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Some remarks on high order derivations
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(Communicated by professor Nagata, May 30, 1970)

In this short paper we shall study some problems related to the
theory of “high order derivations” introduced and developed by H. Osborn
and Y. Nakai.

First we consider the problem in the situation that 4 and B are
commutative k-algebras and there exists an algebra-homomorphism
A— B. After clarifying the relation between the homomorphism
¢: BRs82,(A)— 2,(B) and the extension of k-derivation of A4 to that
of B, we shall slightly generalize the localization theorem 2;9(4s)
= AsRa22(A) of Nakai ([2], Th. I. 15 and Th. II. 11) and give a
simplified proof.

In 82 we shall investigate the conditions that the derivation alge-
bra 2(A/k) coincide with Homg(A4, 4), where A is a ring containing
a subring k. Already Nakai has proved that, when %k is a field and
A is a finite extension of k, 2(A4/k)=Hom(A4, 4) if and only if 4
is purely inseparable over k£ ([3], Th. I. 4 and Th. L. 5). We shall
strengthen this theorem as follows: when A4 is an arbitrary extension
field of a field &k, we have 2(4/k)=Hom;(4, A) if and only if 4 is
purely inseparable and finite over £.

The author thanks to Y. Nakai for giving him a chance to read

his manuscripts before publication.

Terminology. We adopt the terminology and notation in [2].

All rings are commutative rings with 1. When A4 is a k-algebra,
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L2;7(A) denotes the module of g¢-th order Kahler differentials of A/k
and 04, or 0 denotes the canonical g-th order k-derivation 4—2”(4)
of A. The pair {£{"(4), 0{),} has the universal mapping property with
respect to the g-th order k-derivations of 4. [Ia;, or I denotes the
kernel of the canonical mapping A, 4> A(@@b —>ab). L29(A) is
identified with I,/I4*'. When we regard 4®; A4 as a left A-module,
it is understood tacitly that we endow it an A4-module structure defined
by the formula a(* ® ) =R (xRy)=axXy.

When g: 4— B is a k-algebra homomorphism, we write 0% (a)
instead of 04'(g(a)) for any a€ 4. When we consider the tensor
products ;)ver two or more ground rings, one of which is &k, we write
2@y instead of ¥,y (but we don’t omit the letter for another
ground ring).

2" (A/k) denotes the totality of g-th order k-derivations of 4 into
A itself, and 2,(A4/k) means O@f,‘”(A/k). And 92(A/k) denotes the
derivation algebra of A overq =1k i.e. the subring AP 2,(A4/k) of
Hom;(4, A).

§1

In this section consistently we assume that 4 and B are k-algebras
and g: A—>B is a k-algebra homomorphism. Then there exists a
natural B-homomorphism ¢: B4 2.9(4)—> 2"(B) such that

(b Q0 (@) =b+05(a)
for each b€ B and a€ A. And we have the exact sequence
1) . BRa2P(A)H2(B)H20(B/4)—0

of B-modules, where 24°(B/A) denotes the cokernel of ¢.

If we set 0'=jody},, 0’ is a g-th order k-derivation of B into
2 (B/A) vanishing on 4. Moreover 24”(B/A) and ¢’ have the uni-
versal mapping property with respect to the £k-derivations of B vanish-
ing on 4. ((2], II. §3).

Because 0§),: B— 2 (B) is such a k-derivation, it is decomposed
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uniquely in the form 0Y),=¢o0’, where ¢ is a surjective B-homomor-

phism 2.9(B/A)— 2% (B). Moreover we obtain the exact sequence
) 2P P(B)RaRy V(A S5 2P (B/A) L 2P (B)—~>0
of B-modules, where ¢ is determined by the formula

7 (05 P(0) ®40¥ ™V (a))=[0", a](b)

for every b€ B and a€ 4. ([2], Th. II. 11)
Now it is immediate that 2{?(B/A)=0 implies 2 (B)=0. We

shall show the converse of this.
Lemma 1. 2% (B)=0 implies 2" (B/A)=0.

Proof. We consider the k-derivation 0{,=0": B— 2\”(B/A4). We
have only to show that 0{,=0, for the image Im(d") of 0" generates
29 (B/A).

