  1 ) and log x (er > 1 )  satisfy ( " ) .

Our approach exploits the concept of split times o f branching
processes. Under the condition (2 )  one can construct the process in
the following manner. Let E1 ,  i= 1, 2, be a  sequence o f indepen-
dently and identically distributed random variables taking non-nega-
tive integer values with probability generating function h ( z ) .  Set

S„—n o d-E1+•••+E”—n

(12) N =  inf {n: S>,=0}

=00  if  there is no such n.

L et T , i = 1, 2, •••, N  be a  sequence of random variables defined
as  follows:

T , is exponentially distributed with mean (an 0 ) - 1  a n d  further
independent o f a ll th e  E,'s. Next T 2  is exponentially distributed
with mean (a S i) and independent o f  T 1 an d  th e  Ei f o r  i > 2  and
given E, conditionally independent of Ei  . In general T , for i < N  is
exponentially distributed with mean (aS i _i ) '  and given S 1_1 independ-
ent of all the Ei 's  and  T y 's for j< i—  1. We assume (S2, F, P) is the
"b ig" probability space o n  which all these random variable are
defined.

We now set

re (0)) =0

z,(co)-= T i + T,+ • T i , for i < N
= 0 0 , for i >  N

(13) X (t, co) = nof o r  0 < t < z 1

S, (co) for ri < t < r i + i

=0 for t >
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This is th e  process with X(0) = n , .  We can regard r, as the
instant when the i- th  death or split occurs and accordingly we define

r ,  to be the i- th  split t im e . Further $,'s can be interpreted as the
number of progeny created at the i-th split. For i >N (co), these do
not make sense since X (t, w ) = 0  fo r t > 1-N  and the population is
extinct.

Let for any n

X„(t, (0) =- X „(t)= X (t) = X (t, (0) if z„> t
(14)

It is immediate that

(15)

= 0 otherwise

IF

X ( t ) < n 0 + E $ i •
j 1

Here is the plan of our proof. In Lemma 1  w e show that for
our 0, .E 0 ($0< 0 .0  implies E 0(X ,(t))<0 .0 . W e use  Lemmas 2, 3,
and 4  to  show sup E 0(X „(0)<0o and then appeal to monotone
convergence theorem to fin ish the proof. The converse part uses
some martingale arguments.

-

Lemma 1. Let E 0($ i)=. E 0 ( j ) p ,< 0 0  where o  satisfies (*).,=0
Then E o(X „(t))<00  fo r  every integer n  and t>0 .

P r o o f :  From (1 5 )  and (*)

0(X „(t))<  2
1  0(2n,)+  2

1  95(2ii )

1"<  (2n0) +  1  1 0 ( 2 n $ , )2 2 f l  j 1

1 0(2n0) + 0(2n)E  0% ).2 2n

Taking expectations

E0(X „(t))<  2
1  0(2n 0 ) K

2  0 (2 n )E 0 ($ 0 < 0 0 . Q.E.D
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Lemma 2. L e t m „(t)=E 0 (X „(t) ) . A ssum e 0  satisfies (*)
and E0(E1)<00. Further let X (0 )=-1 . Then {m „(t)}  satisfies

(16) m i( t ) < ci e—t+c, t m„(t— u)e - "du0
where

ci = 0(1 ); c2=KaEo(1).

P r o o f :  For n >1

Eo(X ,,2(t))=E{ O(X 0+i(t)); t} E {0(X„_ 0 ( t ) ) ;  <t}

/1 +  / ,, say.

Clearly,
I i =0(1)e - "=c i e- ".

Now

L=E{0 (X .+ 1(t));

Now on { r t }  w e  have

(17) X ,,„1(0< E  X ')(t (right side is zero if E,
/=1

is zero)

where -1;/ ) (u) are independent copies of X ( u )  for j=1 , 2, • • • . The
quickest way to see this is to note that th e  n -th  split after ri

happens after t  implies that in  each o f  th e  k  lines o f  descent
engendered by the k  particles present at ri + 0, the n-th  split occurs
after t  and further the total population X (t)  is  th e  sum of the
populations in all the lines. Thus

k

(18) 121  [0 (0 )P 0  + E  PE  [0(E X ;/ ) (t — u)))]ae — du
j = 1

But since o  satisfies ( * )  we have for k 1
k 1k0(E X  T) (t —  u))<K 0(k)E o(X ;,"(t —  u))j=1 = 1

and hence for k 1
k

EgE X ;,"(t — u) ) ,Ko(k)m„ (t —u) .
j = 1
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Now Eo(Ei)=Epkock)+,,k(0)po is fin ite and m„(t— u)efi(0)>-1
k ()

for all n , t, and u. Without loss o f generality K  can be assumed
large enough to make Ko(0)>1 so that

m„(t — u)e- '" du . Q.E.D.

