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§ 1 .  Introduction

In  th is  p a p e r  w e  c o n s id e r  the following initial-boundary value problem
(P ) which we denote also by {P, B}

(P) 1Pu = f(x, t), fo r  x e f l ,  t e R 1 ,

Bul s =g(s, t), f o r  s e S, t e RI,

Wtil t ,o=u;(x), (j=0, 1), f o r  x e 0 ,

in the cylinder dom ain Q x (0, oo), w here S2 i s  the exterior or interior of a
sm ooth and compact hypersurface S  in  Rn +  I . P  is a  regularly hyperbolic
operator of second o rd e r  and S  is non characteristic  to  P .  Moreover we
assume tha t the only one of t i (v) and T2 (v) is negative for a ll (s, t)eS x (0, co),
where -c,( ) and - c , ( c )  are the roots o f P(s, t, T ) = 0  and v  i s  the inner unit
normal a t  s. This assumption means that the number o f boundary conditions
is one 1 ). Therefore  w e assume P(s, t, 0, 1 )< 0  and P(s, x, y, 0)= I. B  is a
first order operator:

n+ I
B(s, t D x , D 1) = a 

( D t — i i  at ,  etc.) ,

and we suppose B(s, t, y, 0)=1.
W e assume th a t  a ll the coefficients of P  and B  are sm ooth and that they

1) This assumption is equivalent to the condition tha t on ly  one ro o t q(y), r )  o f  P(s, t,
z)= 0 has positive imaginary part for Im  r< 0 . (cf. p. 121 in  [3].) In fact, to see this, we
may consider the case 72.-0, taking account of the hyperbolicity of P.
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remain constant outside some compact sets2 ).
W e are  concerned with the  following question ( Q ) : 'Under what condition

the  so lu tion  u (t)  o f  ( P )  h a s  th e  continuity f o r  th e  in itia l d a ta  in  th e  same
Sobolev sp ace? ' T he  answ er to  th e  above question  is just the  cond ition  (H)
below , w hich is equivalent to  'a ll th e  roots o f  az 2  —2iz — fl = 0 a r e  in  {z : Im
z > 0 } and they are  no t rea l double roots.' W e state  it as

Theorem 1. T he above problem  {P, B }  satisf ies the follow ing estimate:

11(1311u)(t) 111-i  c (T) 11(Mu) (0)111.- ;  +1 11(Pu) (s)II Os}
j=0 j=0 0

f o r all u  e CAS2 x R_D3 )  satisf y ing B ul 5 = 0 ,  i f  an d  o n ly  if  th e  follow ing con-
dition (H) holds.

(H) ( I )  A =
( 2 R e  a  Im(a/3)

1m (0 )  2Re 13 )
>0, when 'Real +IRefil00 ,

( I I )  1 +(Im a)(Im13) 6>0, when IReal+IRefl1=0 ,

f o r  all (s, t, q)e S  x  .12.} x (R "+' — { v } ), w ith som e positiv e  constan t (5 . Here
n e {Rn+ 1 — {v}) means n e Rn+ 1 an d  q  •  v =0 . a  and )6  are  defined by

cx =4s, r)+ r, n), fl="e(s, t)— B(s, t, n),

where e and  6 are determ ined 4 )  uniquely  by

B(s, t, qv +q, T)= 4 + 6c1(n)—

Here we have used the following notations 5 ):

'4= P(s, t, qv  +q, t ) ,2 Oq

a t = — { P(s, t, q v -F,  T )  — 4 (s , t, '0 21 ,
2 a

2) This assumption can be replaced by the assumption that all the coefficients belong to the
class of smooth and bounded functions a. Concerning this argument we can see the result
of J . Kato: Remarks on the hyperbolic mixed problems.

3) u EC (7 (Q  x l? ) means that u is infiniely differentiable up to the boundary o f  D xR t and its
support is compact.

4) In case of wave equation in a half space, B(y, t, q, )2, r)=47± (± 1 bil)//1 0 1 721 — cr.
5) See p. 121—p. 122 in  [3]. As for our notations, it is sufficient to consider the case where
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d(q) 2 =P(s, t, q(q)v + T (q)), (d(q)> 0 f o r  q 00) ,

0 DPwhere q(q) a n d  r(n) are the solutions 6 )  o f  —
e g

P(s, t, qv+ q, T )= 0  and (s  t
CT

qv +q, T ) = 0 . They satisfy the relation

P(s, t , qv +q, T )= —i 2 +d(q) 2 ,

which corresponds to  the  symbol of wave equation.
Mk m eans th e  n o rm  of Sobolev space I lk  in Q, (k=0, 1, 2,...).  Denote

by (( )),. the Sobolev r-norm on S, (r E R ') .  W e can say more, that is

Theorem 2. S uppose (H ). If  f (x )eS P(L 2 (2)) 7 ) , g e ep (H2 (S)) and ui

(0), (j = 0 , 1 ) , then there ex ists a unique solution u (t)  o f  {P, B }  in  ep ((H S2))
n el(L2(Q)) satisf y ing the follow ing energy  estim ate (E) w ith k =0. M oreov er
i f  w e  assum e th at  t h e  sm ooth  d a t a  { f, g, u o , ti l l s a t i s f y  t h e  compatibility
conditions 8 )  of  order k , (k >1), then the solution satisfies

" 21
(E) E 11(Mu)(011 i-j+k + i + E

t

 0e
2 Yk( l - s) (4 D A u ) i+kds

1=0

1 2<C ke 2 7 kt { E  II u  • II f +- .+k EJ J e -2 Y k s (1 1 (a l + g)(s))) .1 .  ) d s }  ,
J=0 ..j k 0

where C k  and  yk are  positiv e  constan ts. T he solution has the som e propagation
speed as  th at in the case of  Cauchy  problem.

