Z_2 -homology submanifolds and homology classes of a Z_2 -homology manifold

By

Kojun ABE and Masahisa ADACHI

(Received May 21, 1975)

This note is concerned with the problem of the realization of homology classes mod 2 of a \mathbb{Z}_2 -homology manifold by \mathbb{Z}_2 -homology submanifolds.

First the C^{∞} -case of this problem was studied by R. Thom [10]. Next the *PL*-case, *TOP*-case and the case of homology manifolds were studied in [1], [2], [3], [4].

The present study is based on the Williamson's transversality theorem [11]. We shall apply R. Thom's method [10] to \mathbb{Z}_2 -homology manifolds.

1. Statement of the result.

We shall obtain the following result:

Theorem 1. Let V^n be a \mathbb{Z}_2 -homology manifold of dimension n $(n \ge 2)$. For $1 \le k \le n/2$, all homology classes of $H_k(V^n, \mathbb{Z}_2)$ can be realized by \mathbb{Z}_2 -homology submanifolds which have normal PL-microbundles.

Theorem 2. Let V^n be a \mathbb{Z}_2 -homology manifold of dimension n $(n \ge 2)$. Then all homology classes of $H_{n-1}(V^n, \mathbb{Z}_2)$ can be realized by \mathbb{Z}_2 -homology submanifolds which have normal PL-microbundles.

These results are quite in parallel with those of the case of homology manifolds in [4].

2. Preliminaries.

A compact polyhedron M is called a \mathbb{Z}_2 -homology n-manifold, if there exists a triangulation K of M such that for all $x \in |K|$ and for all r $H_r(LK(x, K), \mathbb{Z}_2)$ are isomorphic to $H_r(S^{n-1}, \mathbb{Z}_2)$. Here LK(x, K) denotes the boundary of the star St(x, K) of x in K.

It can be seen that this definition is independent of the triangulation chosen. Homology n-manifolds are \mathbb{Z}_2 -homology n-manifolds. \mathbb{Z}_2 -homology manifolds were studied in Borel [6], [7].

We have many examples of \mathbb{Z}_2 -homology manifolds.

Proposition 1. Let X be a compact n-dimensional generalized manifold over \mathbb{Z}_2 (in the sense of Borel [7]). If there exists a triangulation K of X, then X is a \mathbb{Z}_2 -homology n-manifold.

Proof. Let x be a point of |K|. By the definition of an n-dimensional generalized manifold over \mathbb{Z}_2 , for an open neighborhood U of x, there exist open neighborhoods W, V of x such that

- i) $W \subset \overline{W} \subset V \subset \overline{V} \subset U$.
- ii) for any open neighborhood W' of x in W, the image of the canonical homomorphism

$$j_{V,W'}^i: H_C^i(W', \mathbb{Z}_2) \longrightarrow H_C^i(V, \mathbb{Z}_2)$$

is 0 for $i \neq n$ and \mathbb{Z}_2 for i = n (where H_C denotes the cohomology group with compact support; see Chapter I in Borel [7]). Let $U = \operatorname{int}(\operatorname{St}(x,K))$. Then, for a sufficiently large number k, $\operatorname{int}(\operatorname{St}(x,Sd^kK))$ is contained in W, where Sd^kK is k-th barycentric subdivision of K. Let $W' = \operatorname{int}(\operatorname{St}(x,Sd^kK))$. Since $j_{U,W'}^i$ is isomorphic and $j_{U,V'}^i$ 0 of $j_{V,W'}^i = j_{U,W'}^i$ 1, $H_C^i(U,\mathbb{Z}_2)$ 1 is 0 for $i \neq n$ 1 and \mathbb{Z}_2 2 for i = n2. Thus we have obtained that $H_*(Lk(x,K),\mathbb{Z}_2) = H_*(S^{n-1},\mathbb{Z}_2)$.

Proposition 2. Let M^n be a closed C^{∞} -manifold of dimension n and p be an odd prime. Let $\varphi: \mathbb{Z}_p \times M^n \to M^n$ be an effective C^{∞} -action. Then the orbit space M^n/\mathbb{Z}_p of φ is a \mathbb{Z}_2 -homology n-

manifold.

