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§1. Introduction

In this paper we consider the following initial-boundary value problem
(P) which we denote also by {P, B}

Pu=f(x, t), for xeQ, teR},
(P) Bulg=g(s, 1), for seS, teR},
Dtjult=0=uj(x)s (]=O, ])a for er,

in the cylinder domain Qx(0, o0), where Q is the exterior or interior of a
smooth and compact hypersurface S in R"*!'. P is a regularly hyperbolic
operator of second order and S is non characteristic to P. Moreover we
assume that the only one of 7,(v) and t,(v) is negative for all (s, t)e S x (0, o0),
where 7,(£) and t,(&) are the roots of P(s, t, £, 7)=0 and v is the inner unit
normal at s. This assumption means that the number of boundary conditions
is one!). Therefore we assume P(s,t, 0,1)<0 and P(s, x,v,0)=1. B is a
first order operator:

nt1 1 a
B(s,1 D, D)='3, b;D,,~cD,, (D=t2- etc),

and we suppose B(s, t, v, 0)=1.
We assume that all the coefficients of P and B are smooth and that they

1) This assumption is equivalent to the condition that only one root g(»,z) of P(s, #, qgu+7,
r)=0 has positive imaginary part for Im ¢<0. (cf. p. 121 in [3].) In fact, to see this, we
may consider the case »=0, taking account of the hyperbolicity of P.
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remain constant outside some compact sets?).

We are concerned with the following question (Q): ‘Under what condition
the solution u(t) of (P) has the continuity for the initial data in the same
Sobolev space? The answer to the above question is just the condition (H)
below, which is equivalent to ‘all the roots of az2—2iz—f=0 are in {z: Im
z>0} and they are not real double roots.” We state it as

Theorem 1. The above problem {P, B} satisfies the following estimate:
1 . 1 . t
(1.1) _}:0 ”(D't’u)(t)“l—jSC(T){jZO Il(D{u)(O)Ill—j+So [(Pu)(s)llods} ,
J= =

for all ueCZQxRL)® satisfying Bulg=O0, if and only if the following con-
dition (H) holds.

2Rea Im(ap)

H) (1) A=< >20, when |Rea|+|Re | #0,

Im (¢f) 2Re p
(1) 1+(Imo)(Imp)=46>0, when |Rea|+|Ref|=0,

for all (s,t,n)eSxREx(R" ' —{v}), with some positive constant 5. Here
ne{R"*1—{v}) means ne R"*!' and n-v=0. o and B are defined by

a=s, )+b(s, t,n), B=&Gs, )=b(s, t, 1),
where & and b are determined®) uniquely by
B(s, t, qv+n, ©)=3 + bd(n) — ¢%.
Here we have used the following notations®):

19
q= ’aFP(S,t,qV'*"I, T)’

0}~

t=— 2 D (Pt qvin, D=0, v 41, 0,

2) This assumption can be replaced by the assumption that all the coefficients belong to the
class of smooth and bounded functions . Concerning this argument we can see the result
of J. Kato: Remarks on the hyperbolic mixed problems.

3) ueCy(2 x RL) means that u is infiniely differentiable up to the boundary of £xR{ and its
support is compact.

4) In case of wave equation in a half space, B(y, 1, q, 7, z')=q+(jZ:',‘ byl 1nl)nl—cr.

5) See p. 121~p. 122 in [3]. As for our notations, it is sufficient to consider the case where
Q=Rzp*,
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dim?=P(s, t, gqipv+n, ©(n)), (dip)>0  for n#0),

where ¢g(n) and 1t(y) are the solutions® of —[%P(s, t, gv+n, 1)=0 and %—f—(s, t,
qv+n, 1)=0. They satisfy the relation

P(s, t, qv+n, ©)=42 =52 +d(n)?,

which corresponds to the symbol of wave equation.
|-, means the norm of Sobolev space H* in @, (k=0, 1, 2,...). Denote
by {-), the Sobolev r-norm on S, (re R'). We can say more, that is

Theorem 2. Suppose (H). If f(x)e &2(L*(Q))7), geé’?(H%(S)) and u; eH'~J
(), (j=0, 1), then there exists a unique solution u(t) of {P, B} in &°((H'Q))
NEL(LYQ)) satisfying the following energy estimate (E) with k=0. Moreover
if we assume that the smooth data {f, g, u,, u,} satisfy the compatibility
conditions® of order k, (k>1), then the solution satisfies

(E) > DO 3ot 2 S'e“'k"-sw«bibfu) )2 ds
j=0 it+j<kJO 2

5 —i—j+k

sc,‘ezw{jzlo IRt 2 S; e 21 (|(DIN)(9)NR-; + (D{'g)(s)>>_z_,+k)ds} ,

where C, and v, are positive constants. The solution has the some propagation
speed as that in the case of Cauchy problem.

Remark. If g=0 in the problem {P, B}, the above solution u satisfies
(1.1) even if in the case of k=0. Therefore (H) is necessary to obtain (E).

The condition (H) was originally introduced in [3] as a concrete necessary
and sufficient condition to obtain the estimate:

(*) |u|1,ys—f—|Pu|o,y, (3>0),

for any smooth function u satisfying Bu|,o,=0, in the case where all the co-
efficients are constant and Q=R#%*'. Then [1] and [4] treated the estimate

6) See p. 122 in [3].

7) (1) €¥(L¥2)) means that u is continuous up to k-times derivatives with values in L2(9).

