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Introduction. For Riemann surfaces of infinite genus, it is
known that there occur many phenomena which are completely dif-
ferent from the function theory on plane regions or Riemann surfaces
of finite genus. Actually we see them in various examples in classi-
fication theory of Riemann surfaces. Undoubtedly such phenomena
depend on, in intuitive sense, the distributions of holes and handles
representing genus. Now we take a countable number of disjoint
cycles {r,} on Riemann surface R so that G=R— U7y, becomes a
planar region. G is conformally equivalent to a slit region. So, in
this note, we consider plane region R which has an infinite number
of disjoint slits {y,} clustering nowhere in R. G=R-— Uy, is a sub-
region of R whose boundary consists of U7, and the ideal boundary
of R. We construct Riemann surfaces by conformal sewings (cf. sec.
1) of G and investigate some relations by extremal length methods
between the classes of such surfaces and the types (weakness, semi-
weakness and so on) of the slit regions. Furthermore we give some
examples related these topics. The last one will give a relevant re-
mark for the extension of classical Koebe’s theorem to open Riemann
surfaces.

The author expresses his hearty thanks to Professors Y. Kusunoki
and T. Fuji’i’e for their valuable suggestions and ceaseless encourage-
ment.

1. Let R be an open Riemann surface. By a slit in R, we shall
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mean an analytic arc which is homeomorphic to the closed interval
[—1,1] on the real axis in the complex plane. Consider a countable
number of slits {y,}7_, in R which are mutually disjoint and cluster
nowhere in R. Denote G=R—U,7,. Now we define conformal
sewings of G. (1) Take a parametric disk U, around each T; SO
that y; is represented as {z;;|Re z;/<<1,Im z;,=0} by the local par-
ameter z,, then each y; has two sides, the upper edge y,* and the
lower one 7,~. (2) Partition {y,}7_, into a countable number of finite
sections (7:)iwer, (£=0,1,---). (3) For each arrangement of elements
in every section (7:)ier, 52y (Yiy Tis **'» Tiae), identify 7,7 with 1},
(J=1t1, 12 -+, tay-1) and 7n,, with y#. Through these processes we
can define a Riemann surface. Above all, the two points of the sur-
face corresponding to the end points of slits have actually the fol-
lowing structure. For instance, the end point {z;, =1} = {2;,=1} = -
= {244, =1} has a neighbourhood which is represented by 7 full cir-
cular disks in the complex plane. They are identified in the manner
of an n-sheeted covering surface with a branch point, and we obtain
a local parameter by taking an z-th root. We denote the resulting
surface by S(G) and call such a series of operations a conformal
sewing of G=R— U, r,. When we use the word ‘any’ (resp. ‘some”’)
conformal sewing, we mean conformal sewing for any (resp. some)
(1) parametrization, (2) partition and (3) arrangement for {y,}. Es-
pecially, if each section consists of only one 7,, then S(G) =R. More
generally we map U,—7; conformally onto U}—7), where Uj is a
neighbourhood of 7)={z};|Rez2}/=<1,Im 2;=0}. For such {r}} we
can do the processes stated above to obtain a Riemann surface. We

say such an operation a general conformal sewing.

Proposition 1. Suppose that for each 7y, there exists a pair
of parametric neighbourhoods U,,V, such that

(a) 7.cU,cU,cV,, V,.nV,=¢(mxn)

(b) V,—U, is conformally equivalent to an annulus A,

2 1

©) nZ=:0 log mod A,,<°o’
where mod A, denotes the modulus of A,(>1).

Then, Re Oq4 if S(G)e€O¢ for some conformal sewing of G.

Conversely, if Re Og then S(G) € Oy for any conformal sewing of G.



Riemann surfaces 469

Moreover this proposition is also wvalid for Ogp, Oyp, Uns and
Uyp in place of Og.

Proof. Let f, be a bounded continuous function on R such that
fale—v,=0, filzg,=1 and f, is harmonic on V,—U,. Set f=32_,f..
Then by (c) we can easily find that f is a bounded continuous
Dirichlet potential on R. While, we can regard f, and consequently
f as bounded continuous Dirichlet potentials on S(G). If Re& Og then
there exists a non-constant bounded positive harmonic function on G
vanishing continuously along the relative boundary 8G with respect
to S(G). Hence S(G) & Og.

We can prove similary the converse, and also the last statement.

2. Let R be an open Riemann surface with ideal boundary g
and let R, be a parametric disk with compact relative boundary 0R,
in R. We consider the family of curves F=F(R—R,,0R,) in R—R,
such that each c€F consists of a finite number of disjoint Jordan
closed curves and ¢ separates the ideal boundary g from 9R,, i.e. ¢
is homologous to 0R,. Let A(F) be the extremal length of F. Then
we have the well known fact;

Lemma 1. Re Oy if and only if 1(F)=0.