Proof. First by Yang [12] we can triangulate the orbit space M^n/\mathbb{Z}_p . By Proposition 4.8, in Chapter I of Borel [7], M^n is an orientable *n*-dimensional generalized manifold over \mathbb{Z}_2 . Note that \mathbb{Z}_p acts trivially on $H_c^n(M^n, \mathbb{Z}_2) = \mathbb{Z}_2$. Then, by Theorem 1 in Raymond [9], M^n/\mathbb{Z}_p is an *n*-dimensional generalized manifold over \mathbb{Z}_2 . Applying Proposition 1, we obtain that M^n/\mathbb{Z}_p is a \mathbb{Z}_2 -homology *n*-manifold.

Proposition 3. Let M be a \mathbb{Z}_2 -homology manifold of dimension n. Then M satisfies the Poincaré duality with coefficient \mathbb{Z}_2 :

$$D: H_k(M, \mathbb{Z}_2) \cong H^{n-k}(M, \mathbb{Z}_2).$$

Proof. We can show this proposition in quite a parallel way as the proof of Poincaré duality for homology manifolds (cf. Maunder [8]).

Otherwise, we can prove that \mathbb{Z}_2 -homology manifolds are generalized cohomology manifolds over \mathbb{Z}_2 . However, we know that generalized cohomology manifolds over \mathbb{Z}_2 satisfy the Poincaré duality with coefficient \mathbb{Z}_2 (cf. Borel [6]).

Proposition 4. Let (M, K) be a \mathbb{Z}_2 -homology manifold of dimension $n, n \ge 2$. Then for any $x \in K$, Lk(x, K) is a \mathbb{Z}_2 -homology (n-1)-manifold.

Proof. This proposition can be proved in quite a parallel way as the proof for homology manifolds (cf. Alexandroff [5]).

Let M be a \mathbb{Z}_2 -homology m-manifolds, PL-embedded in a \mathbb{Z}_2 -homology q-manifold Q. Then we shall say M is a \mathbb{Z}_2 -homology submanifold of Q.

Let V^n be a \mathbb{Z}_2 -homology *n*-manifold and W^p be a \mathbb{Z}_2 -homology submanifold of dimension p of V^n . The inclusion map $i: W^p \to V^n$ induces the homomorphism

$$i_*: H_n(W^p, \mathbb{Z}_2) \longrightarrow H_n(V^n, \mathbb{Z}_2).$$

Let $z \in H_p(V^n, \mathbb{Z}_2)$ be the image by i_* of the fundamental class w of the \mathbb{Z}_2 -homology p-manifold W^p . Then we say that the homology class z is realized by the \mathbb{Z}_2 -homology submanifold W^p .

Here the following question is considered: Let a homology class $z \mod 2$ of a \mathbb{Z}_2 -homology n-manifold V^n be given. Is it realizable by a \mathbb{Z}_2 -homology submanifold?

3. Williamson's transversality theorem.

In this section we shall recall Williamson's transversality theorem (cf. Williamson [11]).

Let ξ be a *PL*-microbundle:

$$\xi \colon B(\xi) \xrightarrow{i} E(\xi) \xrightarrow{j} B(\xi)$$
,

X be a complex, and suppose $E(\xi)$ is contained in X so that $B(\xi)$ is a closed PL-subspace of X. Then we say X contains the PL-microbundle ξ . If $E(\xi)$ is a neighborhood of $B(\xi)$, then we say ξ is a normal PL-microbundle for $B(\xi)$ in X.

Difinition. Let S and T be locally finite simplicial complexes and ξ be a normal PL-microbundle for $B=B(\xi)$ in T. Let $f: S \rightarrow T$ be a PL-map. If $A=f^{-1}(B)$ has a normal PL-microbundle η in S such that η is isomorphic to $(f|A)^*\xi$, then we shall say f is transverse regular for (η, ξ) , or briefly, f is t-regular.

