Z_{2}-homology submanifolds and homology classes of a Z_{2}-homology manifold

By
Kojun Abe and Masahisa Adachi

(Received May 21, 1975)

This note is concerned with the problem of the realization of homology classes mod 2 of a \mathbf{Z}_{2}-homology manifold by \mathbf{Z}_{2}-homology submanifolds.

First the C^{∞}-case of this problem was studied by R . Thom [10]. Next the PL-case, TOP-case and the case of homology manifolds were studied in [1], [2], [3], [4].

The present study is based on the Williamson's transversality theorem [11]. We shall apply R. Thom's method [10] to \mathbf{Z}_{2}-homology manifolds.

1. Statement of the result.

We shall obtain the following result:

Theorem 1. Let V^{n} be a \mathbf{Z}_{2}-homology manifold of dimension $n(n \geqq 2)$. For $1 \leqq k \leqq n / 2$, all homology classes of $H_{k}\left(V^{n}, \mathbf{Z}_{2}\right)$ can be realized by \mathbf{Z}_{2}-homology submanifolds which have normal PLmicrobundles.

Theorem 2. Let V^{n} be a \mathbf{Z}_{2}-homology manifold of dimension $n(n \geqq 2)$. Then all homology classes of $H_{n-1}\left(V^{n}, \mathbf{Z}_{2}\right)$ can be realized by \mathbf{Z}_{2}-homology submanifolds which have normal PL-microbundles.

These results are quite in parallel with those of the case of homology manifolds in [4].

2. Preliminaries.

A compact polyhedron M is called a \mathbf{Z}_{2}-homology n-manifold, if there exists a triangulation K of M such that for all $x \in|K|$ and for all $r H_{r}\left(L K(x, K), \mathbf{Z}_{2}\right)$ are isomorphic to $H_{r}\left(S^{n-1}, \mathbf{Z}_{2}\right)$. Here $L K(x, K)$ denotes the boundary of the star $\operatorname{St}(x, K)$ of x in K.

It can be seen that this definition is independent of the triangulation chosen. Homology n-manifolds are \mathbf{Z}_{2}-homology n-manifolds. \mathbf{Z}_{2}-homology manifolds were studied in Borel [6], [7].

We have many examples of \mathbf{Z}_{2}-homology manifolds.

Proposition 1. Let X be a compact n-dimensional generalized manifold over \mathbf{Z}_{2} (in the sense of Borel [7]). If there exists a triangulation K of X, then X is a \mathbf{Z}_{2}-homology n-manifold.

Proof. Let x be a point of $|K|$. By the definition of an n dimensional generalized manifold over \mathbf{Z}_{2}, for an open neighborhood U of x, there exist open neighborhoods W, V of x such that
i) $W \subset \bar{W} \subset V \subset \bar{V} \subset U$,
ii) for any open neighborhood W^{\prime} of x in W, the image of the canonical homomorphism

$$
j_{V, w^{\prime}}^{i}: H_{C}^{i}\left(W^{\prime}, \mathbf{Z}_{2}\right) \longrightarrow H_{C}^{i}\left(V, \mathbf{Z}_{2}\right)
$$

is 0 for $i \neq n$ and \mathbf{Z}_{2} for $i=n$ (where H_{c} denotes the cohomology group with compact support; see Chapter I in Borel [7]). Let U $=\operatorname{int}(\operatorname{St}(x, K))$. Then, for a sufficiently large number k, int $(\operatorname{St}(x$, $\left.S d^{k} K\right)$) is contained in W, where $S d^{k} K$ is k-th barycentric subdivision of K. Let $W^{\prime}=\operatorname{int}\left(\operatorname{St}\left(x, S d^{k} K\right)\right)$. Since $j j_{u, W^{\prime}}$ is isomorphic and $j i_{u, V^{\circ}}$ $j_{V, W^{\prime}}^{i}=j_{U, W^{\prime}}^{i}, H_{C}^{i}\left(U, \mathbf{Z}_{2}\right)$ is 0 for $i \neq n$ and \mathbf{Z}_{2} for $i=n$. Thus we have obtained that $H_{*}\left(L k(x, K), \mathbf{Z}_{2}\right)=H_{*}\left(S^{n-1}, \mathbf{Z}_{2}\right)$.