If g=1, this is obvious on account of the exact sequence (2) and
the fact 2{9=0.

Let ¢>1 and 2§ (B)=0. Then I§}j=1Ip4 implies 2§ 1 (B)=0.
Therefore, by induction assumption, we have 0(,-;,=0. This means
that the null map is the only (¢—1)-th order k-derivation of B vanish-
ing on 4. Hence we have [0(,, a]=0 for each «€ A, because this
is a (y—1)-th order k-derivation and [07,, a](a")=0¢,(aa’)—a-0{,(a")
—a'+0{»(a)=0 for all a’€ 4. Moreover, [0{,, a]=0 and 0{,(a)=0
imply 0(,(ax)=a0(,(x) for any a€ 4 and x€ B. Therefore 0(, is
an A-derivation, hence we have (=0 by our assumption 24’(B)=0.

q.e.d.
Above lemma shows that we have 2Y'(B)=0 if and only if

2 (B/A)=0. This property can be restated as follows.

Proposition 1. Following conditions are equivalent for any integer
g=1:
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2P (B)=0

There is no non-trivial q-th order A-derivation of B.

2P (B/A)=0

There is no non-trivial q-th order k-derivation of B which
vanishes on A.

The homomorphism @: B4 2 (A)—> 22 (B) is surjective.

Any gq-th order k-derivation of A (into a B-module) has at

most one extension to that of B.

Moreover if one of these is satisfied for some gq, then so is all for

all q.

Proof. It is trivial to check the implication

For

e )« ({}r)
3 &2 e @)

example, the canonical A-derivation 0y),: B— 2@ (B) is an

extension of the null derivation 0: A— 2% (B). Therefore the as-
sumption (4) implies that 0§),=0 i.e. 2 (B)=0.

On the other hand, we have known already the following

Proposition 2. ([2], Prop. IL. 8)

Following conditions are equivalent for any integer g =1.

@

)

3

4

The homomorphism ¢: BR4 2 (A)—> 2P (B) is left inver-
tible.
The homomorphism ¢: B4 2.9(A4) — 2 (B) is injective and
the image Im(p) is a direct summand of B-module 2.(B).
The sequence

0> B®42i(A) 5 2(B) 7 2 (B/A)—0
is a split exact sequence.

Every k-derivation of 4 (into a B-module) of order ¢ can be
extended to that of B.
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Combining the above two propositions we obtain the next

Proposition 3. B-homomorphism ¢: BQ4 2 (A)— 2 (B) is an
isomorphism if and only if every k-derivation of A (into a B-module)

of order q can be extended to that of B, in the unique way.

Now we shall generalize the localization theorem As@42.7(A)
= 2 (As). Localization A5 possesses two important properties — the
one is the fact that the canonical map 4— A4s is epimorphic (in the
sense of category theory) and the other is the flatness over A.
Therefore it is natural to consider at first the case 4£> B is an epi-
morphism (in the category of commutative rings). Then we have
Q9 (B)=1Ip4/154""'=(0) by the following

Lemma 2. ([4] n°3, Th. 1) Following conditions are equivalent.
(1) A% B is an epimorphism.
(2) Ipa=Ker(B&QB— B)=(0)

A

(38) The canonical homomorphism BQ B— B is an isomorphism.
A
Therefore we obtain the next result from Prop. 1 above.

Proposition 4. If A% B is an epimorphism (in the category of
commutative rvings), then the B-homomorphism ¢: B®a29(4)—
Ri9(B) is surjective and any k-derivation of A of order q (into a B-

module) has at most one extension to that of B.

Next we want to seek after any connection between the flatness
of g: A— B and the injectivity of ¢: B&,42,"(4)— 2,(B).

To this purpose we shall describe the homomorphism ¢ : B 42" (A)
— 2(?(B) making use of ideals Iz and I,. If we identify 2{”(A) and
22(B) with I4/I%*! and Ip/I%", respectively, then the B-homomor-
phism
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¢: BQaUa/I5)— I/ 1%

is nothing but the one induced by the following procedure: first, from

the commutative diagram

0>I4,>AR,A—>A—0

i) 1 N
0—>Ig—>BXrB—>B—0

we derive the A-homomorphism I4/I1%*'— Ip/I%*!, and extend this

naturally to the B-homomorphism
¢: BQa(la/14) > Ip/15™.