R. Williamson Jr. obtained the following theorem.

Theorem 3. Let S and T be locally finite simplicial complexes and let $f: S \rightarrow T$ be a PL-map. Suppose that T contains a PL-microbundle ξ . Then there is a PL-homotopy H_t of f such that H_1 is t-regular for (η, ξ) .

4. A lemma on Z₂-homology manifolds.

In this section we shall prove a lemma on \mathbb{Z}_2 -homology manifolds

which will be used in the next section.

Lemma. Suppose V is a \mathbb{Z}_2 -homology (n+q)-manifold and M is a PL-subspace of V which has a normal PL-microbundle of dimension q in $V(n, q \ge 1)$. Then M is a \mathbb{Z}_2 -homology n-manifold.

Proof. Given any $x \in M$ there is an open neighborhood U of x in M and a neighborhood W of x in V, also open, such that $U \times \mathbf{R}^q$ is PL-homeomorphic to W, by the definition of normal PL-microbundles. So it suffices to prove the lemma for the special case M = U, V = W, and W itself is $U \times \mathbf{R}^q$.

If the lemma is true for q=1, it follows that $U \times \mathbb{R}^{q-1}$ is a \mathbb{Z}_2 -homology (n+q-1)-manifold, therefore by induction that U is a \mathbb{Z}_2 -homology n-manifold. So it suffices to consider q=1. We also need only to show that U is a \mathbb{Z}_2 -homology manifold.

We triangulate $U \times \mathbf{R}$ by the convex product cells of U and a simplicial subdivision of \mathbf{R} , and we suppose x is a vertex of U and 0 is a vertex of \mathbf{R} . The link of x relative to $U \times \mathbf{R}$, that is the unique cell complex Lk(x, W) such that the closed star St(x, W) is the join Lk(x, W)*x, is the same, up to PL-homeomorphism, for any two convex cell subdivision of $U \times \mathbf{R}$. In the product cell triangulation of $U \times \mathbf{R}$,

$$\operatorname{St}((x, 0), W) = \operatorname{St}(x, U) \times \operatorname{St}(0, \mathbb{R}),$$

$$Lk((x, 0), W) = Lk(x, U) \times St(0, \mathbf{R}) \cup St(x, U) \times Lk(0, \mathbf{R}).$$

Now $Lk(0, \mathbb{R})$ is just two points, say 1 and -1, while in Lk((x, 0), W),

$$St((x, 1), Lk((x, 0), W)) = St(x, U) \times 1.$$

It follows that

$$Lk((x, 1), Lk((x, 0), W)) = Lk(x, U) \times 1.$$

However, Lk((x, 0), W) is a \mathbb{Z}_2 -homology *n*-manifolds (Proposition 3). Therefore, Lk(x, U) has the same homology group mod 2 as the (n-1)-

sphere. Thus we have obtained the lemma.

5. Fundamental theorem.

Definition. We say that a cohomology class $u \in H^k(A, \mathbb{Z}_2)$ of a space A if PL_k -realizable, if there exists a mapping $f: A \rightarrow MPL_k$ such that u is the image, for the homomorphism f^* induced by f, of the fundamental class U_k of the Thom complex MPL_k of the universal PL-microbundle $\Upsilon(PL_k)$ of dimension k.

Then we have the following fundamental theorem.

Theorem 4. Let V^n be a \mathbb{Z}_2 -homology manifold of dimension n ($n \ge 2$). Then, in order that a homology class $z \in H_{n-k}(V^n, \mathbb{Z}_2)$, k > 0, can be realized by a \mathbb{Z}_2 -homology submanifold W^{n-k} of dimension (n-k) which has a normal PL-microbundle in V^n , it is necessary and sufficient that the cohomology class $u \in H^k(V^n, \mathbb{Z}_2)$, corresponding to z by the Poincaré duality, is PL_k -realizable.