Proposition 2. Let M^{n} be a closed C^{∞}-manifold of dimension n and p be an odd prime. Let $\varphi: \mathbf{Z}_{p} \times M^{n} \rightarrow M^{n}$ be an effective C^{∞}-action. Then the orbit space M^{n} / \mathbf{Z}_{p} of φ is a \mathbf{Z}_{2}-homology n -
manifold.

Proof. First by Yang [12] we can triangulate the orbit space M^{n} / \mathbf{Z}_{p}. By Proposition 4.8, in Chapter I of Borel [7], M^{n} is an orientable n-dimensional generalized manifold over \mathbf{Z}_{2}. Note that \mathbf{Z}_{p} acts trivially on $H_{C}^{n}\left(M^{n}, \mathbf{Z}_{2}\right)=\mathbf{Z}_{2}$. Then, by Theorem 1 in Raymond [9], M^{n} / \mathbf{Z}_{p} is an n-dimensional generalized manifold over \mathbf{Z}_{2}. Applying Proposition 1, we obtain that M^{n} / \mathbf{Z}_{p} is a \mathbf{Z}_{2}-homology n manifold.

Proposition 3. Let M be a \mathbf{Z}_{2}-homology manifold of dimension n. Then M satisfies the Poincare duality with coefficient \mathbf{Z}_{2} :

$$
D: H_{k}\left(M, \mathbf{Z}_{2}\right) \cong H^{n-k}\left(M, \mathbf{Z}_{2}\right)
$$

Proof. We can show this proposition in quite a parallel way as the proof of Poincaré duality for homology manifolds (cf. Maunder [8]).

Otherwise, we can prove that \mathbf{Z}_{2}-homology manifolds are generalized cohomology manifolds over \mathbf{Z}_{2}. However, we know that generalized cohomology manifolds over \mathbf{Z}_{2} satisfy the Poincaré duality with coefficient \mathbf{Z}_{2} (cf. Borel [6]).

Proposition 4. Let (M, K) be a \mathbf{Z}_{2}-homology manifold of dimension $n, n \geqq 2$. Then for any $x \in K, L k(x, K)$ is a \mathbf{Z}_{2}-homology ($n-1$)-manifold.

Proof. This proposition can be proved in quite a parallel way as the proof for homology manifolds (cf. Alexandroff [5]).

Let M be a \mathbf{Z}_{2}-homology m-manifolds, $P L$-embedded in a \mathbf{Z}_{2} homology q-manifold Q. Then we shall say M is a \mathbf{Z}_{2}-homology submanifold of Q.

Let V^{n} be a \mathbf{Z}_{2}-homology n-manifold and W^{p} be a \mathbf{Z}_{2}-homology submanifold of dimension p of V^{n}. The inclusion map $i: W^{p} \rightarrow V^{n}$ induces the homomorphism

$$
i_{*}: H_{p}\left(W^{p}, \mathbf{Z}_{2}\right) \longrightarrow H_{p}\left(V^{n}, \mathbf{Z}_{2}\right)
$$

Let $z \in H_{p}\left(V^{n}, \mathbf{Z}_{2}\right)$ be the image by i_{*} of the fundamental class w of the \mathbf{Z}_{2}-homology p-manifold W^{p}. Then we say that the homology class z is realized by the \mathbf{Z}_{2}-homology submanifold W^{p}.

Here the following question is considered: Let a homology class $z \bmod 2$ of a \mathbf{Z}_{2}-homology n-manifold V^{n} be given. Is it realizable by a \mathbf{Z}_{2}-homology submanifold?

3. Williamson's transversality theorem.

In this section we shall recall Williamson's transversality theorem (cf. Williamson [11]).

Let ξ be a $P L$-microbundle:

$$
\xi: B(\xi) \xrightarrow{i} E(\xi) \xrightarrow{j} B(\xi),
$$

X be a complex, and suppose $E(\xi)$ is contained in X so that $B(\xi)$ is a closed $P L$-subspace of X. Then we say X contains the $P L$ microbundle ξ. If $E(\xi)$ is a neighborhood of $B(\xi)$, then we say ξ is a normal PL-microbundle for $B(\xi)$ in X.

Difinition. Let S and T be locally finite simplicial complexes and ξ be a normal $P L$-microbundle for $B=B(\xi)$ in T. Let $f: S \rightarrow T$ be a $P L$-map. If $A=f^{-1}(B)$ has a normal $P L$-microbundle η in S such that η is isomorphic to $(f \mid A)^{*} \xi$, then we shall say f is transverse regular for (η, ξ), or briefly, f is t-regular.
R. Williamson Jr. obtained the following theorem.