Let F/=F (R—R,, 0R,) be the family of curves ceF such that
each component of ¢ is a dividing cycle in R, According to Kusu-
noki [6],

Definition. We say that R belongs to class O’ if 2(F)=0.

That A(F’) =0 is an ideal boundary condition and is independent
of the choice of R,. (Such a remark will be omitted hereafter.)

Clearly O’ Cc Oqs. Moreover, if R belongs to O’, then Rg* the
Stoilow compactification of R coincides with Ry,* the Martin com-
pactification of R (cf. [2], [6]).

3. From now on, we consider an open planar Riemann surface
R=C--p, where C, stand for respectively the extended complex
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plane, a compact subset of € such that C—p is connected. Let {7,}
denote a sequence of slits as in sec. 1. Of course U,,—r,,— U,.7.CH
(where closure is taken in €). Let G=R— U, 7, then G itself is
a planar Riemann surface and B is a closed subset of the boundary
of G. So, we can define the notion of weakness, semiweakness and
parabolicity of 8 with respect to G. Here, we define them as follows.
Let G, be a parametric disk in G. We introduce here two families
F° F*' of curves in G—G, A curve ceF"' if and only if ¢ consists
of a finite number of Jordan closed curves in G—G, such that ¢ sep-
arates § from 0G,. While, ceF° if and only if (i) ¢ consists of a
finite number of disjoint Jordan curves such that each component of
¢ is closed or connects some 7, with 7, (may be m=n) and (ii) ¢
separates 8 from 0G, in G—G, Let 1(F') (resp. A(F")) be the ex-
tremal length of F' (resp. F°) with respect to G—G,.

Definition. f is called weak (with respect to G) if 1(FY) =0,
and is said to be semiweak (with respect to G) if L(F") =0.

Definition. 3 is called parabolic (with respect to G) if (G,
0G) € SOy, i.e. there exist no HB-functions on G vanishing continu-

ously along 0G except constant zero.

We sometimes say that G is of weak type (resp. semiweak type,
parabolic type), when 8 is weak (resp. semiweak, parabolic).

Definition. We say that G belongs to class O, (resp. Op) if
S(G) € Oy for any (resp. some) conformal sewing.

It is clear that O, C O, By Proposition 1, there exists non-trivial
GeO0,..

4. Let G be as in sec. 3, and let G be the double of G along
0G= U, 1, Then there is a natural indirect conformal mapping ¢
of G onto itself. For a subset E of G, we use the symbols E, E in
place of ¢(E), EU@p(E) respectively.

Proposition 2. G is of semiweak type if and only if GeO,.
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Proof. Let F=F(a—§o, 060) be the family of curves in Lemma
1. For any ceF, c|g the restriction of ¢ onto G belongs to F'. By
Flg, we mean the total of c|g such that cEF Then A(F") Z1(Flg)
in G—G, Clearly 1(F|g) <1(F) in G- Go Since each ceF|q is
contained in G—G,, A(F?) <A(F). So, if GOy then G is of semi-
weak type.

Conversely, let G&Og  Then there exists the harmonic measure
W= a)(G 6‘Go) (=0) of the ideal boundary of G with respect to G- Go
We take ds=|grad 0| |dz| as a linear density on G— Go, and set dsg
=ds|g, which is a linear density on G—G, For any ceF° é=cus¢
€F. So, by means of the symmetricity of o,

J;dsa= Lds/2= ngrad ol |dzl/2= Ll*dw[/ZzD(a))ﬂ

where D(w) means the Dirichlet integral of w. Hence, 1(F°) =D (w)
/2>0. Thus G is not of semiweak type.

If GeO,, then G belongs to SOy, Hence,
Corollary. 3 is parabolic if B is semiweak.

Proposition 3. If 8 is weak, then every symmetric HB-func-
tion u defined near the ideal boundary of G has a limit value at
each Stoilow ideal boundary point, where by the symmetricity of
u we mean that u=uoq.

Proof. Take G0 as in Proposition 2 so that z is deﬁned on G
—G,. Since G belongs to Oa,u is Dirichlet finite and |grad «| |dz|
becomes a linear density on G- Go Let a,b be cluster values of
at a Stoilow ideal boundary point p. For each ceF', ¢ U surrounds
a symmetric ideal boundary neighbourhood. It is not difficult to see
that there exists a determining sequence {V,} (symmetric with re-
spect to ¢) for p such that

[ 1grad al 1210 (10,
Cn
where we denote 9V, by c¢,. Then by maximum principle,

la—b|<max u— mm u< j ldu| < f |grad u| |dz|.