R em ark. If g =0 i n  t h e  problem  { P, B } , t h e  above solution u satisfies
(1.1) even if  in  th e  c a se  o f  k = 0 . Therefore (H ) is necessary to obtain (E).

The condition (H ) was originally introduced in  [3 ]  a s  a  concrete necessary
and sufficient condition to  obtain the estimate:

(* ) lu ll ,,, y
c  I Pu I 0 , > 0) ,

fo r  any sm ooth function u  satisfying Bul,( 0 = 0 ,  in  th e  c a se  w here a ll th e  co-
efficients a re  c o n sta n t a n d  f2=RV - 1 . T h e n  [1 ]  a n d  [ 4 ]  treated  th e  estimate

6) See p. 122 in  [3].
7) f ( t ) e d ' ( L 2 (f2 )) means that u  is continuous up to k-times derivatives with values in L 2 (Q).
8) A ll the smooth solutions must satistisfy the compatibility conditions. See p. 145 in  [ 3 ] .  As

for notation see the last part of the introduction in [3].
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in the case of variable coefficients independently . H ere rem ark that th e  esti-
m ate (* ) follows from th e  estimate (1.1) b y  th e  integration in  t. This process
w ill be explained in § 2 . H o w e v e r  the converse can not be proved directly .
N am ely  w e  can  say  tha t the  struc tu re  o f (1.1) is  f in e r  th a n  th a t o f  (*). In
o rder to  ob ta in  (1.1) w e m ust employ a  special device concerning the reverse
process of G reen form ula, w h ich  is  re la ted  to  th e  quadratic differential form
Tm (Pu, Qu) 0  i n  § 4. Q  i s  a  first order differential operator w ith respect to
t w ith  coefficients of pseudo-differential operators i n  x .  T h e  choice o f  Q  is
m ore difficult fo r  th e  estimate (1.1), because th e  localization used in  th e  proof
must not depend on  2, which is a  dual variable of t. In  § 5 and § 6 we succeed
in  th e  choice o f  Q  w ith  th e  help  o f  th e  detailed considerations o n  (H ) which
a re  prepared in  § 3. I n  o rde r to  ob ta in  (E ) w e need to consider another lo-
calization i n  (x, t, . r )  a n d  th e  dual p roblem  o f  {P, B}, even  i f  we restrict
ourselves to the N eum ann problem for E ,  w h ic h  is  e x p la in e d  in § 7 . S in c e
this paper is continued from  [3 ], th e  references cited here should be added to
those in  [3].

§ 2 .  Necessity of (H) for (1.1)

I n  th is sec tion  w e show  th a t  the condition (H )  is necessary in  order to
obtain the estimate (1.1). Namely we want to prove

Theorem 2 . 1 .  A ssum e th a t  th e  prob lem  {P , B I i n  §1  satisf ies th e  esti-
m ate  (1.1) f o r  u  0 0°(52 x R4) satisf y ing  Bul 5 = 0 .  T h e n  the  cond ition  (H)
must follow.

F o r  th is purpose  w e need  som e analysis concern ing  t h e  estim ate (1.1),
in  order to  arrive a t  the position  to  ap p ly  th e  results obtained in  th e  chapter
one  in  [ 3 ] .  More precisely we show at first

Proposition 2 .2 .  S uppose the assum ption i n  Theorem 2.1. T hen w e have
the following estimate

S(2.1) C II (Pov)(s)110,1.2(R++E  II 1.1).11))(011 )cls
i=o

f o r  a l l  v(x, y, OE Cro°(1 x R " x R ') satisf y ing B0 vix = 0 = 0 .  H e re  P o a n d  Bo

are  th e  operators w ith  constant coef f icients w hich a re  considered i n  a  half
space RI_ x Rn x (  (x, y , t)) and on Rn x R 1 (9  (y , t )) respectively  such that

Po= Po(Dx, D y , Dr)=13 (s0, (0, Dv  +D,, Dt)

Bo = Bo (Dx , D , , D t)=B(s o , to , Dx v+ Dy,
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f o r any  (s o , to ) E S X RI, and y= y(s o ).

Next we prove

Proposition 2 .3 .  A ssume (2.1) in  Proposition 2.2. Then we have

(2.2) Yluity —Cy iPouiô, y

f o r  an y  u =u (x , y, t) e C (R 1  x R n X R 1 ) satisfy ing B 0 ul x = 0 =0, w here

M - 2
"elyiDD;D il u  2  dx  dy  dt.I u  I

i+  j+ lal-F ISk

F rom  Propositions 2.2 a n d  2.3 a n d  b y  th e  proofs o f  theorems in  Chapter
I  o f [3], we have Theorem 2.1.

Now we prepare the following lemma which make the  proof of Proposition
2.2 easier.

Lemma 2 .4 .  L e t v (x , y , t)  b e  in  C ( R I .x  R n  X R i ) satisfy ing B 0 vlx ,. 0 =0,
w h e re  B , is  a  f irs t o rder operato r B(0, 0, Dx , Dy , D,). Here B (y , t, D x , Dy , D,)

=D x +  bi (y, t)D y i — c(y, t)D,. T hen there ex ist f unctions v e (x , y , t)  f or 0 < a
)=1

<1, satisfy ing the following conditions:
(  i )  supp vg c a com pact set K n x R "x R ')
( i i )  v ,  conv erge to y  uniform ly  up to their all deriv ativ es.