Proof. i) Necessity. \mathbb{Z}_2 -homology manifolds satisfy the Poincaré duality with coefficient \mathbb{Z}_2 (Proposition 1). Therefore, the proof of the necessity is the same as that of PL-case in [1].

ii) Sufficiency. Let

$$\Upsilon(PL_k): BPL_k \xrightarrow{i_k} EPL_k \xrightarrow{j_k} BPL_k$$

be the universal PL-microbundle of dimension k. Suppose that there exists a mapping f of V^n into MPL_k such that $f^*(U_k)=u$. Then the Thom complex MPL_k , deprived the point * at infinity, is considered as a locally finite simplicial complex, and PL-subspace BPL_k has the normal PL-microbundle $Y(PL_k)$ in MPL_k-* . By the Williamson's transversality theorem, we have a mapping $f_1\colon V^n\to MPL_k-*$, homotopic to f, t-regular for $(\gamma, Y(PL_k))$, where γ is a normal PL-microbundle of $(f_1)^{-1}(BPL_k)$ in V^n . However, by the lemma in §4, $(f_1)^{-1}(BPL_k)$ is a \mathbb{Z}_2 -homology submanifold W^{n-k} of dimension (n-k). Moreover, by the definition of t-regularity, the induced PL-microbundle $(f_1)^*Y(PL_k)$ is isomorphic to γ . We know $(f_1)^*(U_k)=f^*(U_k)=u$. Then, as

in the proof of Theorem in [1], we can see that the \mathbb{Z}_2 -homology submanifold W^{n-k} realized the homology class z, corresponding to u by the Poincaré duality. Thus we have obtained the theorem.

6. Proof of Theorem 1 and Theorem 2.

In [2], § 2, we have obtained the following proposition.

Proposition 5. Let $n \ge 2$. Then there exists a mapping g of the 2n-skeleton of $\prod_{i} K(\mathbf{Z}_{2}, n+n_{i})$ to MPL_{n} such that $h_{n} \circ g$ and $g \circ h_{n}$ (restricted to the 2n-skelton of MPL_{n}) are homotopic to the identities. (h_{n}) is a mapping of MPL_{n} into $\prod_{i} K(\mathbf{Z}_{2}, n+n_{i})$ defined by Browder-Liulevicius-Peterson; for precise see [2], § 2).

Moreover, we know that MPL_1 has the homotopy type of $K(\mathbb{Z}_2, 1)$ (cf. [2], §2).

As in § 3 of [2], Theorem 1 follows easily the fundamental theorem and Proposition 5. Theorem 2 follows also the fundamental theorem and the fact stated above.

DEPARTMENT OF MATHEMATICS

COLLEGE OF GENERAL EDUCATION

SHINSHU UNIVERSITY

and

DEPARTMENT OF MATHEMATICS
FACULTY OF SCIENCE
KYOTO UNIVERSITY

References

- [1] M. Adachi, PL-submanifolds and homology classes of a PL-manifold, Nagoya Math. J., 29 (1967), 69-74.
- [2] M. Adachi, PL-submanifolds and homology classes of a PL-manifold, II, J. Math. Kyoto Univ., 7 (1967), 245-250.
- [3] M. Adachi, Topological submanifolds and homology classes of a topological manifold, J. Math. Kyoto Univ., 12 (1972), 87-94.
- [4] M. Adachi, Homology submanifolds and homology classes of a homology manifold, J. Math. Kyoto Univ., 13 (1973), 117-121.

- [5] P. Alexandroff, Combinatorial Topology, 1947.
- [6] A. Borel, The Poincaré duality in generalized manifolds, Michigan Math. J., 4 (1957), 227-239.
- [7] A. Borel, Seminar on transformation groups, Ann. Math. Study, 46 (1960).
- [8] C. Maunder, Algebraic Topology, 1970.
- [9] F. Raymond, The orbit spaces of totally disconnected groups of transformations on manifolds, Proc. Amer. Math. Soc., 12 (1961), 1-7.
- [10] R. Thom, Quelques propriétés globales des variétés différentiables, Comment. Math. Helv., 28 (1954), 17-86.
- [11] R. Williamson Jr., Cobordism of combinatorial manifolds, Ann. of Math., 83 (1966), 1–33.
- [12] C. Yang, The triangulability of the orbit space of a differentiable transformation group, Bull. Amer. Math. Soc., 69 (1963), 405-408.