Cn
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Hence, a=25.

5. We consider conformal sewings of plane regions which are
symmetric with respect to the real axis. More precisely, we assume
that B is a compact set on the real axis and {y;,} (=0,1,---) are con-
tained in the upper half plane and 7:.,,={2;Z2€72.}. Furthermore,
in this section, S(G) is the Riemann surface obtained by identifying

Ten With 7g,,, symmetrically with respect to the real axis, Then,

Proposition 4. G is of weak type if and only if S(G) belongs
to class O’.

Proof. The correspondence zmww—z induces a natural indirect
conformal mapping ¢ (resp. ¢) of S(G) (resp. R=C—p) onto itself.
¢(T2n) =7T2ms1. Let G, be a symmetric (w.r.t. the real axis) neigh-
bourhood around oo such that Gon (U, 7.) =¢, and let F' be the
family of curves in S(G) —G, defined in sec. 3 for weakness. F’
denotes F’(S(G) —G,, 0G,) in sec. 2 (i.e. S(G) €O’ iff 1(F’)=0)
and F”"={ceF’';c=¢(c)}. First we prove that 1(F”) =0 if and only
if A(F’)=0. In fact, A(F”) =0 implies A(F’") =0 since F” cF’. Con-
versely, let 1(F’)=0. For any linear density p and ¢>0, there ex-
ists a c€F” such that [.(p+p0p)|dz|=,(0+0°¢)|dz|<e. Thus,
euoto 0132 = S eupor (0 00¢) |dz| <2e.  Here, cUgp(c) €F”. Hence,
2(F”)=0. Now we can prove semilarly that 1(F') =0 if and only
if A(F*) =0, where F’={ceF';c=¢(c)}.

Clearly F*cF”. So, if A(F') =0, then 1(F’)=0. Thus, S(G)
€0’ if G is of weak type.

Conversely, any ceF” does not meet U, 7, since each compo-
nent of ¢ is a dividing cycle in S(G). Thus F”CF*® Hence, the
converse statement follows.

In the same manner, for this S(G) we have,
Proposition 5. S(G) €O0q if and only if G is of semiweak type.

It is easy to verify that if G is of weak type then G belongs to
class O,, and if G belongs to O, then G is of semiweak type.
Thus, we get the following schema of inclusion relations:
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O,
~ .
} O, —> semiweak T GOy == parabolic

weak

Remark. When we define classes O, and O, for generel con-
formal sewings (cf. sec. 1) in place of conformal sewings, then we
get besides in the schema, ‘O, T semiweak’ and that if § consists

of a finite number of components then ‘O, 5= weak’,

6. Examples.

In this section we give some examples. The examples (I) and
(II) show the implications ‘weak —— O, and ‘parabolic —— semi-
weak’ respectively. The example (III) shows ‘O, —— O, and also
‘O; —— weak’, Besides them, these examples have other interesting

properties.

(I) Let R=C (i.e. B={oo}) and {y,} be given so that U, 1.
— Un72CB. Set G=C— U, 1., then clearly GO, Thus G is of
semiweak type. (Generally this is true for any {y,), if the logarithmic
capacity of § with respect to € is zero.) While, we insist that there
exist some choice of {y,} and some conformal sewing such that S(G)
belongs to a hyperbolic Riemann surface.

Let {a.}2., be a sequence of strictly increasing positive num-
bers toward infinity. Set y,={x=z+iy;|z|<1,y=a,} (n=0,1,---).
Identify 74, with 75,1 and 75 with 7, symmetrically with respect
to the line y= (as,+ asq41) /2 so that we obtain Riemann surface S(G).

Suppose Y- (as, —az_1) =M< oo, then S(G) & Oe.

To see this, first we note that G'=3 7., G, can be regarded as
a subregion of S(G) with G,={z=x+iy; |z|<], a0 <y<Zas,}. It
is clear that G’ is conformally equivalent to the plane region 2:

R={z=x+1iy; |x|<1, 0y M}.

Under this conformal mapping, 8G’ corresponds to {z=x+iy;x
=41 0<y<M}U {z; |x|=<1,y=0}. Since (G’,0G’) €SOy, S(G)
is hyperbolic. Furthermore, we can easily show by definitions that
G is of weak type provided that aspi/asm=n(n=12,---).
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(II) Generally we can prove that slit region G is of parabolic
type if there exists a conformal sewing such that the resulting sur-
face S(G) belongs to Oy —0Og. Here we take radial slit disk G=F
and Riemann surface S(G) =FEOHE—OG by some conformal sewing
of G (cf. Toki [10]). Then G=F is of parabolic type. While, G
is not of semiweak type. For, —log|n(p)| is a non-constant positive
superharmonic function on /G\, where 7 denotes the projection of G
onto the unit disk.