Bd)Elx=o=0 ,  where B E =B(cy, at, Dx , Dy , D,)
This lem m a is proved in  a n  elemental method 9 )  w hich w e w ill explain in

Appendix

Proof  of  Proposition 2.2. L e t u s  consider a  lo c a l m apping from  a  neigh-
bourhood o f  so e S to  the  neighbourhood of origin, such that Q is mapped into

x R ", th e  boundary S  t o  th e  hyperplane x = 0 a n d  so t o  the  orig in . A s for
te R 1 w e consider the sim ple transition : t—>t—t o ,  then (s o ,  t0 )—*(0, 0) e R" x R 1 .
B y virtue o f  these transformations w e  have from  th e  assumption in  Theorem
2.1,

(2.3) (D/v)(t) , L2(a C(T )1 11(Pv)(s) 11.o,L2(4 -") ds , (t+t o < T ),
.fro

f o r  a n y  v(x, y , t )  w ith  its  su p p o r t in  th e  sufficiently small neighbourhood of
th e  origin satisfying BvI x  = 0  = O. H e r e  w e  have denoted th e  transformed oper-
a to rs by  th e  sam e le tters. N ow  take  vg i n  Lemma 2.4. Then w e can see that
w,(x, y , t)=v,(x lv , y lv , tie) satisfies Bwe lx .„, = 0. H e n c e  w e  c a n  su b s t itu te  wg

9) If all 131 and c are real, lemma 2.4 is evident from the geometrical viewpoint.
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t o  y in (2.3), then  by  the changes of variables: x-4c.)c etc., w e have

(2.4) IlatvJOIli 2(R7+i)<QT)1 11(Pd)Ms)110,L2 ( 4 .i )  dsi=o

W h e n  s  tends t o  ze ro  w e  have (2.1) w ith  C = C (T ), (T q. e. d.

F inally  w e give a  heuristic proof of Proposition 2.3' °) • L e t  u s  consider
th e  simplest case  o f (2 .1 ), tha t is corresponding  to  th e  c a s e  o f  th e  ordinary
differential equation: Di u(t)—f(t),

(2.1)'

B y  Laplace transform iû (r )= ./(T), (T = a— iy, y> 0) and Plancherel's theorem we
have

Lemma 2.5. For any  sm ooth  real f unction  f ( t )  def ined i n  R . ' w e  have
f o r any  y>0.

e -2 Y r(5  f (s )  ds)d t 1
2

(2.5) e -2 V t f (t )2 d t .
-co -co y 2 09

In  fact the left-hand side equals

s-  

e- 2 Yt ju(t)1 2 d t= f(t)  2 d ,

while the right-hand side equals  1
2 (r)1 2 da

Y -.0
N ow  m ultip ly  e - 2 Yt t o  ( 2 .1 )  a n d  in teg ra te  it i n  t using (2.5) w ith f ( t )

=11(1300(0Mo, then we have (2.2). q. e. d.

§ 3 .  Some analysis concerning the condition (H)

I n  th is  section w e consider th e  various properties o f  (H ),  which we will
use  la ter. P ut

(3.1) /=  t  +  ict2, 13=fl1+02,

where a i and /3,, ( i=  1, 2), are real. First w e see easily

Lemma 3.1. Suppose (H ) .  Then w e have the followings:

10) The estimates (2.1) and (2.2) were considered by many authors in  treating the estemate of
L2 -well-posedness. For example [2].
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( i ) ( 1 , 0,13 1 0  and det A =4alfil( 1 +«2/3 2) — 002+ 0(2/3 0 2 0 ,
(ii) 1 + ot2)62_0
(iii) I + 0 (2 fl2> o, if 04 1 = 0 .

Next we give a  characterization o f (H ), relating to a n  algebraic equation:

(3.2) f(x)=10(12x2+ 2(2+ Re aP)x +1,612 = 0,

which we consider later associating with the boundary integrals.

Lemma 3 .2 .  A ssum e (H ). Then w e have the followings
(i) A ll roots of  f(x) are real and non-positive, (—  ccis inv olv ed). T hey  are double
o n ly  if  I +a 2 /32 = 0 and ct i ll i >0.
(ii) Denote th e  tw o roots by  — e i a n d  — e ,(c 1 <e2 . L ate r w e  note r 2 =

if e'2 0). We have

(3.3) 8, < <8'2a
l

Conversely  (H) follows from  (i) and (ii), if  c Th >O0 an d  1 +a2132 O .

Pro o f . The discriminant of f (x )  is

(3.4) (2+ Re afl) 2 — la,812 =4(1 d-a2/12)+det A > 0.

Hence (i) holds from Lemma 3.1, (i) and (iii). ( i i )  follows from

(3.5) ija 1 ) — Hal2fli-2(2+ReaP)ctifit +

= —  1 2 det A <0 .
cit

The converse is evident. q. e. d.

N ow  w e state another lem m a concerning th e  positiveness of the H erm ite
m atrix , w hich w e w ill u se  later associating to  th e  interior integrals. L e t A2
be

A2 = 
( c 1 p

where a , /3, E R and it e C
f i  1 3

Lemma 3 .3 .  A 2  is positiv e  def in ite  i f  an d  o n ly  if  th e  follow ing Hermite
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m atrix  A 3  is positive;

0(1 +131 itt —ip

(

A 3 = — i f i Œ1 0

ikt 0

Pro o f . This is evident from det A 3 = + 13,) det 142.