On the other hand, B®a(14/I4) is identified with B@als/BQ4I4 .
Therefore we can understand that ¢ is a map induced by the B-homo-
morphism B®4ls— Ig/I%"' which is the extension of the composite
A-homomorphism I4— Ig— I5/I%.

Thus we obtain the next

Lemma 3. The homomorphism ¢: BRa R (A)— 2 (B) is in-
jective if and only if we have Ker(BQals— Ip/15)=BQa I
(Of course, BRIt means Im(BR4 15— BR41,).)

Unfortunately the flatness of g: A— B does not yield the above
condition. For example it does not occur if B is a purely inseparable
algebraic extension of a field 4.

However the flatness of g: 4— B implies some weaker property.

Lemma 4. If the homomorphism g: A—B is flat (i.e. if B is
flat with respect to the A-module structure induced by g) then we have

Ker(BRalsa— Ip/I{* (B B))=BRa I

for each integer q=0.

Proof. We shall prove by induction on ¢. This is trivial if g=0.
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Assume ¢>0 and x is an element in Ker(B&uala—15/15"'(B& B)).
Then x belongs to Ker (B&Qala— I3/14(B& B)), hence to B&414 by

induction assumption. Therefore we can write x in the form
n
xzzlbi®A$i, b;e B, ¢l
i=

And Im(x)=0 means >, b;&€I5'(B® B). Hence there exist the
7
elements @; in BQ B and %; in I%*! such that

iZZ:1(bi® 1)6{4;:2:;'_18;77{:0 in B®B.

However we can easily show that the induced homomorphism A& A4
£®¢, BR B is also flat. Therefore, by the famous lemma of Bourbaki
(1], ch. 1, §2, Prop. 13 Cor. 1), there exist the elements 4; in
AR A and & in BBA<i<m, 1<j<p) such that

D Dt 5 Lm=0 A<i<p i 4Q4

) L@L=Ehl A<i<n)
, in B&Q B.
3;':]_2::1/11‘;(;‘ n+1<i<m)

On the other hand, A® A4 and B B are decomposed as follows.
AR A=(AR1)P 1, as left A-module.
BXRB=(BQX1)PIg as left B-module.

Therefore we can write 4; and §; (1<i<n, 1<j<p) in the form
Li=(a;; Q1)+ 2}, au€d, ;€14
C=0b;R1)+&;, bjeB, &€l

Then we have

» »
;1 =J§Ilji € =j§1(aji R1+2;;) ;R 1+L))
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—(Benb) @1+ B0 RD+ @@V +4:E7)

and, on the right hand side, the first term is in B 1 and the second

in Ig. Hence we have
p /
b,~®1=(_21a,-,-bj)®1.
V=
»
And this means that b;=2,a;;b; (1<i<{n). Therefore
i=1

x =élbi®A5i=_Z”: (ﬁ a;ib;) & afi

i=1j=1

A3

= 20/ @u(E 018) = 5 @uE @i D)

ji=1

I
M»

{Z (lﬂ ji)gi}’

<.
[

Il
u[\/_]\,

b; ®A{ Z 111771 igll;iéi}.

Hence x belongs to B&4Il4%"1, smce Z l,,77, and Zl,,&, are in I%4*%
Thus we proved that Ker(B®AIA—>IB/I"“(B®B)) is contained in
B&4 15, The opposite inclusion is obvious. q.e.d.

As observed above we failed to connect the flatness of g: 4— B
directly with the injectivity of ¢: B4 27(A4)—> 2{°(B). However,
Lemma 4 tells us that, under the assumption that g is an epimorphism,
the flatness of g yields the injectivity of ¢, because we have the next

lemma.

Lemma 5. The homomorphism g: A— B is an epimorphism if
and only if we have I,(B&;B)=1p.

Proof. If we start from the definition of tensor products, we can
easily see that Ker(B@;B->BXaB)=I14(B&;B), where v is the
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natural map. Therefore from the commutative diagram

0—>Ig—>B&®;B—>B—0 (exact)
NS
BR4B
N
0

we can deduce the following equivalence:
g: A— B is an epimorphism.
< The natural homomorphism B B— B is an isomorphism.
© Ig=Ker(BQ® B BXB) *
& Ig=1I4(B (?kB) * g.e.d.