This example gives also a counter example showing that sub-
regions of a region of type NOpgp (i.e. on which there exist no non-
constant HB-functions whose normal derivatives vanish along the rela-
tive boundary) are not always of type NOyg. (Note that every sub-
region of a region of type SOyjy is always of type SOyz) Now, for
sufficiently small positive number », G,= {|z|<r} becomes a parame-
tric disk of S(G) and G. Let S(G)—G,=G’, then the double G’
along 0G’=0G, belongs to O%z—Opygs. Thus (G’,0G") is of type
NOyp. While, G—G, a subregion of G’ is not of type NOy; For,
the double of a subregion belongs to Ogjp if and only if it is simul-
taniously of type NOyz and SOyxp (cf. Kusunoki-Mori [7]). And
clearly the double of G— G, along 3(G — G,) does not belong to Oyj.

(III) Let {@a.}x-o be a strictly decreasing sequence of positive

numbers converging to zero for z—oco. Let,
B={z=z+iy;|z|=1,y=0},
7a={2;lz|=1l,y=a,} and y_.={z;[z|=1,y= —a.} (»=0,1,---).

Identify 7, with y_, symmetrically with respect to the real axis to
obtain S(G). Clearly f is not weak. To prove the semiweakness
of B, consider annuli A, and A,” in S(G) such that

Ap= {210, n<lz—1|<a,}
—{z=zx+iy;1—a,Zx=<1, |y|<anyi},
A ={z=x+iy; —z+iyeA,}.
F,,F,’ and F,” are families of curves such that

F.={c;e=A.n{lz—1|=r}, ann.<r<aa.},
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={c"; ' =A" n{lz+ 1| =7}, an.<r<a.},

F.,”={cuc';ceF, c eF,}.

Let G, bea neighbourhood of oo such that G,n (UZ__, 7.) =,
and let F=F(S(G) —G,, 0G,) be as in Lemma 1 (i.e. S(G) €Oy iff
A(F)=0). Since U,F,”CF, we have

1 ©
ACF) o 2 (F ) '

IIV

and easily from the properties of extremal length,

2n
A =2 )Slog (@n/@nsy)’

AF) =2 FE) +AFS)).
Thus, for any m >0

1 > = = log (an/an+l) —
l(F)=Z/1(F D= 4r

L Jog(av/an).
47

Hence, 2(F) =0. G is of semiweak type by Proposition 5.

7. Let G and S(G) be as in the example (III). We consider
other properties that S(G) has. And let U be a regular neighbour-
hood of the ideal boundary of S(G) with (U)*> {oo}, then U is a
(parabolic) end in the sense of Heins [3]. Denote by /4 the projec-
tion of U into the real axis (i.e. x-coordinate of the point in U),
then A is a non-constant HB-function of U. And the full cluster set
of h at the ideal boundary is clearly [—1,1]. Hence, the harmonic
dimension of U is at least two. While, we can find a bounded con-
tinuous function A on S(G) —K such that A'=H,"/H," on U and
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h’=0 near K, where K is the closure of a regular neighbourhood
of {00} with KNnU=¢. So, A’ is a continuous function on S* the
Martin compactification of S(G) —K. The Martin ideal boundary
part 4(U) of S* belonging to U is the fibre over [—1,1], and it
consists of the continuum including minimal points precisely two. Fur-
thermore there exist no minimal points over (—1,1), since minimal
points are accessible. But it is an open problem how many minimal
points 4(U) does have in more general situations,

Let w=f(z) be a univalent function which maps G onto a ver-
tical slit region such that @ reduces to the origin and the images of
r» lie on the imaginary axis symmetrically with respect to the origin.
Then (f(2))? induces a non-constant AB-function f* on U. Clearly
f* has a limit value zero at 4(U). Thus we can not conclude that
AB-function reduces to zero, even if it converges to zero uniformly
on curves {C,} converging to non-degenerate Martin ideal boundary
A(U). This shows that the extension of classical Koebe’s theorem to
open Riemann surfaces with Martin compactification does not hold
under only assumption that C, converges to a non-degenerate conti-
nuum.

Finally, we give an example modified from (III). Let g=/{|z|
=1} U {z=re";0<e<r<1,0=0} and 7.,={z;e<r<1-—a, 0=0,},
7-n={2;2€7.}, where {a,} and {b,} are sequences of strictly de-
creasing positive numbers converging to zero. Identify y, with y_,
as in (III). Then we have a hyperbolic Riemann surface whose
Green function G does not have compact level curves with G(p) =r
(0<r< —loge).
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