E x am ple . L et a ,  a n d  /3 , be those in  (H ) and let p. =  2
1 Im  (4 ) .  Then A

in  (H) is 2A 2 .
I n  t h e  p roof o f  T heorem s 1  and  2 , it p lays an  im portan t r o le  to  show

the positiveness o f  th e  matrix of type A 3  in  Lem m a 3.3. A t that time we may
consider the simple A2.

T o  arrive a t  th e  above position, w e m ust employ a  special devise concern-
ing the integration by parts, which we explain in  the  next section.

§ 4. Preliminaries

in  th is  section w e explain th e  outline o f  th e  proof o f  Theorem 1 simply.
(See also §6  i n  [ 3 ] . )  F irs t  w e  notice th a t , a s  f o r  th e  estimate (1.1), {P, B}
in 52 x (0, co) is reduced to  the  same problem in R '  ( 0 ,  c c )  b y  the localiza-

finite
tion : u =  E  o p =  up  where EiP i (x)= 1 in  Q  a n d  b y  the transform ation of

th e  coordinates in  th e  boundary p a tc h . W e  w an t to  p rove  th e  estimate (1.1)
by the integration by parts of

(4.1) g(0, t); P, Q ; u )=2i lm 5 c1 e-2Y t P u  —Qu dx dy d l ,
o  R "  o

where Q  i s  a  first order operator which satisfies Cx (P, Q).1:1 a n d  C1(P, Q)>0.
H e r e  x (P , Q) a n d  01(P, Q ) a re  explained below in §4 .1  f o r  simplicity in  the
case  o f  P = D .  W e  show  the  actual integration by p a r ts  in  th e  la s t  pa rt o f
§6, to obtain the estimate (1.1).

§ 4.1. Green formula associated with the bouudary condition

A s  in  §  6 .3 , in  [3 ]  to W((0, t); P, Q ; u) th e re  co rre sp o n d s th e  following
symbolic calculus :

(4.2) G (P, Q )=P(, T)Q(C, 11, f )  — T)P(Ç, i ,  )

=( - 0Gx(P, Q)— (t t)G,(P, Q).
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H ere w e consider th e  c a s e  o f  P = 0 . G x (D, Q ) a n d  G1(0 , Q )  a r e  quadratic
forms in z1 , z,), where z , and  z2 a r e  z, = T  1111 a n dn_ z 2 =r+ I I respectively.

T h e n  Ê  b  — C T  — - 1-(az +,6z2 ), a n d  th e  boundary  cond ition  i s  Dx ulx = c ,=

1 1---(az +flz 2 )(D)ul x = o + g .  Hence we substitute 
 2  

(az
1
+ 13z 2 )  into in  Gx (E,2

and - - ( 2 , 8 2 2 )  into in  Gx (P , Q), then  Gx (I=1, Q) becomes an H erm ite form
2

Q) in  (z 1 , z2 ). Denote the anti-symmetric pa rt o f G'x ( 0 , Q ) b y  11m G(0,
Q) 1,2 (z 122 - z 2 21)  and notice that

(  - ) 1z 1 22 -  z 2 2 1 =  ( t { 2 1  — 0 2  Z 1  ± Z 2 C }

follows from z1 22 - z 2 ±1 = - (t —  i) (Z 1  —  Z 2 ) =  — (t —  0 (2 1  —  2 2 ). Then we have

(4.3) G (0 , Q )=  -  00x(1=1, Q) - - t)C ,(1=1, Q),

where Cx(0, Q ) is  a  symmetric p a r t  o f  Cx ( E, Q), a n d  0,(0, Q) is  an Hermite
form:

(4.4) C,(1=1, Q) =G JO , i 1m G(El, Q)1 2{21  — 0 2 4-Z3C}

to which corresponds an Hermite matrix.
H ere w e choose Q  as a polynom ial in a n d  r, w ith  coefficients depend-

ing o n  (x , y, t, ri), in  order to prove the  estimate of type (1.1) and  (E). There-
fore we can use only the following type of localization.

§ 4 .2 .  The localization for the estimate (1.1) and (E)

Let us consider the partition o f unity of type
f i n i t e
E 9.(x, y, t, ti) = I o n  RI. x R "x x (R" -0 ),

w h e r e  j  a r e  sufficiently smooth and  homogeneous in m . C orresponding  to  the
above pa rtition  o f u n ity  w e  h av e  th e  localizations o f  th e  function u: 9i (D)u
=9 ; 14=F y 9i Fy u  s u c h  th a t  u=u(x, y, t) =E(T i u)(x , y, t). W e  c a n  ta k e  g of  s o
th a t the  osc illa tions of a  and  /3 a re  arbitrary small o n  th e  su p p o rt o f  o n e  9;

by m aking th e  num ber o f  {9 1 }  la rger i f  necessary. B y this property w e can
choose Q=Q i  f o r  each goi  s u c h  th a t  Cx (P, Q)121 a n d  01(P, Q)> 0 o n  the sup-
port çai , that is shown in  the  next section.

§ 5 .  The choice o f  Q  in  th e  case  o f wave equation

I n  th is  sec tion  w e  sh o w  th e  p roof o f  Theorem 1 in  t h e  case  o f  P=



d=4(d 1 X  +d 2 Y ),

IX  =(fii — °( tEi)1P( 1 — elE2) ,

Y =( 1 —/11e2)/p(1 - 8 1 8 2 ) ,

) (I — 1E18 2) (

(5.3)

where

(5.3 )1

and

d1
(5.3)2

d 2

1 —s21

- - E1
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a n d  52= /4+ 1 . F o r  th e  purpose  w e prove C,(1=1, Q)> 0  a n d  Ci (0 , Q)> 0  for
the following Q:

( 1 )  Q z + /3,z2 ) + s(z, + cz 2  — if  th e  su p p o rt (pi  contains any point
satisfying Œ1fl1 =0.