Thus we obtain the next theorem.

Theorem 1. Let A and B be commutative k-algebras and let
g: A—> B be an algebra homomorphism. If g: A— B is a flat epimor-
phism (ie. if g is an epimorphism in the category of commutative
rings and B is flat with respect to the A-module structure induced by
&), then the B-homomorphism ¢: BQ 42" (A)— 2" (B) is an isomor-
phism for any ¢q=0. And every k-derivation of A (into a B-module)

of order q can be extended to that of B, in the unique way.

Proof. ¢ is surjective by Prop. 4, and injective by Lemmata 3, 4
and 5. The last half follows from Prop. 3.

Remark. g: A— B is a flat epimorphism, for example, in the
following cases.
(i) B is a quotient ring of 4, and g is the canonical homomor-
phism. (More generally, B is a “generalized quotient ring of
A” in the sense of F. Richman or T. Akiba.)
(ii) A is a Priifer domain with the quotient field K, B is a sub-
ring of K containing A, g is the canonical injection and %k is

a subring of 4. (Such B is not always a quotient ring.)
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§2

Let 4 be a ring and &k a subring of A. Denote by A/k the co-
kernel of the k-homomorphism k£— A4 (inclusion map).

We define a k-homomorphism §: 4A— I4 by the formula
0(a)=1Qa—a®1 (a€ A),

where I, denotes the kernel of AX), A—> A. Then ¢ induces the k-
homomorphism A/k-—> I4, in an obvious manner, which we denote by

the same letter 4.

Lemma 6. Let A, k and 0 be as above. Then we obtain the fol-

lowing results.

(i) The k-homomorphism 0: A/k— 1, induces naturally the A-
homomorphism 0y: AQw(A/k)— L4, which is actually an A-isomorphism
between left A-modules.

(i) If A is a free k-module with a basis {1, a\|A€ A}, then I,
is a free A-module with a basis {0(,) |4 € A}.
Proof. Because the exact sequence of left 4-modules
0> > AR, A—>A—0
splits, we have the exact sequence
045 AR A5 I,—0
where & and [ are mappings such that
a:al—»a®l
B:a@®b1->a(1RQb—-bR1).
On the other hand, from the exact sequence of k-modules
0>k—>A5 A/k—0

we obtain the exact sequence of A-modules
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0>A%5 AR AL AR (A/k) — 0.
And it is obvious that the following diagram is commutative.

ARy A2 AQw(A/k)
\ lao
I
Hence 04 is an A-isomorphism, which proves (i). The statement (ii)

is obvious from (i), because A/k can be identified with a free k-module

having a basis {a,}. q.e.d.

Now we shall investigate the condition for the coincidence of
2(A/k) with Hom,(4, A), where 2(A4/k) denotes the derivation algebra
of A over k.

Proposition 5. Let A be a ring and k be a subring of A. Then

the following three statements are equivalent.

1) 2(4/k)=Hom;(4, A).

(i) Each element of Homy(A, A) which vanishes on k is a k-
derivation of some order.

(iii) Each element of Homa(la, A) vanishes on some power I4*!
Of IA.

Proof. (i)=(ii): Let f be an arbitrary element of Hom,(4, 4)
such that f|,=0. Then, since 2(A/k)=AD2,(4/k), f can be

written in the form
f=a+4d, ac A, 4de 2,(A/k).

But, then, we have 0=f(1)=(a+4)1=a+ 4(1)=a. Therefore it fol-
lows that f=4d¢€ 24(A/k). Thus f is a k-derivation of some order.
(i))=>(iii): Let ¢ be an element of Homa(I4, 4). Consider the

map f which is determined by the commutative diagram
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A2 1,
R
'A.

