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§1. Introduction

In the present article we shall derive a necessary condition (say,
Lopatinski’s condition) for the well posed mixed problem of the first
order hyperbolic systems with variable coefficients. Here we say that
the mixed problem is well posed, if this problem has a local solution
for any sufficiently smooth deta and a finite propagation speed.

In the case of constant coefficients, R. Hersh in [5] and T. Kasa-
hara in [10] proved the global existence of the solution for the mixed
problem of the first order hyperbolic systems under Lopatinski’s condi-
tion, and Hersh in [6] and [7] researched into the existence and the
finite propagation speed of the solution for the higher order hyperbolic
systems. Moreover T. Shirota in [14] studied precisely the finite pro-
pagation speed of the solution for the single higher order hyperbolic
equations. Recently R. Sakamoto in [13] characterized completely the
necessary and sufficient conditon for the existence and the finite pro-
pagation speed of the solution for the single higher order hyperbolic
equations.

In the case of variable coefficients, M. Ikawa proved in [3] that
the mixed problem for the wave equation with an oblique derivative
boundary condition is well posed. J. Chazarain in [2] and R. Beals
in [1] proved the existence of the solution in Gevrey-class for the
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mixed problem for hyperbolic systems (not necessary strictly hyperbolic)
by use of semigroup theory and derived a finite propagation speed.
In [7] the auther showed a necessary condition for the well posed
mixed problem for 2x2 hyperbolic systems with analytic coefficients.
In this article we shall extend the result obtained in [7] to the general
systems. Namely, we shall prove that Lopatinski's contidion for the
principal part of the hyperbolic systems considered and for the boundary
condition is necessary under some assumptions, if the mixed problem
for the systems is well posed. It is seemed that this problem is cor-
responding to those which P.Lax in [11] and S. Mizohata in [12]
studied for the Cauchy problem.

We consider the following mixed problem in © a neighbourhood
of the origin in R% x (0, o0)

K
Llu] =70t—_ jZ:l A;(x, t)%—.u—B(x, Hu=f(x,t), (x,t) in Q
= J

(1.1) u(x, 0)=g(x), xin D=Qn {t=0},
P(x', Hu(x', 0, )=h(x", 1), (X', )=(X{s..0s Xp—ys B)
in G=2n {x,=0},

where A/(x, t) and B(x, f) are mxm matrices of infinitely differentiable
elements, u(x, t), f(x, t) defined in Q and g(x) defined in D are vector
valued functions of k components, P(x’, ) is a Ixm matrix of infinitely
differentiable elements and h(x, f) is a vector valued function defined
in G of | components.
We pose the following assumptions,

[A.I] L is hyperbolic at origin, that is the characteristic matrix
f} A0, O)y; has only real eigen values for any (yy,...,n,) in R*—{0}.
f:,,EO, 0) is non singular.

[A.II] the rank of P(0,0) is equal to ! and | is the number of
negative eigen values of A4,(0, 0).

k._
We put M(A, in)=A; (0, 0)(A— ZlAj(O, 0)n;) then it follows from
j=

hyperbolicity of L that the real part of eigen values of M(A, in) is
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not zero for ReA>0,n in R*"!' and that the number of these eigen
values with negative real part is equal to /. We define by E~(4, 1)
(resp. E*(A, n)) the generalized eigen space corresponding to eigen
values with negative (resp. positive) real part of M(A, n). We define

(1.2) 0% (2, ;;)=2'—m§>“(c—M)"dC,

where I', (resp. I'_) is a Jordan’s curve containing only eigen values
with positive (resp. negative) real part. We define A(4, n),

G =5 (C= M) 4710, 00— M) Qdt
rs

[A.III] (i) E~(4,n) consists of only eigen vectors of M(A, n) (has

not generalized eigen vectors) for ReA>0, n in R 1,

(ii) {E~(4, n) U(Ker P(0, 0)n E*(4, )} n {A(A, n)(E~(4, n) n Ker P(0, 0))} =

{0}. and rank A(4, n)>dim(E~(A, n) n Ker P(0, 0)), for ReA>0, n in

Rk-1,

Remark 1. We put E#(4, n)=KerF(0,0)nE*(4,n) and EI(J, n)
={heE*(A, n) and h& E%(A, n)}. Then (ii) of [A.III] is equivalent
(ii)) A is an one to one and onto map from Eg(A, n) to Et(4,n)
for ReA>0, n in R !,

Remark 2. In the case of m=2 (cf. [7]), (ii)) or (ii)’ is valid, if
and only if it holds that for Rei>0,

(1.3) E~(4, 0) n Ker P(0, 0)={0} .