Theorem 3. Let S and T be locally finite simplicial complexes and let $f: S \rightarrow T$ be a PL-map. Suppose that T contains a PL-microbundle ξ. Then there is a PL-homotopy H_{t} of f such that H_{1} is t-regular for (η, ξ).

4. A lemma on \mathbf{Z}_{2}-homology manifolds.

In this section we shall prove a lemma on \mathbf{Z}_{2}-homology manifolds
which will be used in the next section.

Lemma. Suppose V is a \mathbf{Z}_{2}-homology $(n+q)$-manifold and M is a PL-subspace of V which has a normal PL-microbundle of dimension q in $V(n, q \geqq 1)$. Then M is a \mathbf{Z}_{2}-homology n-manifold.

Proof. Given any $x \in M$ there is an open neighborhood U of x in M and a neighborhood W of x in V, also open, such that $U \times \mathbf{R}^{4}$ is $P L$-homeomorphic to W, by the definition of normal PL-microbundles. So it suffices to prove the lemma for the special case $M=U, V=W$, and W itself is $U \times \mathbf{R}^{q}$.

If the lemma is true for $q=1$, it follows that $U \times \mathbf{R}^{q-1}$ is a \mathbf{Z}_{2}-homology $(n+q-1)$-manifold, therefore by induction that U is a \mathbf{Z}_{2}-homology n-manifold. So it suffices to consider $q=1$. We also need only to show that U is a Z_{2}-homology manifold.

We triangulate $U \times \mathbf{R}$ by the convex product cells of U and a simplicial subdivision of \mathbf{R}, and we suppose x is a vertex of U and

0 is a vertex of \mathbf{R}. The link of x relative to $U \times \mathbf{R}$, that is the unique cell complex $\operatorname{Lk}(x, W)$ such that the closed $\operatorname{star} \operatorname{St}(x, W)$ is the join $L k(x, W) * x$, is the same, up to PL-homeomorphism, for any two convex cell subdivision of $U \times \mathbf{R}$. In the product cell triangulation of $U \times \mathbf{R}$,

$$
\begin{aligned}
& \operatorname{St}((x, 0), W)=\operatorname{St}(x, U) \times \operatorname{St}(0, \mathbf{R}), \\
& L k((x, 0), W)=L k(x, U) \times \operatorname{St}(0, \mathbf{R}) \cup \operatorname{St}(x, U) \times L k(0, \mathbf{R}) .
\end{aligned}
$$

Now $L k(0, \mathbf{R})$ is just two points, say 1 and -1 , while in $L k((x, 0)$, W),

$$
\operatorname{St}((x, 1), \operatorname{Lk}((x, 0), W))=\operatorname{St}(x, U) \times 1 .
$$

It follows that

$$
L k((x, 1), L k((x, 0), W))=L k(x, U) \times 1 .
$$

However, $L k((x, 0), W)$ is a \mathbf{Z}_{2}-homology n-manifolds (Proposition 3). Therefore, $L k(x, U)$ has the same homology group $\bmod 2$ as the $(n-1)$ -
sphere. Thus we have obtained the lemma.

5. Fundamental theorem.

Definition. We say that a cohomology class $u \in H^{k}\left(A, Z_{2}\right)$ of a space A if $P L_{k}$-realizable, if there exists a mapping $f: A \rightarrow M P L_{k}$ such that u is the image, for the homomorphism f^{*} induced by f, of the fundamental class U_{k} of the Thom complex $M P L_{k}$ of the universal $P L$-microbundle $r\left(P L_{k}\right)$ of dimension k.

Then we have the following fundamental theorem.

Theorem 4. Let V^{n} be a \mathbf{Z}_{2}-homology manifold of dimension $n(n \geqq 2)$. Then, in order that a homology class $z \in H_{n-k}\left(V^{n}, \mathbf{Z}_{2}\right)$, $k>0$, can be realized by a $\mathbf{Z}_{2}-\operatorname{lomology}$ submanifold W^{n-k} of dimension $(n-k)$ which has a normal PL-microbundle in V^{n}, it is necessary and sufficient that the cohomology class $u \in H^{k}\left(V^{n}, \mathbf{Z}_{2}\right)$, corresponding to z by the Poincaré duality, is $P L_{k}$-realizable.