Then f belongs to Hom(4, 4) and vanishes on k. Hence, by assump-
tion, f is a k-derivation of some order, say, gq. If we define an A-
homomorphism fy: A& A— A by the formula

f+(@@b)=a-f(b)

then we can easily see that fy|;,=¢. On the other hand, since f is
a g-th order k-derivation, fy vanishes on I4*!. Therefore ¢ vanishes
also on I+,

(iii)=>(): We have only to show that Hom(4, 4) C2(A/k).
Choose arbitrarily an element g of Homp(4, 4) and set f=g—g(1);
(where g(1); means the left multiplication by g(1)). Then it is obvi-
ous that f&€ Hom,(4, 4) and f|,=0. Therefore f is factored through
A A/k as follows: A2 A/k

AR
A

But the k-homomorphism f : A/k— A can be extended naturally to the
A-homomorphism ¢: 4®,(A4/k)—> A, which is again factored into the
composition of the isomorphism 0y: 4Qw(A4/k)>14 and an A-homo-
morphism ¢: I4—> A ie. ¢=¢o04. Then, by assumption, ¢ vanishes
on some power, say I4*!, of I,. Hence we have a commutative
diagram I, I,/I§T'=829(4)

ol [
A z
of A-homomorphisms naturally induced by ¢.

And we can easily verify that the diagram below is also commuta-
tive (i.e. vodyoiop=0Y").
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3 ()

A/k RNy ®,,(A/k) > 1w 9104

f 9 9’

Thus we have f=¢’o0y{’. Therefore f is a k-derivation of order g,
and g=g()+f belongs to 2(A4/k)=AD D.(A/k). q.e.d.
Next we shall proceed to the reduction theorem.

Lemma 7. Let A be a subalgebra of a k-algebra B. If B is
both A-flat and k-flat, then the natural B-homomorphism B Qs Ils— Ip

is an injection.

Proof. From the commutative diagram

0>14,>AR; A—> A—0 (exact)

N ¥ i
0—Ig—>B;,B—>B—>0 (exact)

we obtain the next commutative diagram by virtue of the A-flatness
of B:

0>B®ala—>BRiA—> B—0 (exact)

v v I
0—> Ig - B®.B—>B—0 (exact).

On the other hand, by the k-flatness of B, the homomorphism B&),A4

— B&); B is injective. Hence BQ4I4— Iy is also injective. q.e.d.

Proposition 6. Let k be a subfield of a field L, and let K be an
intermediate ring between k and L. Then, 2(K/k)>Hom,(K, K)
implies 2(L/k)=>Hom,(L, L).

Proof. On account of Prop. 5, 2(K/k) > Hom;(K, K) means that

there exists an element ¢ in Homg(/k, K) not vanishing on any power
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% of I,. Regarding ¢ as an element of Homg(Ig, L), we can extend
it to an L-homomorphism ¢': L&xIx— L in an obvious manner. On
the other hand, since L is K-flat and k-flat, the natural L-homomorphism
L&®xIx—I; is an injection. Hence ¢’ can be extended to an L-homo-
morphism ¢”: I;— L. And ¢” does not vanish on any power of I,
because we have I% CI%. Therefore it follows from Prop. 5 that
2(L/k) > Hom,(L, L). q.e.d.

This proposition is useful to reduce the problem to the smaller
field case. Indeed we see immediately, by the next easy lemma, that
the field L must be purely inseparable over a subfield &k if 2 (L/k)
=Hom,(L, L).

Lemma 8. Let k be a field and suppose that one of the following

conditions is satisfied:

(1) K is a separably algebraic simple extension field of k and
kK.

(2) K=k[x] is a polynomial ring over k in one variable.
Then we have 2(K/k)>Hom(K, K).

Proof. In case (1): we have Ix=J%=¢(0) for any ¢=1. Hence
the condition (iii) in Prop. 5 is not satisfied.

In case (2): if we denote by I, the K-free submodule of K&;K
generated by 0(x)”, then we have IK=E°[.§I,, and I}{:él,,. Hence
there exists an element ¢ in Homg([g, K ;=1110t vanishing ,:)=nq any power
of Ik.

Thus, in any case, we have 2 (K/k)>Hom,(K, K) by Prop. 5,
(iii). q.e.d.

Lemma 9. Let K be a purely inseparable extension of a field k
of characteristic p, and suppose that the exponent of K over k be in-
finite. Then we have 2(K/k)=>Hom(K, K).
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Proof. For any non-negative integer n, there exists an element
x of K such that x?"&k. Set A=k(x). Then we have I% 2=(0),
hence I% 2¢(0) because 1% CI%. In other words, the ideal Ix is not
nilpotent. Now, if /\I £>(0) then it is obvious that there exists an
element of HomK(IK, K) which does not vanish on N\I%. If N\I%
=(0), then we can choose the elements x, such thatqgalcqé I f(—q?}{”.
Hence there exists an element ¢ of Homg(Ig, K) such that ¢(x,)=0
for each g. Therefore we have 2 (K/k)2xHom(K,K) by Prop. 5,
(iii).