We say that (1.1) has a finite propagation speed, if there exist a
positive number J, and (x,, t,) such that (1.1) has the unique solution
in Q(xg, to)={(x, 1); |x—xo| <dg(to—1), x,>0, >0} for any (xo, to),
Xox>0, t>0, in a neighbourhood of the origin.

Definition 1. We say that the mixed problem (1.1) is well posed
in a neighbourhood of the origin, if for any deta {f(x, 1), g(x), h(x’,
1)} infinitely differentiable in a neighbourhood of the origin, with the
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compatibility condition, there exists a neighbourhood Q of the origin
such that (1.1) has a solution u(x, t) in C*(2) and has a finite propaga-
tion speed.

Definition 2. We denote by L, the principal part of L, that is,
_ 0 k 0
LO—W_ EIAJ-(X. 1) ox,
condition at the origin, if it holds

(1.4) E=(4, n) n Ker P(0, 0) = {0}, for Reil>0, nin RK!,
Now we state our result,

We say that (Lo, P) satisfies Lopatinski’s

Theorem. Suppose that [A.1], [A.1I] and [A.1ll] are valid.
Then (L,, P) satisfies Lopatinski's condition at the origin, if the mixed
problem (1.1) is well posed in a neighbourhood of the origin.

Remark 3, If we do not assume (ii) of [A.IlIl], our theorem does
not generally hold. For example (m=2, k=2 and [I=1), we put

L=z =(o Vae=(To Vag (1 o)

P=(0, 1).

We can see easily that this example does not satisfy (1.3) and (1.4).
But the mixed problem for (L, B) is well posed (cf.[13]). In the
case of constant ocefficients, (1.1) is well posed and (1.3) is valid,
if and only if (Lo, P) satisfies (1.4) (cf. [6], [13] and [14]).

To prove our theorem we shall apply to the mixed problem the
method of the asymptotic solution which P.D. Lax in [11] used for
the Cauchy problem.

§2. Proof of Theorem

We shall prove our theorem by contradiction. To do so, we need
an inequality derived by the closed graph theorem. We denote Q
(x> to) = {(x, )5 | x—xo| <O (to—1); 0<t<ty, x € R%}, where x, in R%
and 1,>0 are fixed, and & is a positive constant. Then, if the mixed
problem is well posed in a neighbourhood of the origin, it follows
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from the closed graph theorem that for any (x,, t,) in a neighbourhood
of the origin and for any u(x, t) in C®(Q(x,, to)) there exist a positive
constant C(x,, t;) and a positive integer s, such that

(21) I u I O.Q(xo,zo)< C(XO’ ’0){ | Lu Iso.ﬂ(xo,'o)+ Iu |So,D(Xo,'n)

+ lPu Iso,G(XQ,lo)} ’

where D(x,, ty)=Q(xy, to) N {t =0} and G(x,, ty) =Q(x,, to) N {x,=0}. We
note that C(xo, t,) may be generally dependent of (xq,t,). But we
can see a behaviour of C(xon™!, ton=!) for n—>o00. We wtire Q(n)=
Q(xon~1, ton™1), D(n)=D(xqn ", tgn™1) and G(n)=G(xon~1, tyn=1). Then
we have,

Lemma 2.1. Suppose that the mixed problem (1.1) is well posed
in a neighbourhood of the origin. Then for any positive integer n
there exist a positive constant C, and positive integers s, and s,
(independent of n) such that for any u(x,t) in C*(Q(xo, to)),

(2.2) [ ] 0,0 < Con* {| Lt |5 00y + | Ul s, 0+ | Pte| sy, 6m)}

We can derive this lemma from (2.1) by the same method as
Lemma 2.1 in [9].
We put

M) = 45103, o dnLomn 5 a0y
=1

_ -1 -1
P B(n'x,n t)}

0
0x;
and

P(n)y=P(n~'x', n='1).

Then we have,

Lemma 2.2. Suppose that the mixed problem (1.1) is well posed
in a neighbourhood of the origin. Then there exist a positive con-
stant C, and positive integers s, and s, such that for any positive
integer n and for any u(x,t) in C*(Q(xq, 1)),
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(2.3) Ul 0,000 < Cirst*so {I| M(n)ul s, ooy F 1] so,p(x0,10)
+ | P(”)“‘so.G(»‘o.lo)}

Proof. This lemma was suggested by V.J. lvrii [4]. We apply
the inequality (2.2) to u,(x, f)=u(nx, nt). We obtain easily (2.3) under
the change of variables, y=nx and s=nt. q.e.d.