(II) Q= (oc i z  +  i z 2 ) — e(g — c i z i — c2 z2 ), in  other cases, where s  is  a  suffi-
ciently small positive number, a n d  c 1 , c2 a n d  c  are positive functions in  (y, x,
n). Here we choose these a s  follows : c ,  a n d  c2 a r e  determined in  th e  domain
where cz,fl i  *0, by the  identity, (See (3.5).),

(5.1) 2(ociz+fii)(ciz+c2)= lod 2 z 2 +2(2+R eal3)z+IM 2 +(detA )lai

=f(z )+(det A )lai .

c  i s  a n  arbitrary positive function defined i n  a  neighbourhood of the points
where cc, =0, such that

(5.2)

which is assured by 
1 +Œ2 /32 > 0. (See Lemma 3.1, (iii).) W e put

Here si , e2 a n d  p  are defined by

(5.4) f (2 )=  , 2 z 2 + 2(2 + Re oc/3)z + Ifl12 = p(z + e l )(1 +8 2 z).

From  now  o n  we exhibit the  positiveness o f  C ,(0 , Q ) a n d  non-negativeness
of Cx ( =1, Q), together with the reason why we choose Q  as above.

As for Cx  w e notice the following simple lemma:

Lemma 5.1. T he  sy m m etric  quadratic  f o rm  az 1 2 1 +b(z 1 f 2 +z 2 21) +cz 2 22

is non-negativ e  i f  a n d  o n ly  i f  ax 2 + 2 b x + c 0  f o r a l l  re a l  x .
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This lem m a is trivial in the proof but is useful in process o f choosing Q
below.

First we recall § 4.1 and collect the followings:

1(5.5) C.,,(P, z i ) = ( )2.+ z • • —1 (cx + 1 213 2  ) , (i=1, 2) ,
2  a  1z1 1z 2 1 I 2 1 1  

(5.6) Cx (P, -14-(œzi -Ffiz2)(az1 +fiz z ) + 4 (z 1 f2 + z 2 2 1 )

— - l m  (4 ) (z 1 2 2 —z 2 21 )

1
= -

4
Iliel 2 z121+(2+Rec(P)(z1 2 2+z2 2 1)+ Ifil 2 z2221

(5.7) OP, z i ) =C + z  i f i + -\/ (5 2 i oc2 — 6 1i132 )g 2 12 -  Z 1 C - F  Z 2 ( }

(i= 1, 2), (6,i =0, if i j ,  = 1 ,  if i = j),

(5.8) Gt (P, ( 2 i
4   1m (a fi)(0 1 — 2 2 —z i C+z 2 C).

These relations are shown by (4.2), (4.3) and (4.4) combined with (7.4) in [3].

§5 .1 . The case (H)

N ow  w e show how  to choose Q  in the case of (11) in severa l steps. The
guiding principle is the above Lemma 5.1 concerning C.„(P, Q).

First s tep . First consider Q0 =oc1z 1 +/3,z 2 . T hen w e have from  (5.5) and
(5.7)

(5.9) Cx(P, Q0)=(ottz1 +16 1z2)(a1 2 1+(6 12 2) 0 ,

(5.10) Gt(P, 420=(at + fii) -Foctzt 2 1+filz2f2

+ (2,8)gtri — Z1 Z 2 C }

x 1 +11 1 iu — io -

zi, z2) — io- Œ1 0 2, ,  where a —

1m (0) 

ia 0  13, 22
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1which is positive definite if  a n d  only if — det A=otifii — a 2 >0, from Lemma 3.3.4
(the case of uniform Lopatinski condition.) However we must consider the case
up to det A >0.

Second step. B y th e  way we consider Q1 -=a 1 z 1 +a 2 z 2sim ilarly , w here  a,
and a 2 a r e  real. We have from (5.5) and (5.7)

(5.11) Cx(P, Q i)= (a iz i + fliz2 )(4 2 1 2 1+a2 2 2)+ (a iz +a2z2)(Œ1 2 1+fii 2 1)

+ a 2i a ' —ia'

(5.12) C t(P, Q 1)=(,  z 1 , z 2 ) —ia' a l 0 ) (  2 1 ) ,

ia 0 a2 22

1where a'=  2  (a2
a

2  
—a

1
13

2
) .

Hence Cx (P, Q 1) is not positive a l  —  
a 2semi-definite unless C,(P, 421) is

ai f
positive if and only if a, >0, a 2 >0 and a 1 a2 — a' 2 >0. Put a 2  =a . Thena,

4
2 (a 1 a 2 — a' 2 )> 0 equalsa ,

(5.13) ocia2 — 2(2 + rxvq2)a fli <0.