8) All the smooth solutions must satistisfy the compatibility conditions. See p.145 in [3]. As
for notation see the last part of the introduction in [3].
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in the case of variable coeflicients independently. Here remark that the esti-
mate (x) follows from the estimate (1.1) by the integration in t. This process
will be explained in §2. However the converse can not be proved directly.
Namely we can say that the structure of (1.1) is finer than that of (x). In
order to obtain (1.1) we must employ a special device concerning the reverse
process of Green formula, which is related to the quadratic differential form
Im (Pu, Qu),, in §4. Q is a first order differential operator with respect to
t with coefficients of pseudo-differential operators in x. The choice of Q is
more difficult for the estimate (1.1), because the localization used in the proof
must not depend on 7, which is a dual variable of z. In §5 and §6 we succeed
in the choice of Q with the help of the detailed considerations on (H) which
are prepared in §3. In order to obtain (E) we need to consider another lo-
calization in (x, t,#n, v) and the dual problem of {P, B}, even if we restrict
ourselves to the Neumann problem for [, which is explained in §7. Since
this paper is continued from [3], the references cited here should be added to
those in [3].

§2. Necessity of (H) for (1.1)

In this section we show that the condition (H) is necessary in order to
obtain the estimate (1.1). Namely we want to prove

Theorem 2.1. Assume that the problem {P, B} in §!1 satisfies the esti-
mate (1.1) for ueC®(QxRL) satisfying Bu|g=0. Then the condition (H)
must follow.

For this purpose we need some analysis concerning the estimate (1.1),
in order to arrive at the position to apply the results obtained in the chapter
one in [3]. More precisely we show at first

Proposition 2.2. Suppose the assumption in Theorem 2.1. Then we have
the following estimate

t

1 .
@ > DO -t <) 1P o, Lacerrds
J= ©

for all v(x, y, )e CF(RLxR"xR") satisfying Bgv|,=o=0. Here P, and B,
are the operators with constant coefficients which are considered in a half
space RLxR"xR' (3 (x, y, )) and on R"xR! (3 (y, t)) respectively such that

P0=P0(Dx’ Dy’ Dt)=P(SO’ fo va+Dy9 Dt)

BO=BO(Dx’ Dy’ Dt)=B(SO7 tO’ va+Dy’ Dt)
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for any (so, to) € Sx RY, and v=v(so).
Next we prove

Proposition 2.3. Assume (2.1) in Proposition 2.2. Then we have
: C 2
(2.2) )’|u|1,y$7|Po“|o,y

for any u=u(x, y, )e CX(RLx R"x R') satisfying Bou|,—o=0, where

lul?,,= > SSX 27'e|y’DiD‘;D{u|2 dx dy dt.
i+j+[a]+i<k

From Propositions 2.2 and 2.3 and by the proofs of theorems in Chapter
I of [3], we have Theorem 2.1.

Now we prepare the following lemma which make the proof of Proposition
2.2 easier.

Lemma 2.4. Let v(x, y,t) be in CH(RLIXxR"xR') satisfying Byv|,-o=0,
where B, is a first order operator B(0, 0, D,, D,, D,). Here B(y,t, D, D,, D,)
=D, .+ ‘2 bi(y, )D,,—c(y, t)D,. Then there exist functions v(x, y, 1) for 0<e

i=1
<1, satisfying the following conditions:
(i) suppv,ca compact set Kn(RLxR"xR")
(ii) v, converge to v uniformly up to their all derivatives.
(iii) B.,=o=0, where B,=B(ey, et, D, D,, D)

This lemma is proved in an elemental method® which we will explain in

Appendix

Proof of Proposition 2.2. Let us consider a local mapping from a neigh-
bourhood of s,e S to the neighbourhood of origin, such that Q is mapped into
R} x R", the boundary S to the hyperplane x=0 and s, to the origin. As for
te R' we consider the simple transition: t—t—t,, then (sq, t5)—(0, 0)e R" x R'.
By virtue of these transformations we have from the assumption in Theorem
2.1,

@3) % 10Ol wH<OT) |

t
. [(Pv)($)lo,L2r7*ty ds, (E+Eo<T),

for any o(x, y, f) with its support in the sufficiently small neighbourhood of
the origin satisfying Bv|,.,=0. Here we have denoted the transformed oper-

ators by the same letters. Now take v, in Lemma 2.4. Then we can see that
wy(x, y, )=v,(x/e, y[e, tle) satisfies Bw,,.o,=0. Hence we can substitute w,

9) If all b, and c are real, lemma 2.4 is evident from the geometrical viewpoint.
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to v in (2.3), then by the changes of variables: x—ex etc., we have

1 . t
(2.4) jg'o | Dfv,(2) ||1—j,L2(R'l”)SC(T)S_ (P (s) o, L2r7*ty ds .

When ¢ tends to zero we have (2.1) with C=C(T), (T>t,). q.e.d.

Finally we give a heuristic proof of Proposition 2.3'9. Let us consider
the simplest case of (2.1), that is corresponding to the case of the ordinary
differential equation: Du(t)=f(t),

@1y < (" 1lds

By Laplace transform tfi(t)=f(t), (t=0—iy, y>0) and Plancherel's theorem we
have

Lemma 2.5. For any smooth real function f(t) defined in R!' we have
for any y>0.

2.5) S_we‘”'(S'_wf(s) ds>2 di< yizgfwe—zwf(zydz :

In fact the left-hand side equals

Soo e_zyylu(tnzdt:g“’ If(‘:) lzda,

while the right-hand side equals%Soo If (1)|2do.

Now multiply e~ 2** to (2.1) and integrate it in t using (2.5) with f(1)
=|(Pov)(t)] o> then we have (2.2). g.e.d.

§3. Some analysis concerning the condition (H)

In this section we consider the various properties of (H), which we will
use later. Put

3.1) a=a,+io,, f=h,+if,,
where o; and B, (i=1, 2), are real. First we see easily

Lemma 3.1. Suppose (H). Then we have the followings:

10) The estimates (2.1) and (2.2) were considered by many authors in treating the estemate of
Le-well-posedness. For example [2].
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(i) o;=0,8,>0 and det A=4a,B,(1 +o,8,)— (2,8, +02,5,)2=>0,
(ii) 14a,6,=0
(iiiy 140a,8,>0, if a,f,=0.
Next we give a characterization of (H), relating to an algebraic equation:

3.2) f(x)=la|2x2+2(2+Reaf)x+|f|> =0,

which we consider later associating with the boundary integrals.