Now we shall consider the case in which K is a purely inseparable
extension of a field & having finite exponent e over £.

Let Bi={a\|A€ 4} be a p-basis for K over k (i.e. a maximal
p-independent subset of K over k(K?)). Successively, let B; be a
maximal p-independent subset of B%_;={8”|8€ B;_1} over kE(K?"), for
i=2,3,...,e. Then it is obvious that B; is a p-basis for kE(K*™
over k.

By the length of «, we shall mean the integer n such that
al e B, and al" & B,,,. (Of course, the length depends on the choice
of B/’s.)

Then we obtain the following.

Lemma 10. Let k be a field, and K a purely inseparable extension
of finite exponent e over k. Let {a|A€ A} be a p-basis for K over k
and denote the length of «, in the above sense by l(a,). If we denote
by I, the K-submodule of Ix generated by

{0(an)™---0(an )1 0< n; < p'*), ny+--+n,=n}
then I, is a wvector space over K which has the above set as a basis

and we have Igx= EBI,,, Ii = EBI and f\I"—(O)

n=

Proof. It is evident that the set {1, IT a’{*|0<nx<p'(“*), almost
red

all n,=0} is a linear basis for K over k. Hence, by Lemma 6, the
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set {6()'Ha’,£‘)|0<nx<p’(““, almost all n,=0} is a basis of a left K-
€4
module Ig. Let us denote by J, the submodule of Ix generated by all
6(1;10:{‘)’5 such that 2} ny=n. Then, from the equation
A

01 %27 %0) = 0(21) 0(x2)--0(%0)

n—1

P xl"‘fi,"‘&i""xn'a(xi,)“'6(27;5)

s=1 §1<~<i,

q q q
we see easily that we have X, I,=2,J,=@J.. Therefore, since the
n=1 n=1 n=1

q
linear independence is a finiteness condition, )] I, is a vector space over
n=1
K with a basis {I;[ (‘)‘(ax)”‘l; na<n}. Consequently I, has a basis
q q oo
{I10(@)™| L na=n} and 2 I,=1I,. Then Ix= I, follows imme-
by iy n=1 n=1 n=1

diately from Ix=&J,, and the rest is obvious. q.e.d.
n=1

Lemma 11. Let k be a field and let K be a purely inseparable
extension of finite exponent over k such that [K:k]=oco. Then we
have 2(K/k)=>Hom(K, K).

Proof. Let {a,|A€ 4} and I, be as in Lemma 10. Then, by
assumption, 4 is not a finite set and we have I,2(0) for all n.
Moreover each I, is a free module. Hence there exists an element ¢
in Homg(Ig, K) not vanishing on any power of Ig. Therefore it fol-
lows that 2(K/k)=cHom(K, K) by Prop. 5, (iii). q.ed.

Now we arrive at the following main theorem.

Theorem 2.2 Let k be a field and L an arbitrary extension field

1) A. Hattori gave a simplified proof of this theorem. His proof is based on
the isomorphism Hom{(L, L) Hom,(I, L) where Hom{(L, L) denotes the set of
the elements f of Hom(L, L) such that f(1)=0, and I means I;. It runs as fol-
lows:

D(L/k)=Hom,(L, L)(:)C"/lugv(L/k):Homg(L, L)
o
& OIHom,,(I/IG”, Ly=Hom (I, L)
o
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of k. Then the following three conditions are equivalent.
(1) 2/k)=Hom,(L, L).
(2) L is purely inseparable over k and [L: k]< oo.
(3) Ip=Ker(L&,L— L) is a nilpotent ideal of LRy L.

Proof. The implication (1)=>(2) follows from Prop. 6, Lemma 8,
Lemma 9 and Lemma 11. The implication (2)=>(3) is obvious and
(3)= (1) follows immediately from Prop. 5, (iii). q.ed.
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