L e m m a  3 . For any  set of constants c1, c3 and c3 all satisfy -
in g  0 < c 1 <0 .,  i=1 ,  2, 3, there ex ists a unique non-negative and
bounded (in f inite intervals) solution to the integral equation

(19) m (t) =c i e- '3t+c 3 St m(t— u)e - `3"du.0

P ro o f : Check m (t)=cie - ( '3- 2) ,  satisfies (19). Uniquencess is
standard and omitted.

L em m a  4 . A ssume 0  satisfies (* )  and E 0 ( E ,) <0 0 . Then

(20) sup m „ (t )< m (t )= c i e- ( 3̀— Ds

where ei=s6(1), c2=K aE0(61), and c3 =a.

P ro o f : Clearly mi ( t )<  m ( t ) .  Now use induction. Q.E.D.

We have all ingredients to prove the "if" part of Theorem 1.
Assume E0( 1 ) <0.0 and satisfies (*). B y  monotone conver-

gence theorem

(21) lirn E 0 (X „ (t))=  E 0 (X (t))

since X ( t )1 X ( t )  and is increasing.
Thus from (20) and (21) we get

E 0 (X (t))<  m (t)< 0 0 .

We now prove converse. That is assuming E 0 (X (t o )).<00  for
some to > 0 we wish to show that E0(e'1).<00. Since X (r i ) .= ,  it is
equivalent to showing E(X(r i ) )< 0 0 .  If p0= 0 then X(s, co) is an
increasing function of s. In this case,
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E 0 (X (t ))< 0 0

>E[§5(X(t))<00 ; ri < t]<0 .0

E [0(X(1- 1)) <Do ; t ]  <co

>E  [(X ( 1 ))] P {r <t} >cc

E o (X (r i )< 0 0

for t > 0

since o  is increasing

since X (- 1 ) a n d  ri  a re
independent

since P{vi < t} >O.

So we need to consider only the case po >o.

L em m a 5. L e t o  satis f y  0 0  and let t 0 > 0  b e  su ch  that
Eo(X(to, w ))<00. Then

Eo(X(t,c0)<00 fo r  all t,

(ii) EX(1,0))<0. fo r  all t  and equal to eAt fo r  som e real A,

(iii) {0[X(t,c0)e - A r ], t O} is  a non-negative submartingale
where g 1 =- 6{X(s,(0); s<t} is  the ci-algebra generated by
X(s,w) fo r  s < t.

P ro o f : From the convexity of o  and the fact that X(t+u, (0)

can be regarded a s  E X,(u, w) where ..k,(u, co) for j=  1, 2, • • •, X(t, co),=1
are independent copies of X(u, to) we obtain ( i ) .  Also since for any
unbounded o  satisfying ( * )  there is a constant c > 0  such that o(x)

cx  for large x. Thus EO(X(to, (0)) < 0 0  implies EX(to, to)< ° °
and hence E X (t , co) < .0  for all t  and finally EX(t, w) = eAt for some
real À.

Thus we obtain the fact that the family {X(t, co)e't; t ; t >0}
is a  non-negative m artingale. Since o  is non-negative and convex
( i i i )  would follow i f  we show

Eo [X(t, ())e - 1  <00 •

But this is immediate from

o(X(t, co)e - At)<Ko(X (t, co))0(e - Ài). Q.E.D.

Now we finish the proof of Theorem 1.
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Since r i and Ei a re  independent, for any t>0,

E f o(X (ri) ; <  =  E16(X(.1- 1)P{ri <

both sides being finite or infinite at the same tim e . Further

P{r i t} =1 — >  0  for 1> 0 .

So it suffices to show that E{0(X(1 - 1)); < t} <00. But

0(X (r i ) )<K 0 (X (r i ) e 'i ) 0 ( e rt )

and on {ri < t} since 0 is nondecreasing

0(eA'1)< max { (e m ), (1)}  .

Also by Doob's optional sampling theorem,

E i_X eci)e - À "} ;
{ 0[X (t)e't] ; < t }

<E { 0[X (t)e - At]} since 0  is  

and that is finite by Lemma 5. Q.E.D.