The positive solution a  of (5.13) exists if  a n d  only if I +gzflz (Equalities
hold simultaneously.) In  the  case  II, I +a 2 /32 m a y  b e  ze ro , then Q , does not
play the desired role by itself. Thus we must take account of

T hird step . L e t u s  consider G(P, I n  view o f  Lemma 5.1 we associate,
to x ( P , in  (5 .6 ) , th e  p o ly n o m ia l f (x) = lai 2 x 2 ± 2(2 + Re ocfilx + 1#1 2 , which was
already appeared in  Lem m a 3.2. As for Ct(P, we have from (5.8)

0  1 + 1 0  1  —ia

(5.8)' Ct(P, 2 0 = (c, z1, z2) 1 — ia 0 0 ) (  z 1

1 + i a  0 0 z2

which is in  a  special subclass o f the  type  A3 in  Lem m a 3.3. This matrix does
not contribute th e  positiveness by itself, b u t  by Q 3 = Coo — 2E with small posi-
tive e, Gt(P, Q 3 )  becomes positive even i f  Ot(P, Q0 ) > 0  a s  is  show n  be low . In
view of Lemma 3.3, that proof is reduced to show

a—e( a —i)
> 0 ,

a— E(a+i) fit
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which equals a,,q, —lo- — c(o- — 012 > 0 since  a  > 0 a n d  fl, > O . In  G au ssian  plane
we can see easily that

cr2 —  c(c —  012

holds fo r  sm all positive e  i f  a  is  re a l a n d  n o t  z e r o . Therefore we can find
a positive c  such that a, /3, — la —c(a — 012 > 0 holds in  th e  dom ain  (of R n X R '
x Sn- 1 a (y, t, g)) where a di, > 60 > 0 is satisfied with given 60 .

Fourth step . O n  t h e  o th e r  h a n d  Cx (P , —2) is  no t non-nega tive .
w a n t to  show th a t  Cx (P, + ci z, + c2 z 2 )
tive functions c i introduced before i n  (5.1).
th e n  w e  s e e  th a t  f (x )+  1

2  det A =  0  has
1  a

another root o f  f ( x ) +  2  det A  is negativea ,
double roo ts. (R em ark  tha t the  roots of f (x )= O a re  no t sm ooth  in  general if
1 + 04 2 =  O.)

Thus w e have (5.1) w ith positive smooth functions c ,  a n d  c2 . Now from
1(5.1), (5.6) a n d  (5.11), the polynomial — --f(x) +(Œ1x + ,8,)(c,x + c2 )= (det A)/2Œi

corresponds t o  Cx (P, + c, z, + c2 z2 ). H en ce  Cx (P , —  +  c i z i +c 2 z 2 ) 0  in
view of Lemma 5.1.

O n  th e  o th e r  h a n d  le t  u s  prove C1(P, c, z, + c2 z2 ) .  O. F r o m  (5.12) with
ai =c, (i = 1, 2), C,(P, c1 z 1 + c.2 z2 ) 0  eq u a ls  4c 1 c2 —(c2 a2 — co32 )2 O .  H e n c e  let
us remark

(5.14) 4x —(a2 x — /32 )2 = — x 2 + 2(2 + a2 /32 )x — fli= — f (— x)+ (of — 0 2  •

Put x =  
 e 2

  , then from (5.1)
 — f ( —  

 c  2  = ( d e t  A )/a; holds. H encec i c ,

4c 1 C2 —  (C2Œ 2 —
C 113 2 ) 2 — "  i(det A) +2 4 (  c 2   —  161  ) 2 }>,) ,

a z c

which equals zero from (5.1) and Lemma 3.2 if and  only i f
 I  + azflz =O.

Combining th e  above steps w e have Cx (P, Q)__0 a n d  Ct (P, Q)>0  in  the
c a se  ( II) . N ow  w e turn  to  the case (1) where a, f i, is  so  sm all tha t 1 + cczfiz >
from Lemma 3.1.

§ 5.2. The case (I)

From  1+ a 2 ,62 > 0 we can choose a positive function c satisfying

(5.15) — aic 2 +2(2 +a 2 /32 )c >0 .

Recall the second s tep  i n  § 5.1, th en  w e  see  Ct (P, z 1 -i-cz 2 ) > 0 .  A t that time

We
becomes non-negative fo r  th e  posi-

First recall Lemma 3.2 a n d  (3.5),
a  sm oo th  roo t — '6 1  .  Therefore
sm ooth  function  even  i f  f ( x )  has
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f ( x )  has rea l distinct roots w hich are non-positive. T hen  a s  i n  (5.4) we can
denote f (x )=p(x +e 1)(1+e 2 x )  by sm ooth functions p, a, a n d  a2 , where p  i s  a
positive functions, and a ,  is non-negative such that

1 al  <
a2 (=  a)

2

1Notice th a t  — a, a n d  — are  tw o roots of f (x)= 0, then w e have from (5.14)
8 2

that (5.15) holds if c  satisfies (5.2).
First step. Now we state

Proposition 5 .2 .  A ssum e the condition (H). T hen  w e  can  choose  sm oo th
functions X  and Y  such that for

(5.16) Q 4 =z 1 +e 1 z 2 -4 X , Q 5 =z 2 +e 2 z 1 -4 1 1 ,

Cx (P, ( j =4, 5) if oc,13, is sufficiently small.

Pro o f . From (3.3) and (3.5) we have always

(5.17) a, —fl,r2 >  0  a n d  )3, —a i e, ,

because a ,  0 and fi, O. T o  Cx (P, Q4 )  we associate

h(x)-=((x,x+13,)(x+r,)—  X  f(x)

from (5.4), (5.5), (5.6) and Lemma 5.1. Now we put

(5 .3 )'i X =(fi1 —  ofiel)1P — Et)=(131— aigt)1P( 1 — Ete2) 0

Then h(— e,)= h'(—  e,)= O. S in c e  h(—  131 )— — X f(—  13  )  0 from (3.5) if a, 0,
oti a

we have h(x)>0 fo r a ll rea l x ." ) T h i s  m eans Cx (P, Q 4 )> 0 by virtue o f  Lem-
m a 5.1. Similarly putting Y= (/31 — a1s2 )/p(1—e 162 )  a s  in  (5.3) 1 , w e have Cx (P,
Q5 ).. O. q. e. d.