Lemma 3.2. Assume (H). Then we have the followings
(i) Al roots of f(x) are real and non-positive, (— oo is involved). They are double
only if 1+a,8,=0 and a,f,>0.

(i) Denote the two roots by —e, and —¢&5, (¢,<¢g,. Later we note 82=8—|,—
2
if €,%0). We have

(3.3) asbice, o 0.
1
Conversely (H) follows from (i) and (ii), if «;, =0, ;>0 and 1+a,8,>0.
Proof. The discriminant of f(x) is

(3.4) (24+ReaB)2 —|af|> =4(1 +a,f3,) +det 4>0.

Hence (i) holds from Lemma 3.1, (i) and (iii). (ii) follows from

(3.5) r(=L0)= L t1a12p1 20 +Reapya, p, + 18171}

oy af
=— L det 4<o0.
ay
The converse is evident. g.e.d.

Now we state another lemma concerning the positiveness of the Hermite
matrix, which we will use later associating to the interior integrals. Let A,
be

ay H
A2=< _ ), where a,, f,€R and ueC.
i By

Lemma 3.3. A4, is positive definite if and only if the following Hermite
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matrix As is positive;

ay+py ip —if
A3= —iﬁ 0‘1 O
ip 0 By

Proof. This is evident from det A;=(a,+f,)det 4,.

Example. Let a, and B, be those in (H) and let y=—,l) Im(xf). Then A
in (H) is 24,.

In the proof of Theorems 1 and 2, it plays an important role to show
the positiveness of the matrix of type A; in Lemma 3.3. At that time we may
consider the simple A4,.

To arrive at the above position, we must employ a special devise concern-
ing the integration by parts, which we explain in the next section.

§4. Preliminaries

In this section we explain the outline of the proof of Theorem 1 simply.
(See also §6 in [3].) First we notice that, as for the estimate (1.1), {P, B}
in 2x(0, o) is reduced to the same problem in R%*!x(0, o) by the localiza-

fini
tion: u= Zte Yju= 2u; where ZYy(x)=1 in Q and by the transformation of
~ o
the coordinates in tjhe boundary patch. We want to prove the estimate (1.1)
by the integration by parts of

.1 90, 1); P, Q; u)=2i Im S”S S' =2 Pu Qu dx dy dt,
0JR"JO

where Q is a first order operator which satisfies G,(P, )>0 and G/(P, 0)>0.
Here G (P, Q) and G(P, Q) are explained below in §4.1 for simplicity in the
case of P=[]. We show the actual integration by parts in the last part of
§6, to obtain the estimate (1.1).

§4.1. Green formula associated with the bouudary condition

As in §6.3, in [3] to %((0, t); P, Q; u) there corresponds the following
symbolic calculus:

(4.2) G(P, Q)=P(&, n, DO, n. = Q. n, DPE, 1, 7)

=(—0GAP, Q)—(t1—T)G(P, Q).
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Here we consider the case of P=[1. G, Q) and G/, Q) are quadratic

forms in (&, z,, z,), where z, and z, are z;=t—|n| and z,=1t+4y| respectively.

Then i bjnj—ct=——é(azl+ﬁ22), and the boundary condition is D,ul,—o=
i=1

—;—(az,+ﬁz2)(D)u|x=o+g. Hence we substitute —;(azl+ﬁzz) into & in GO, Q)

and —é(&21+i}22) into { in GO, Q), then G, (O, Q) becomes an Hermite form

G.([, Q) in (z,, z;). Denote the anti-symmetric part of G,(O, Q) by ilmG([J,
Q);,,(z,Z,—2,2Z,) and notice that

(E=0{z12,—2:2,}=—(1—17) {2, 82, — 2z, {+ 2,0}
follows from z,Z,—z,Z;=—(1—1)(z;—2,)=—(t—1)(Z;—Z,). Then we have
4.3) GO, Q=¢-06(0, Q- ¢-n6O. Q).

where G (0, Q) is a symmetric part of G.([J, Q), and G([J, Q) is an Hermite
form:

(4.4) (O, 9=G,(0, O+ilm G([O, Q)y,,{¢z, —¢Z,—z, L+ 230},

to which corresponds an Hermite matrix.

Here we choose Q as a polynomial in ¢ and t, with coefficients depend-
ing on (x, y, t, ), in order to prove the estimate of type (1.1) and (E). There-
fore we can use only the following type of localization.

§4.2. The localization for the estimate (1.1) and (E)

Let us consider the partition of unity of type

finite J— —

> @ix,y,t,))=1 on RIxR"xRIx(R"—0),

i=1
where ¢; are sufficiently smooth and homogeneous in #. Corresponding to the
above partition of unity we have the localizations of the function u: ¢;(D)u
=@u=Fp;Fu such that u=u(x, y, )=Z(pu)(x, y,t). We can take ¢@; so
that the oscillations of « and f are arbitrary small on the support of one ¢;
by making the number of {¢;} larger if necessary. By this property we can
choose Q=Q; for each ¢; such that G.(P,0)>0 and G(P, Q)>0 on the sup-
port ¢;, that is shown in the next section.

§5. The choice of Q in the case of wave equation

In this section we show the proof of Theorem | in the case of P=[]
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and Q=Ry*!'. For the purpose we prove G ([, @)>0 and G/, Q)>0 for
the following Q:

(1) Q=(xyzy+Bz2)+e&(zy+cz,—dE), if the support ¢; contains any point
satisfying a,f,=0.

an Q=(a;z+pP,z;)—e(2€—c,z,—c;,z;), in other cases, where ¢ is a suffi-
ciently small positive number, and ¢,, ¢, and ¢ are positive functions in (y, x,
n). Here we choose these as follows: ¢, and ¢, are determined in the domain
where a,f, %0, by the identity, (See (3.5).),

(5.1) 2a,z+B)(c z+c¢;) =222 +2(2+ Reaf)z +|B|2 + (det A)/a}
=f(z)+(det A)[a? .