§ 3 .  Age Dependent Processes

O ur m ain  result §2 extends to age dependent processes. The

nature of the proof is slightly different.  Of course, the converse

part o f th e  theorem needs a  different proof since no martingale

argument will be available. In the direct part of the theorem the

same proof works i f  instead o f Lemmas 2 and 3  one uses Lemmas

2' and 3' below. Also the construction of split times are different.

Although we gave the construction in the Markov case, we shall

only remark that one can use Harris's theory (see Chapter 6 in [2] )
to construct them in the age dependent case. We shall prove only

the converse part in detail. The direct part briefly is as follows.

Retaining the same definitions o f X „(t), m „(t), c 1 , c 2 etc. one

quickly establishes

Lem m a 2'. U nder (* ) , i f  G ( t )  i s  th e  lif etim e distribution
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function

m„+ 1 ( t ) <c 2 (1— G(t)) + c2 1
0 m„(t — u)dG(u).

Next one gets from renewal theory the following.

Lemma 3'. For any set of constants c1, c2 satisfying 0 <c ,
< , , c. fo r  i = 1, 2 there exists a unique non-negative (and bounded
in finite intervals) solution of the "renewal" equation

m(t) = ci(1—  G(t)) + m (t u )d G (u )

provided G (0+)=0.

The rest of the proof is the Markov case.
The proof of the converse uses the following.

Lemma 6. L e t ( i )  N  be a  non-negative integer valued ran-
dom variable, ( i i )  a, f o r  i = 1, 2, •-• be a  sequence o f  mutually
independent and independent o f  N  and identically distributed
random variables with P{, = 1} = p = 1— P {8, =0} , 0<p < 1 ,  (iii)

RN - E C  i f  N > 1  and 0 otherwise ( iv )  0  be any increasing func-
tion with

lim 0(x) = 00 and lim  
E o ( B , )

—  c > 0
0(/)

where B , is a Binomial random variable with parameters 1 and p .
Then

E0( 1?,)< 0 .< >E0 ( N )< .. .

P r o o f :  Since RN< N  and is increasing

E (N )< o c Eo(R N ) <0 .

To prove the converse we observe that

Eo(R N ) =  Eo(B ,)P{ N =1}  +0(0)P(N  =0)
1-1
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E0(B ,)—E 0(1)P {N =1} + 0(0)P (N =0)

But
. E 6 (B  urn — c> O.

0(1)

Thus
Eçb(R N ) <c o  for some 0 < c '< c  and 10

0(1)P {N =1} < E(R N )  <00c'1-10
E o(N )< 0Q . Q.E.D.

We need one more lemma.

Lemma 7. Let 0 satisfy (* 0 ( x ) > 0  fo r  x > 0  and Ern 0(x )

= 0 0 •  Then

urn0. E  (B ,) 
— c > 0 .

g6(/)

Proof: L e t  1/P=1/0. Then lip(x ) is  a bounded continuous and
non-negative function on [1, co). Now

0(1)<K 0( , )0 (B 1)

 0(B,) 1  v r (  1  
 0 (1 ) K B,

>  E0(B ,) 1  E . „(
0(1) K  ‘ 1. B ,

Since qp is  a  bounded function and 1/B1 converges w .p . 1  to up,
we get

lim E (B 1) 1 /   1   \kk )>0 .
K  P

Q.E.D.

Now we prove the converse part of the main result, namely,
that E g X ( t ) ) < 0 0  fo r some t > 0  implies EqS(Ç1)<0.0 where i s
the number of particles created at the first split.

On the set T-1< t
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X ( t) = EX; (1 —r1 )
j = 1

where { (s) ; s>  0 }  are independent copies o f {X(t) ; 0} .

But

E o(X (t)) =OW (1 — G(t)) +S r
o [E {0(.5 -C,(t — u)); E1 >1}

+0(0) po]dG(u)

Thus there exists a  u , in  [0, t ]  such that

Er - - -

E{ O(EX ; (t— u0); Ei >1 ) < o o .

Let
Si  = 1 ;(t t t o) 1

= 0 otherwise.
Then

X(t)>E 8 3 .

j = 1

Since process is not degenerate, we have 0 <P {6  , =1 } <1 . Using
Lemmas 6  and 7  we see that E0(X(t))<00 >E0( 1 ) < 0 .0 .  Q.E.D.

§ 4 .  Concluding Remarks

The arguments given here can be extended to th e  multitype

case and the results have been deferred to a future publication.
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