S econd step . W e deno te  by  d ,  a n d  d2 th e  s o lu t io n  o f  d i +82 d2 = 1  and
e1d 1 +d 2 = c ,  which were given in  (5.3) 2 . R em ark that they are positive from
(5.2). Since

z 1+cz 2— cg=d1Q4 d2Q5

I I )  If a1 >0 and el=igi/ai, t h e n  h= (a iz+1 9 1)2 /al> 0 . If a 1 =0  and 191*0, then we have a2 =0
from Lemma 3.1 and h is at most of degree one, thus h=0.
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ho lds, w here  d = 4(d I X + d2Y), we see x (P, z 1 + cz2 — 0  b y  Proposition
5.2. Hence Cx (P, Q)> O.

Now let us prove C,(P, Q )> 0 . We notice that

(5.18) 0<d<Cm ax {a t , +fli)

holds from  (5.3), , w ith som e constant C .  Recall Lemma 3 .3 , then from  (5.10),
(5 .8)' a n d  th e  positiveness o f  C,(P, z 1 +cz 2 )  w e see  tha t Ci(P, Q)>0 is equiva-
lent to

a ,  0
(

p  0 0  —i )
(5.19) M= + E — ed 1> 0,

0 / J ) p i 0

where p  i s  a  positive  constan t. T h is  is  t r u e  i f  w e  confine ourselves to  the
p o in ts  satisfying a f i ,  =0. M  >  0  fo llow s from  (5 .18 ) f o r  sm a ll positive E.

Thus we see C,(P, Q)> 0 in  a  neighbourhood of a i /3, =0.

§ 6 .  Symbolic calculus in the general case

In  this section we extend the  results in  the  precedent section to  the problem
f o r  regularly hyperbolic operator P  a n d  in  t h e  qua rte r  space  RI x Rn x

(x, y , t)).
Let P  be

(6.1) P= — aD? + 2(a 0 D , r ) D ,

+( t  a u Dy p y i + 2 ao Dy
J J

As in § 2  o f  [3 ] , we assume the followings:

(6.2) , a> 0

(6.2) 2 D(ry)= (a+a6){(± a i ryi ) 2  + a  ±  ow-1mi }
i=t

— (aoa i r /
i11+a E  a u th)2> o,
=

W e can express P as

(6.3) p = 2  +  d ( n) 2

where d(ry)= {a-  ' (a + a 6) -  ' D(iI)} '  2  and

for 11'11 .



214 Sadao Miya take

(6.4)
I'' = .-Faot + a0,11» .C= - E

i=1 j=1

f=(a+a6P/2{T—(a+a6)-'( ±  aini — ao ±  ao )} '"i."(ti, t ) .

i iC cio' f+ aoi /1;

1=1 j= 1

We define 2, and 22 by

I 2 1 = f—d(q) ,
(6.5)

1 2 2=f + An)

Then a  and  /3 satisfies

1 , ,(6.6) CT — b p li=  —
2

kca l .

Here we explain th e  symbolic calculus fo r the  regularly hyperbolic operator
P, as extensions of those in  §4.1.

(6.7) G(P, —C)C.(P, 0) — ( f — f)CI(P, '0) ,

H ere  Cx (P , 0 ) i s  6.,(1=1, Q) replaced z 1 a n d  z2 b y  Z, 2 1 a n d  2 2 , where
Og, zi, z2)=Q(Z, 2 1, 22 ), and

(6.8) CE(P, 0.) = {Gt(E, Q) - (5G.,(0,Q))14=L.,=1,.z2=2,

+ i  um G(0, 012){(ZE1 - Z22 - 2 1C+ 2 20 +6(2 12 2- 2 22 M ,

where (5 a oga + aD 1 / 2 ,  0 1 < 1 .  These a re  verified from the  a rgum en t in  §4.1,
if we remark

(1) = (a + 4 ) 1 / 2 er ,
(6.9)

(2 )

and the following relation

(6.10) - 01 212 2 -C E—T) {a2 1 - U2 -2 1 - +220 + 4 2 122 - 2 22 1) )

w h ic h  is  o b ta in e d  b y  (6.9) (2) and

2 1f 2 — 2 2. 1=  — (t — i ) 2 1+  — f) 2 2= — .1+ 22

Now we take 0=Q(Z, 2,, 22 ) in  §5, namely
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S i ,  0 0 , (i= 1, 2) ,
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) 0 = 01 12 1+ '6 12 2 + 0 2 i + c22 -  4 ) ,  in the neighbourhood of Œ1J31 =O, and

On Œ121 + $1 2 2 - E(4' - c2 ,22), in  th e  domain GO, O. Then we
can prove Cx (P, 0  and 0,(P, 0)> 0  in  the following w ay . Remark that