Proof of Theorem. Suppose that (L, P) does not satsify the
Lopatinski’s condition, that is, there exist linearly independent vectors
Zyyees 2 in C™ and Ay, Redy>0, 5o in R¥™! such that

2.4 {z1s-.s 2} < E~ (49, 1) N Ker P(0, 0)
We denote
MO = A7 1(0, 0)(—iZ A0, On))

Let &5, j=1,..,1 be the eigen values with a negative real part of
M? and h; (resp. ;) the right (resp. left) eigen vectors corresponding
to &;. For simplicity, we assume that &7, j=I,...,1, are simple eigen
values.

We shall construct the asymptotic solution of (1.1) having the fol-
lowing form,

Jj»0

(2.5) u(x,t)=}, nJ Zl: exp {n(&,x,+ Aot —ix'no)yul? (x, 1),
p=1

here, u® are functions to be determined.
Applying M(n) to (2.5), we have,

l
M(n) [u] = pgl[n2<¢;—M°)u8’>+n{(é;—M°>u<.v>
(5= Mo(Dy. D)= My (x, 5 g, ) JuB)} +-

2.6) 7502 = MO+ (5%~ Mo(D, D)

—M(x,t; 2, r;o)> u'P),
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=S M(x, ;0 in)u— T M(x,t, D, D,,,)ugp’}
i+s=J i+s=Jj—1
s<j-1 s<j-1

+ ...}exp {n(é;xk+lot—ixl"70)} ’

where,

k=1
Mo(D,, D) =450, 05— 5 4,00,0055),
- J

— vgi _ézA __é_ ) Vi
Mj(x, ta Dn Dx)_ Z X't Mi\-< at 0 axf' + lv|+iz;=j—lx t Bvi»

[viti=j
and operating P(n) to u, we get
1
P(n)[ully,=0= Zl exp ”(Aot—ix"lo)[Po'{(op”xk:o
=

2.7 +n H {Pou'P+ Py (x, Duf'} | om0+ o
+”_j{Pou(jp) + ¥ Px, ulP} om0+ ]
i+s=j—1

where P,=P(0, 0),

Py(x',1)= IVI§=jx"'ti(v!i!)"((a—ir)(%)iP)(O, 0).

Thus if we work out formally the coefficients of n™/ in (2.6) and
(2.7) and set each of them equal to zero, we obtain the sequence of
the recursion formulas,

(2.8) (& —M)uP=0,p=1,..,1

29) (&= MO + (52— Mo(Dyy D)= M, (x. 15 Lo, o) JufP =0,

(210) (& = MOul,+ (52— Mu(Dyy D)= My(x, 15 2oy ino) Jup =1

and

1
(2.11) pf;l Pou |4 =0=0
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1
(2.12) 2 (Pou? + Py(x', D) | =0 =0
=
!
(2.13) 2 (POu(jp)'l"Pl(x”t)u(j'i)l)lxk=0=gj
p=1
where
fP= 3 Mx,t; 2k, ino)u”+ 3 Mix,t, D,, D.)ul”
i+s=f'+l its=j
s<j s<j
Gt
and
L ’ P ;
gi=— 2 2 Px'\0ouP |, -0, j=1,2,...
i+.;=<12—l p=1

From (2.8) and (2.11), we have
(2.14) uf’=o’(x, )k, p=1,2,...,1, and
. .
(2.15) > u o= 3 5P (X, Dz,
p=1 p=1

where o) and &Y’ are scalar functions. Next, we seek u{? satisfied
with (2.9) and (2.12). We can find the particular solution #'” of (2.9),
if ul) are satisfied with

wl’. (L_MO(DH Dx’)—Ml(xa t; 109 i’70)> u%p)=0 s

Ox,
that is,
(2.16) (aaTk—ap(D,,Dx,)—b,,(x,t))ag"):o, p=1,.1,
where

a,D,, Dy)=w, Moyh, and b,=w, M,h,

The Cauchy Kowalweski’s theorem guarantees the existence of the
analytic solution ¢{” of (2.16) with the intial conditions (2.15). Here
we note that 6% (x,t), p=1,2,..., ' remain undetermined.
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From above reasoning we obtain the general solution of (2.9) as follows
2.17) uP =0V (x, Dh,+ 0P, p=1,.,1,

where #{?) is the particular solution of (2.9). Next, we determine
6P(x', 1), p=1,...,I') so that u{®|, _, verify (1.12). We put H=
(hy, hy,...s hy), 0;="(a%V,..., 6\"), &;=%(6%V,..., 6{)) and Z=(z,, z,...,

zp). Inserting (2.17) into (2.12), we obtain
(2.18) PyHo,(x', 0, t)+ Z (PottP+ PiuP) |, —0=0.