¢ is an arbitrary positive function defined in a neighbourhood of the points
where «,f, =0, such that

(5.2) 6 <c< -,
&>

which is assured by 1+a«,8,>0. (See Lemma 3.1, (iii).) We put

(5.3) d=4(d, X +d,Y),
where

X=(f—o))p(1—¢¢,),
(5.3),

Y= (o, —B82)/p(1 —&,¢5),
and

5.3) d, B I 1 —e, 1
s d, (U —ees) - | ¢ )

Here ¢,, ¢, and p are defined by
(5.4) f@)=a|2z2+ 22+ Reaf)z+ B> =p(z+¢,) (1 +&,2).

From now on we exhibit the positiveness of G,([J, Q) and non-negativeness
of G (O, Q). together with the reason why we choose Q as above.
As for G, we notice the following simple lemma:

Lemma 5.1. The symmetric quadratic form azZ,+b(z,Z,+2,Z\)+cz,Z,
is non-negative if and only if ax?*+4+2bx+c>0 for all real x.
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This lemma is trivial in the proof but is useful in process of choosing Q
below.
First we recall §4.1 and collect the followings:

(5:3) GuP,z)=a Gz +Biz)Ek g @E+BiZ),  (=12),
(5.6)  Gu(P, )= 4 (az,+Pz2) (37, % Bzy) + 5 (21524 237)

—Lm @B)(212,—2,%,)

=Tl{|°‘|22151+(2+Re°‘ﬁ)(2152+2221)+ |B1%2,2,},

(5.7 G.(P, z,.)=e§c+zi2i+i;_—'(52iaz—61,./32){521—ézz—zluzzc},
(i=1,2), (6;=0,ifixj, =1, ifi=)),

(58)  Gu(P, &)= (B2, +EZ,+ 2,0+ 2,0) + Im (@B)(EZ, —E2, =2, {+2,0).

These relations are shown by (4.2),(4.3) and (4.4) combined with (7.4) in [3].

§5.1. The case (1)

Now we show how to choose Q in the case of (IlI) in several steps. The
guiding principle is the above Lemma 5.1 concerning G,(P, Q).

First step. First consider Qy=0o,z,+f,z,. Then we have from (5.5) and
(5.7)

(5.9) G(P, Qo)=(0tz, +B,2,) (2,2, + B,Z,) >0,
(5.10) G(P, Qo)=(ot; + B+ z,Z, + B12,2,
+Lim @B){EZ, &2, — 2, L+ 2,0

o+, ic —io ¢
=(¢ zy, z3) —ic a;, O z, |, where¢7=l—m,£°‘i

ic 0 f, z,
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which is positive definite if and only if% detd=0a,f,—0%>0, from Lemma 3.3.

(the case of uniform Lopatinski condition.) However we must consider the case
up to det A>0.

Second step. By the way we consider Q,=a,z,+da,z, similarly, where a,
and a, are real. We have from (5.5) and (5.7)

(5.11) Gx(P’ Q1)=—;‘(°‘1zl +B1z:)(a,Z, +a,Z,)+ %(0121 +ayzy)(oz,+B,2,)

a +a, ic' —ic’ 4
(5-12) Gt(P9 Ql)=(£s 21, 22) _ia/ a 0 21 ’
io’ 0 a, Z,

where o' = %(azozz —af,).

Hence G,(P, Q,) is not positive semi-definite unless%=£—2—. G(P, Q,) is
1 1

positive if and only if a,;>0,a,>0 and a,a,—0¢'2>0. Put —ZJ—:a. Then
1

%(ala2 —0'?)>0 equals
1

(5.13) «2a? —2(2+a,f8,)a+ B3 <0.

The positive solution a of (5.13) exists if and only if 1+a«,8,>0. (Equalities
hold simultaneously.) In the case II, 1+a,8, may be zero, then @, does not
play the desired role by itself. Thus we must take account of ¢&.

Third step. Let us consider G(P, £). In view of Lemma 5.1 we associate,
to G(P, &) in (5.6), the polynomial f(x)=|x|2x2+2(2+ ReafB)x+|B|?, which was
already appeared in Lemma 3.2. As for G,(P, £) we have from (5.8)

0 1+4ic l—ic ¢,
(5.8) G, (P, 28)=(¢, 2,,2,) | 1—io O 0 z, |,
l+ic O 0 z,

which is in a special subclass of the type A5 in Lemma 3.3. This matrix does
not contribute the positiveness by itself, but by Q;=0Q,—2¢f with small posi-
tive & G,(P, Q;) becomes positive even if G(P, Qg)=>0 as is shown below. In
view of Lemma 3.3, that proof is reduced to show

oy o—¢e(o—i)
( >0,
g—e(o+i) B
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which equals o8, —|o—&(c—1i)|>>0 since ;>0 and f,>0. In Gaussian plane
we can see easily that

62>|o—¢e(o—i)|?

holds for small positive ¢ if o is real and not zero. Therefore we can find
a positive ¢ such that o,f,—|c—&(6—1i)|>>0 holds in the domain (of R"x R!
x S""1 3 (y, t,n)) where a,8,>0,>0 is satisfied with given J,.