Proof. i) Necessity. \mathbf{Z}_{2}-homology manifolds satisfy the Poincare duality with coefficient \mathbf{Z}_{2} (Proposition 1). Therefore, the proof of the necessity is the same as that of $P L$-case in [1].
ii) Sufficiency. Let

$$
r\left(P L_{k}\right): B P L_{k} \xrightarrow{i_{k}} E P L_{k} \xrightarrow{j_{k}} B P L_{k}
$$

be the universal $P L$-microbundle of dimension k. Suppose that there exists a mapping f of V^{n} into $M P L_{k}$ such that $f^{*}\left(U_{k}\right)=u$. Then the Thom complex $M P L_{k}$, deprived the point $*$ at infinity, is considered as a locally finite simplicial complex, and $P L$-subspace $B P L_{k}$ has the normal $P L$-microbundle $r\left(P L_{k}\right)$ in $M P L_{k}-*$. By the Williamson's transversality theorem, we have a mapping $f_{1}: V^{n} \rightarrow M P L_{k}-*$, homotopic to f, t-regular for $\left(\gamma, \gamma\left(P L_{k}\right)\right)$, where γ is a normal $P L$-microbundle of $\left(f_{1}\right)^{-1}\left(B P L_{k}\right)$ in V^{n}. However, by the lemma in $\S 4,\left(f_{1}\right)^{-1}\left(B P L_{k}\right)$ is a \mathbf{Z}_{2}-homology submanifold W^{n-k} of dimension $(n-k)$. Moreover, by the definition of t-regularity, the induced $P L$-microbundle $\left(f_{1}\right)^{*} r$ $\left(P L_{k}\right)$ is isomorphic to γ. We know $\left(f_{1}\right)^{*}\left(U_{k}\right)=f^{*}\left(U_{k}\right)=u$. Then, as
in the proof of Theorem in [1], we can see that the \mathbf{Z}_{2}-homology submanifold W^{n-k} realized the homology class z, corresponding to u by the Poincare duality. Thus we have obtained the theorem.

6. Proof of Theorem 1 and Theorem 2.

In [2], §2, we have obtained the following proposition.
Proposition 5. Let $n \geqq 2$. Then there exists a mapping g of the $2 n$-skeleton of $\prod_{i} K\left(\mathbf{Z}_{2}, n+n_{i}\right)$ to $M P L_{n}$ such that $h_{n} \circ g$ and $g \circ h_{n}$ (restricted to the $2 n$-skelton of $M P L_{n}$) are homotopic to the identities. $\left(h_{n}\right)$ is a mapping of $M P L_{n}$ into $\prod_{i} K\left(\mathbf{Z}_{2}, n+n_{i}\right)$ defined by Browder-Liulevicius-Peterson; for precise see [2], § 2).

Moreover, we know that $M P L_{1}$ has the homotopy type of $K\left(\mathbf{Z}_{2}\right.$, 1) (cf. [2], § 2).

As in $\S 3$ of [2], Theorem 1 follows easily the fundamental theorem and Proposition 5. Theorem 2 follows also the fundamental theorem and the fact stated above.

Department of Mathematics
College of General Education
Shinshu University and
Department of Mathematics
Faculty of Science
Kyoto University

References

[1] M. Adachi, PL-submanifolds and homology classes of a PL-manifold, Nagoya Math. J., 29 (1967), 69-74.
[2] M. Adachi, PL-submanifolds and homology classes of a PL-manifold, II, J. Math. Kyoto Univ., 7 (1967), 245-250.
[3] M. Adachi, Topological submanifolds and homology classes of a topological manifold, J. Math. Kyoto Univ., 12 (1972), 87-94.
[4] M. Adachi, Homology submanifolds and homology classes of a homology manifold, J. Math. Kyoto Univ., 13 (1973), 117-121.
[5] P. Alexandroff, Combinatorial Topology, 1947.
[6] A. Borel, The Poincaré duality in generalized manifolds, Michigan Math. J., 4 (1957), 227-239.
[7] A. Borel, Seminar on transformation groups, Ann. Math. Study, 46 (1960).
[8] C. Maunder, Algebraic Topology, 1970.
[9] F. Raymond, The orbit spaces of totally disconnected groups of transformations on manifolds, Proc. Amer. Math. Soc., 12 (1961), 1-7.
[10] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28 (1954), 17-86.
[11] R. Williamson Jr., Cobordism of combinatorial manifolds, Ann. of Math., 83 (1966), 1-33.
[12] C. Yang, The triangulability of the orbit space of a differentiable transformation group, Bull. Amer. Math. Soc., 69 (1963), 405-408.