From the assumption, the rank of PyH is I—1I'. Hence there are
left nullvectors ry,...,r, of P,H. We write R=%r,,...,r.), I'xm
matrix. If @? and u$’ verifies

1
(2.19) R-Y (PotiP+ Py (x', hulP) |, 0=0,
p=1

there exists a solution o,(x’,0,¢) of (2.18). We express (2.19) as an
equation of G,. To do so, we must solve #'” explicitly from (2.9).
We use operators Q% defined in (1.2). We put M*=Q*M. We note
that Q% is an orthogonal projection into E(4,, iny) along EZ(A,, ing).
Since Q-a'" is in Eg, RP,Q 6" =0. Hence by virtue of (2.9), we
obtain

(2.20) QAP =(L, —M*)"'Q*(Mo(D,, D)+ M,(x, 1, Ao, ino))ul’
Noting that

1
2ni

(& — M¥)-10% = §> (& — &)1 (E— MO)-1de,

and
(é;—f)_lh,.:(M_—f)_]hp for éer+5 P=19~--, Ia
we have by virtue of (2.14) and (2.20),

3.0 0= 2§, E- Moy (Mo(D,, D)+
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+M,(x',0,t; Ay, ing)}
x (M~ —&)- 'dngll ho®(x', 0, 1)
='—.§ (€= MO U 0,002+ A7t T 4,00, 0050+
2ni Yr, ot = 0x;

'(é_M-)—‘dé X ZO&O(x,’ t) ’

which implies with (2.19),

2.21) Toa_at&ﬁjg:T,Ei—jao+S(x',z)&o=o,
where, To=RPoAZ, A =7'ﬂ7<§“(c—M0)-1A;'(o, 0)(M-—&)d¢
and

Ty= b RPE= M) 470, 004,0, 0) (=) zae,

are I'’x !’ constant martices, and S(x, t) is a I'’x [’ matrix with elements
analytic in (x’, f). From the assumption (ii) of [A.III] it follows that
the !'x!’ matrix T, is non singular. Hence the exists non trivial
solution &q(x’, t) of (2.21) and therefore we have a solution ¢,(x’,0, t)
of (2.18) such that

(2.22) Ho,(x', 0, 1) =2 ,(x', )+ H& (x', 1)

where &,(x’, t) is a particular solution of (2.18).
Summarising the above result, we find u{? as follows,

uf(x, n=0P(x, Dh,, p=1,2,..,1
Hoy(x', 0, 1)=Z6Gy(x', 1),

here oy(x, t)="(c{(x, 1),.... oP(x, 1)) is a solution of (2.16) and its
initial value &,(x’, t) is a solution of (2.21). Next, we have u{"(x, r)
as follows,
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p=1,2,..,1,

uP(x, 1)=0{"(x, nh,+ aP(x, 1),
Ho(x,0,)=Z6 (x', )+ H&,(x', 1),

where @‘? is a particular solution of (2.9) and &,(x’, t) is a particular

solution of (2.18), and a,(x, t)="(c\",...,6?) and &,(x', )="(a'",...,
o{)) are arbitrary functions in order to construct uP(x,t), p=1,..., 1.

Generally, we put uP)(x, ) such that

ulP(x, ) =0P(x, Oh,+ 0P (x, 1), p=1,..,1,

and
Ho(x', 0, )=Z6(x, )+ Hé(x', t).

where #{P is a particular solution of (2.10) with j=s—1 and Hé,(x', t)
is a particular solution of (2.13) with j=s. Then if we choose o'{P(x, )
and 6/(x’, t) such that,

"0

(_a—;k_—ap(p,, Dy)—b,(x, t))a§">=]§ﬂ)(x, 0, p=l...,1,

and
T 0 "“T 0 S(x' S o
( 07‘!‘ jgl ja—;—‘l‘ (x s t))as—gs(x , 1),

where f§")=wp-f§”)—wp'<%—MO(D,, D) — M (x,t; A, in))u§")(x, 1) and
1

Go=Rgss1— X RP(x', )al”(x', 0, )—RP(x, )HS,(x', ), we can con-
r=1

struct successively u'?)(x, ) satisfying (2.10) with j=s and (2.13) with

j=s+1.

We put

N 1
u(x, ) =23 n1 Y exp{n(&; x,+ Aot —ix no)}uP(x,1).
=0 p=1

Then if N is sufficiently large, it is obvious that u(x, f) violates (2.3).

Thus the proof of our theorem is complete.
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Remark. In above statement, we assumed that the matrix M,
has simple eigen values. But this is not essential. In fact, it follows
from the assumption (i) of [A.III] that, if &; is an eigen value of
multiplicity v,, there exist the number v, of linearly independent eigen
vectors corresponding to ¢&,. We can repeat the above reasoning
by use of those eigen evctors.
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