Fourth step. On the other hand G(P, —2¢) is not non-negative. We
want to show that G(P, —2¢+c,z,+c,z,) becomes non-negative for the posi-
tive functions ¢; introduced before in (5.1). First recall Lemma 3.2 and (3.5),

then we see that f(x)+-—detA 0 has a smooth root —g—'. Therefore
another root of f(x)+—l—detA is negative smooth function even if f(x) has

double roots. (Remark that the roots of f(x)=0 are not smooth in general if
I +a,8,=0.)
Thus we have (5.1) with positive smooth functions ¢; and c¢,. Now from

(5.1), (5.6) and (5.11), the polynomial —%f(x)+(oz,x+ﬂ1)(c,x+c2)=(detA)/2o<%

corresponds to G (P, —2&+c,z,+¢,z,). Hence G(P, —2¢4c¢,z,+¢,2,)>0 in
view of Lemma 5.1.

On the other hand let us prove G(P, c,;z;+c,z,)>0. From (5.12) with
a;=c; (i=1,2), G(P, ¢,z,+¢,2,)>0 equals 4dc,c,—(c,00—c,8,)>>0. Hence let
us remark

(5.14) dx—(0px—f3)2 = —aix? +2Q2+a,f,)x — i= = f(=x)+(a;x—B,)2.

Put x=%2—, then from (5.1) —f(—%) =(det A)/a? holds. Hence
1 1

2
40102—(62a2-—c1ﬁ2)2= ___c_é{(det A)+a?<—cl'_‘£’—'>2}20,
oy C1 31

which equals zero from (5.1) and Lemma 3.2 if and only if 14a,8,=0.

Combining the above steps we have G (P, Q)>0 and G,(P, 0)>0 in the
case (II). Now we turn to the case (I) where o;B, is so small that 14a,8,>0
from Lemma 3.1.

§5.2. The case (I)
From 1+a,8,>0 we can choose a positive function ¢ satisfying
(5.15) —03c2+2(2+a,B,)c—B3>0.

Recall the second step in §5.1, then we see G(P, z,+cz,)>0. At that time
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f(x) has real distinct roots which are non-positive. Then as in (5.4) we can
denote f(x)=p(x+¢e,)(1+¢&,x) by smooth functions p, &, and ¢,, where p is a
positive functions, and &, is non-negative such that

L,
81<-¥(—82).

Notice that —e¢, and —?l— are two roots of f(x)=0, then we have from (5.14)

2
that (5.15) holds if ¢ satisfies (5.2).
First step. Now we state

Proposition 5.2. Assume the condition (H). Then we can choose smooth
functions X and Y such that for

(5.16) Qis=z,+¢6,z,—4XE, Qs=z,+¢&,z,—4YE,
G (P, Q)=>0, (j=4,5) if a,p, is sufficiently small.
Proof. From (3.3) and (3.5) we have always
(5.17) o, —p&,>0 and p,—oa,,>0,
because o, >0 and §,>0. To G (P, Q,) we associate
h(x)=(a,x+ ) (x+¢&) =X f(x)

from (5.4), (5.5), (5.6) and Lemma 5.1. Now we put
(5.3)} X=(f,—o,e)/f'(—e)=(B,—o,,)/p(1 —£,8,) >0.

Then h(—g,)=h'(—&,)=0. Since h(— %)= —Xf(—%) >0 from (3.5) if a, %0,
1 1

we have h(x)>0 for all real x.!" This means G(P, Q,)>0 by virtue of Lem-

ma 5.1. Similarly putting Y=(B, —a,&,)/p(1—¢,&,) as in (5.3);, we have G.(P,

05)>0. g.e.d.

Second step. We denote by d, and d, the solution of d,+é&,d,=1 and
g,d,+d,=c¢, which were given in (5.3),. Remark that they are positive from
(5.2). Since

z1+cz,—dl=d,0,+d,0;

11) If a,>0 and ¢,=8,/a;, then A=(a,z+p,)*/a;>0. If a;=0 and 8,20, then we have a,=0
from Lemma 3.1 and # is at most of degree one, thus ~2=0.
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holds, where d=4(d,X+d,Y), we see G(P,z +cz,—dé)>0 by Proposition
5.2. Hence G (P, 0)>0.
Now let us prove G(P, 0)>0. We notice that

(5.18) 0<d<Cmax{a,, f,}<C(o,+f))

holds from (5.3),, with some constant C. Recall Lemma 3.3, then from (5.10),
(5.8) and the positiveness of G,(P, z,+cz,) we see that G(P, 0)>0 is equiva-
lent to

a, O p O 0 —i
(5.19) M=< >+8< )—sd( )>0,
0 B, 0 p i 0

where p is a positive constant. This is true if we confine ourselves to the
points satisfying o;8,=0. M>0 follows from (5.18) for small positive e.
Thus we see G,(P, Q)>0 in a neighbourhood of «,f,=0.

§6. Symbolic calculus in the general case

In this section we extend the results in the precedent section to the problem
for regularly hyperbolic operator P and in the quarter space R} x R"xRl,

(3(x, y, 1)).
Let P be

(6.1) P=—aD?+2( 3 a,D,+a,D,)D,
i=1

D,

J

D,+D2).

J

+( 2 a;D,D, +2 ZI a,
=

i, j=1
As in §2 of [3], we assume the followings:

6.2), a>0

n
. Z aijﬂi'lj}

(6.2), D(n)=(a+a%){(ﬁlam.~)2+a 1
i= i,j=
—(a, Z"I ain;+a Zl a;n)*>0,  for |n| =0.

We can express P as
(6.3) P=82—#2+d(n)?,

where d(n)={a"'(a+a3)~'D(n)}'/? and
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E=E+aot+ Y aon, [=(+aoi+ 3 ao,n;
Jj=1 Jj=1
(6.4)
T=(a+ad)'?{1—(a+a3)"'( X aimi—ao Zﬂ, aog ) =t(n, 7).
& £

We define Z, and Z, by

6.5)

Then o and f satisfies

(6.6) cr— 3 b= (2 +B2;).

Here we explain the symbolic calculus for the regularly hyperbolic operator
P, as extensions of those in §4.1.

(6.7) G(P, D)~ (¢-0G(P, 0)-(:-7)G,(P, D),

Here G (P, Q) is G.(0OJ, Q) replaced &, z, and z, by & %, and %, where
Q(é’ Z15 22)=Q(E; Z,, 2,), and

6.8) G, (P, 0)={G (00,0 — 3G (O, O} soz.2,=2,.2,=1,
+i (Im G(O, Q),,) {(&Z, —552_51C+52C)+5(51§z_22§1)},

where d=ao/(a+a})!/2, |6]<1. These are verified from the argument in §4.1,

if we remark
(1) T—F=(a+a3)'2(1—17),
6.9) o B
(2) ¢-(=(¢-0D+6(-17),

and the following relation

which is obtained by (6.9) (2) and

212,-%,25,=—(F-DZ,+ F-Di,=-(F-DE, +(#-D%,.

Now we take 0=0(, Z,, Z,) in §5, namely
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(1) O=o0,%,+pB,%,+¢&(Z,+cZ,—df), in the neighbourhood of «,B,=0, and
() O=a,2,+B,%,—e(RE—c 2, —c,Z,;), in the domain o,f,;%0. Then we
can prove G (P, 0)>0 and G(P, 0)>0 in the following way. Remark that
(0, 0)>0 means G(P,(0)>0. In §5 we have proved that G(P, 0)>0
if 5=0 in (6.8). We see that G(P, 0)>0 holds for §e(—1, 1), if we notice
the following facts (i) and (ii).

(i) From (6.8), (6.10) and (5.5)~(5.8), (1, 1)-cofactor of the matrix correspond-
ing to G(P, 0)

o, ido 1 ido’ 1 0 —1l+io
( +¢ —7sd5 in case (1),
—ida B, —ido’ ¢ —l—ic O

oy ido 0 —l+io ¢, ida”
—&d +¢ in case (1I) ,
—ida B, —1—ic O —idd" c,

where o= —;—Im (ap), o’'= —;‘(azc—ﬂz) and ¢"= —;(ozzc1 —pB,¢;). In each case (1, 1)-

cofactor of G,(P, ) is positive, because even if §=1 it is proved to be posi-
tive in just the same way as the proof of G([], Q)>0 in the precedent section.
(i) The determinant of the matrix corresponding to G,(P, Q) is zero if 6= +1.
In fact, as in the appendix A.3 of [3] the sum of the second and the third
line vector of each matrix corresponding to

G(O, z)+6(0, z), (i=1,2), and G(O, OHF GO, &)

equals its first line vector. In fact

1 0 0 0 6;, 6;,
G(O,z)={06;; 0 |, G(O,29)={6;y 0 0 , (i=1,2),
1 1
0 5 5 I 0 0
1
6@ =5 00 | 6@o=2 03

1
2

(=]
(=]

0 0

L
2

Moreover we see the same property as above in the matrix corresponding to
the second term of G,(P, 0): (&%Z,—&Z,—%,{+2,0)+ (3,2, —%,%,), namely
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o1 -1, 0 00
-1 0 0]+ O 0 1
0

10 0 -1 0
Corresponding to (6.7), we consider in the next section the integration by
parts of (4.1), which lead us to the proof of Theorems.

§7. Proofs of Theorems 1 and 2

Now we prove Theorems | and 2. Theorem 1 follows directly from the
integration by parts of G((0, t), P, Q; ¢u) in (4.1), using Q determined in the
precedent section. On the other hand in order to prove the estimate in Theo-
rem 2 we need to obtain the boundary estimate, and for this purpose we use
an existence theorem with zero initial data of the dual problem as in [3]. All
these arguments are similar to those in §9 of [3], so we state only the outline.

First to G(P, Q) we associate the differential form

(1.1)  G(P, Q; u)y=ilm P(D,, D,, D,—iy)e""uQ(D,, D,, D,—iy)e "'u,

where we denote by P(D,, D,, D)) the regularly hyperbolic operator in (6.1).
Then to the quadratic form G(P, Q) and G,(P, Q) we associate the quadratic
differential form, G.(P, Q;u) and G,(P, Q; u) respectively. The function u is
assumed to belong to CF(R2*!'x R'). Corresponding to (6.7) we have

(1.2)  G(P, Q; u)=D,G(P, Q: u)—(D,—2iy)(a+a2)'>G(P., Q; u)
+A&(P, Q, B; u)+R(P, Q; u),

where #(P, Q, B; u) is a quadratic differential form on the boundary such that
AP, Q, B; u)=0 if Bu|,_,=0, and R(P, Q; u) satisfies

(7.3) |R(P,Q;w)|<C( 3 |e"y'DiDkD3u|?).

i+j+k+la|<1

§7.1. The proof of Theorem 1

First we remark G(P, 0)>0 on the support of ¢; then we have the follow-
ing relation:

. T~ - T~
(7.4) ¢ ¥ |ery!'DiD¥Dipu|2<G (P, Q; ¢;u)

I+itkT|a|=1

for a positive constant ¢, where ™ means Fourien transform in y.
Now integrate (7.2) with u=¢u in (y, t)e R"x R, then we have from (7.1)
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~(7.4) and G (P, Q; ;u)=0,

~ g 1/2
(7.5) <a% +2y)SSG,(P, 0; ou)dy dx< %(Sye—wpupdy dx>
- 1/2
X (ggG,(P, 0; ou)dy dx)
~ 1/2 .
Let us divide (7.5) by <SSG,(P, 3 ou)dy dt) then it follows

(1.6) 2(6% +v)<gSG,(P, 0: o,u)dy dt)l/z g%(SS le Pu|? dy dx>”2.

Integrate (7.6) in (0, /) and sum up in j, then we have Theorem 1 if we take
care of (7.4).

§7.2. The proof of Theorem 2

We state the proof of Theorem 2 in the following several steps (See also
§9 in [3]) At first let Q be Ri*!'. Later we mention to the case where Q
be a general domain.

1). First we show that the condition (H) is necessary for obtaining the
estimate in Theorem 2. Let us take wu in C?(Wx R') such that u=0 in
1<0, in the estimate (E) in Theorem 2. Then integrate it with respect to t,
then we have

1 I c
(7.7) Yiuldy, + j;o <A y'z,,l Diu>3%_; ;) S“);l“{”’u[%.y.

1
+</\:Y|Bu>(2),)'|}’ WhereJ(AY-Y1)=(|’]|2+y%)]/2’

for some positive constant C. Thus in view of Theorem 2 in [3] we can see,
after the same argument in §2, that the condition (H) is necessary for the
estimate (E) in Theorem 2.

2). Next we show that the estimate (7.7) follows from (H). This is proved
in the same way as the estimate in Theorem 1, if we add the following lo-
calization.

Since B(y, t, £,(0, 1),0, 1)%x0 for any (y,t), (See Theorem | in [3]), we
can find C* functions ¥, and ¥, satisfying
() Y,+yY,=1o0on R¥*2xZ3(x, y, )x(n, 1), where Z={|n|2+ |t|2=1, Imt <0},
(2) ¥, vanishes in a neighbourhood of (0, y, 1,0, 1)e R1*2x X, while the sup-
port of s, is contained in another neighbourhood of (0, y,t, 0, 1), such that
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Z=B(y, t, £,(n, 1), n, T) does not vanish on the support of ,.

To the homogeneous extensions of ¥, and ¥, we correspond the pseudo-
differential operators with a parameter y. (See §6 in [3]). Put ¥, (D)u=u,
and y,(D)u=u, for any u in CF(R4*' xR'). Assume that the operators P and
B are extended to t<0, satisfying the condition (H).

From the support of , we have

_1
(7.8) </\y2yu1>%,,,s Const. |ul|?,,,

_1 -1
if we remark that <Ay27u1>,,,SConst. </\y2 u,>;,, holds for u; and that

-1
</\y2ul>%,,g|ul|§,y always holds, where o(A,,)=(In|*+y%)'/?2 and A,=
eV F(|n|2+ |t|?)!/2Fe~"". Thus we have

1 - . -1
(7.9) 2 <AZDIu >3, SC(S AT Bu >3, + uld,y)

Now we consider the quadratic differential form (7.2) replaced u by u,,
and integrate it in R4*! x R! using (7.9). Then we have for large y

1 _1 .
(7.8) ylug|3,+ j‘_,_:,o <A y'zyD,{ul>%_j,y
<C{—1|PuI 3 +i</\% Bu,>%, +|u|? }
- .y Y Y .7 Vs s Y
As for u,, by virtue of uniformity of |£|=0
] .
vlualt,,+ Zo <Dju>%_;,
[=

SC{% | Pu,|3,,+ <Bu,>3 ,+ Iu|¥,y}=

in the same way as Kreiss-Sakamoto. (See Appendix A.3 of [3] in our cases)
Thus we have (7.7).

3). Here we show an existence theorem in the weak sense. Namely we
have an existence theorem of the solution of

Pu=f(x, y, 1), x>0, yeR", teR!,
(P)o t

Bu=g(y, 1), x=0, yeR", teR!.

Assume fes#,(R1*2) and A }/}gest, (R"*') for y>y,. Then there exists a



Hyperbolic mixed problems 219

solution u of (P), belonging to #,.,,(R%*2). This proof depends on the
fact that the dual problem below also satisfies the condition (H), (See §9.1
of [3].)

For convenience we notice that ue s, ., ,(Rt"?) is proved by the inter-
polation theorem, in view of the following facts:
u= /\;(k+1)92w/\’y—(k+l)P*W and

(i) e?" Ay *Dwesp, (R1*?), where A} is the adjoint of A,

(ii) DZe?r* Ay (+Dywesp, (R1'2), because of (i) and A**DP*we
XO,—V(RZ:-.'-Z)'

(il) Pu=fes#, (RI*?).

4). Now we have the following energy inequality for the solution of (P)y:
For any interval [sy, t,] we have

1 ) 1
(79) YIuI%,)',(so,lo)"'y 'ZO < /\;,lylzD)qu>%—j,y,(so,ro)"' jzo ”(Dtiu)(to)” lz—j,y
j= =

C

< 7‘{|f|(2).7.(80,f0)+ < A)l’,/}'2>g>(2),7.(so.lo)} ’

if the supports of f and g in t are in [sgy, ).

Proof. If f=0 and g=0 in (—o0, t,], then tending y to oo in (7.7), we
have u=0 in (—oo, t;). Remark that no singularity appears in the right hand
of (7.7), even if we replace f and ¢ in [{,, ) by zeros. Hence we have (7.9)
except the third term in the left hand-side if we put t,=t,. The estimate of
that term is obtained by the integration by parts

(P“’ ¢ Qu)O,}’,(SoJl)_(C Q“’ Pu)o,}’-(so'tl)’

where Q is the operator defined in the previous section and ¢ is a small posi-
tive constant. q.e.d.

5). Here we state some properties of the dual problem for {P, B}. Let

u and v be in CH(RY*2) and let P* be the formal adjoint operator of P.
Then the first order boundary operator B’ is uniquely determined such that

(7.10) (Pu, v)—(u P*v)=i{<Bu, v>+ <u, B'v>},

where (,) and < , > are L? norms in R%*2 and R"*! respectively. Now
by P* and B’ we denote the operator P* and B’ replaced D, and t by —D,
and —t. Then {P*, B’} satisfies the condition (H) if and only if {P, B} does
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so as in Lemma 9.1 in [3]. Therefore we have an existence theorem concerning
the problem

P*v =y, x>0, veR" te R, yeCZ(RI*?),
(P*)o
Bv=g, x=0,yeR", teR', peCE(R"*).

And from (7.9) we have the estimate

I .
(7'9) ylvlf,—y,(so.to)-'_y '20 < A;,ly/ZDJ]cv>%—j,—)’,(so.to)
Jj=
1 . C
+ j§0 ”(DIJU)(SO)“%—j.—yS Ay‘— {I.pl(z),—y.(so.lo)-'_ < /\_yl',/vz(p>(2),—7,(80,to)} .

6). Now by means of the results in the previous steps we can prove Theo-
rem 2. In order to obtain the estimate for the second term of the energy
inequality (E), we consider the following identity for smooth functions u and v:

(7.11) (Pu, Dv)g,y—(Du, P*v).,,
=i{<Bu, Dv> 4+ <Du, B'v> 4, } +R(u, v)+1I[u, v],
where D means D, or D,,j, (j=1,...,n). Here we have

(7.12)  |R(u, 0)| < Cluly 400/t y0.)»

T, 6 < CLHO, [0, -y where [u(0)e,, = 3 IDIO),s

Let us take v as the solution of the problem
[ P*=0
Bo=o(y, ),

with the boundary data ¢(y,!) in 2(R"x(0,t)). The solution uv(s) vanishes
in t<s and satisfies (7.9) with s,=0 and to=t. Therefore form (7.11) and
(7.12) we have

| <Du, 9> (0,0 SCYy V2<AJFo>0, .y 0.0F+ T8l ,4,0,0)

. 1/2
where F= H_ [Puld , 0.0+ % <AMPBu>3, 0,0+ [u(O)J%,y}. .

Thus we have

Y<AGYEDu>3, 0,0 <SCEF +uli, 0,0)
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Hence we have
! -1/2 j 2 2 2

(7.13) b4 ZO < /\y,lyl D,’cu> l—j,y,(O,I)SC(F + |u| l,‘,',(O,t)) .
i=

Moreover from the integration by parts of
(Pu, Qu)o,y 0.0~ (Qu, Pu)oy 0.1y

we have
2 2 ! 2 j 2
(7.14)  ylul},, 0.0+t [u@]t,, <C{F*+y j;o < AGNEDIu>3%_;, 0,0} -

By (7.13) and (7.14) we have the energy estimate (E) in Theorem 2.

In the similar way, (cf. (9.11) in [3]), for any smooth function u with
compact support, we have the estimate

l .
(E) YWl c00+? Jgo < AGY?*Diu> ;i , 0,0F [u(®]?,,

| |
SC‘{; | Pulf_i,y. 0.0+ Y < AMEBu>}t_| , 0.0t [U(O)]f,y} .

7). The existence theorem follows from the above energy estimate in the
same way as §9.5 in [3], if we consider two existence theorems concerning
a suitable Cauchy problem and the boundary value problem (P,). We can
show the existence theorem in the general cylindrical domain and the finiteness
of the propagation speed since the condition (H) is invariant under the space-
like transformation, as in §10 of [3].

Appendix
§A.1. Proof of Lemma 2.4.

For simplicity let us rewrite (X, Vi, Vareer Yo 1) DY (Xgs X15eees Xus Xt 1)
which we denote also by (xq, x'). ((x¢, x)€R*2, x,>0, x'€ R**'.) We denote
the boundary operator B as

B=ReB+ilmB,
n+1
ReB=D, + ¥ Reb,(x)D,,  (b,4(x)=—c(x)
i=1

where
n+1
ImB= 3 Imby(x')D,, .
Jj=1
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Associating to the boundary operator ReB, we consider the C® mapping
¢=(dy, ¢,,..., P,, ?,,,) from R"*2 to R"*2 such that
(1) @ is diffeomorphic in a neighbourhood w of origin to another neighbour-
hood ' of origin. Moreover @ maps wn R%*2? into R%*2. (So later we use
@ as the mapping restricted in R71%2))
(2) (0, x")=(0, x’) and the Jacobi matrix at the origin is the identity.
(3) ReByu=ReB(u(®(x))) at any point (0, x’)ew, for any smooth function u
e CZ(RL2).

Now we define ae(x)=u<?l¢(sx)>. Then we can see that i (x) tends to

u(x) uniformly up to all derivatives if u(x) is smooth and bounded function with
compact support. Here remark that if B has real coefficients then #i,(x) satisfies
the desired properties for given function u(x). In fact, since (3) means

n+lb 0V (D 0 , _n+lb , ril(@q)’) YD )O ,)
L5000, 3)= % b, E (G )P0, %),
where by(x)=1, it follows

! "+1 a¢' ! ’ ’
(3) S SH()b(x) =bi(0)  forany X' €w|yym0
Jj=0 Xj

If we assume ReByul,,-o=0 then we have ReB,i,|, -,=0 from (3)' replaced
x' by ex’. So Lemma 2.4 is true, if B has real coefficients.
Next we proceed to the general case. Byul,,-o=0 means

4) ReByu=—ilmBgu on x,=0.

Here we remark that from (2) we have for any ¢ in [0, 1).
5) ImBu=ImB,i, on x,=0

Therefore since we have Re Byu=Re B.ii,, it follows

(6) Bi,=i(ImB,—ImBg)u on x,=0.

Denote the right-hand side of (6) by a,(x’) and extend it to x,>0 by constant,
which we denote by a,xy, x'). Then a/xy x') tends to zero in A(R7*?).
We define u, by

u,=i,+a, (xq, x’)tp(;1 ¢(sx)> R

where @(x)=@(xq, x') is a real function in CZ(R7*?) satisfying ¢(0, x')=0 and
Bop=1 at (0, x')e®. Then u, satisfies the desired conditions. q.e.d.
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