C .(0 , 0  means C,c(P, O. In § 5  w e  have proved that C,(P, 0)> 0
i f  (5-a 0 in (6 .8 ) . We see that C,(P, 0)> 0  holds for e( - 1, 1), i f  w e  notice
the following facts (i) and (ii).
(i ) From (6.8), (6.10) and (5.5)-(5.8), (1, 1)-cofactor of the matrix correspond-
ing to 0,(P,

h50- I
-  — 1  E d 6

( 0 - 1 +io -

+e (
- i6o- f3, -iSo-' c 2

-  1 - io-0 )

ci ô a  ) 0 -  1 + io-c ,  Ma"
- E S (

M- a Pi - 1 - i a  0 -M a" e 2

in case ( I )

in case (II) ,

1where a= —
1

Im (4 ) ,  a'=  —

1
(ot

2 
c -  )32 ) and a"=  -2-(a

2
c

1  
-  13

2
C

2
). In each case (1, 1)-2 2

cofactor o f C,(P, 0) is positive, because even if  (5= 1  it is proved to be posi-
tive in just the same way as the proof of 0 ,(0 , Q )> 0  in the precedent section.
(ii) The determinant of the matrix corresponding to C,(P, 0) is zero if S= +1.
In fact, as in the appendix A .3  o f [3 ]  the sum of the second and the third
line vector of each matrix corresponding to

Gi(El, zdT- G.,(0, z d, (i= 1, 2),

equals its first line vector. In fact

(

1 0  0 \

G ,(0 , z i) =  0  Su  0  ,  G x (E ,  z ,)=

0  0  6 , 2 /

and  G ,(0 , ) G(E ,

0 0

o 2

1-  0

G,(0 ,  ) =

()" 2 2

   

0 0

2 0 0

,  G ( 0 , ) =

Moreover we see the same property as above in the matrix corresponding to
the second term o f  ,(P , 0) : (a -  2 - + 2 0 ± (211 - 2 — 2 2 f i ) ,  namely
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0 1 — 1 0 0 0

—1( 0 0 + 0 0 1 )

1 0 0 — 0 —1 0

Corresponding to (6.7), we consider in  th e  next section the integration by
parts of (4.1), which lead us to  the proof of Theorems.

§ 7 .  Proofs o f Theorems 1  and 2

N ow  w e prove Theorem s I a n d  2 .  Theorem  1 follow s directly from  the
integration by parts of G((0, t), P, Q; (p p ) in  (4 .1 ), using Q  determined in  the
precedent section. O n  th e  other hand in  order to  prove the  estimate in  Theo-
rem  2  w e need  to  ob ta in  th e  boundary estim ate, and for this purpose w e use
an existence theorem with zero initial da ta  o f the  dual problem a s  in  [ 3 ] .  All
these arguments are sim ilar to those in  §  9  o f [3 ], so w e state only the outline.

F irst to  G(P, Q) we associate the differential form

(7.1) G(P, Q; u)= i1m P(D„, D y , D,— iy)e - Y`u Q(Dx , D y , D,— iy)e - Yru,

w here  w e deno te  by  P(Dx , D . D ,)  th e  regularly hyperbolic operator in (6.1).
T hen  to  th e  quadratic form  Cx (P, Q ) a n d  C,(P, Q ) w e associate th e  quadratic
differential fo rm , C (P , Q ; u )  a n d  C,(P, Q; u )  respectively. T h e  function u  is
assum ed to belong to C(RT" x R ') .  Corresponding to (6.7) we have

(7.2) G(P, Q; u)= D .„Cx (P, Q ; u)— (D ,-2iy )(a+ a) 1Q ;  u )

+ .1(P, Q, B; u)+ R(P, Q ; ) ,

where .1(P, Q, B ; u) is  a  quadratic differential form o n  th e  boundary such that
a(P, Q, B ; u)= 0 i f  Bu I,= 0  = 0, and R(P, Q; u) satisfies

(7.3) R (P, Q; E e_ Y ty iD D D u I 2 ) •

§ 7 .1 .  The proof o f Theorem 1

First we remark 0,(P, 0 )> 0  on the support o f (pi  th en  w e  have the follow-
ing relation :

(7.4) c e-Y ly'D(MD;cp j u 12  . C , ( P ,  ; j u)
1-Fi+k-Fial=1

for a positive constant c , where ^ means Fourien transform in y.
Now integrate (7.2) with u=(p i u  in  (y , t)e R"x12 1 ,  then w e have from (7.1)
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—(7.4) and 6 x (P, Q ; p u )> O,

(7.5) (  +  2y) 16, (P, ;  (pi  u )dy dx I
C
,S  e - YiPul 2 dy  dx) 1/ 2

x (11C,(P, 0 ;  j u)dy  dx ) 1 / 2

Let us divide (7.5) by ffl6 1(P, 0. ; tit j u)d y dtr 2 then it follows

(7.6)2 ( + y)(556 1 (P, 0 ;  j u)dy  dt) I 1 2  < 0 1 1 e - Yt Pu I 2 d y  d x ) 1 1  2  .

Integrate (7.6) in  (0, t) a n d  su m  u p  in  j ,  then  w e have Theorem 1 if  we take
care of (7.4).

§ 7.2. The proof of Theorem 2

W e state th e  proof o f  Theorem 2  in  th e  following several steps (See also
§ 9  i n  [ 3 ] . )  A t first let Q  b e R11+1 . L ater w e  m ention t o  the  case  where Q
be a  general domain.

1). F irs t w e  sh o w  th a t the condition (H )  is necessary for obtaining the
estimate in  Theorem 2. L e t  u s  ta k e  u  i n  C'oc(RT+' x R ')  su ch  th a t ti.=_O in
t< 0 , in  th e  estimate (E ) in  Theorem 2. T hen  in teg ra te  it w ith  respect t o  t,
then we have

1 1
(7.7) r1(1u I +  E  <  - 2  M U >  j - ) < 11 Pu I 2./. 7 1 0 ,T1

j= 0 Y.Y1

+ < A 2 B u > } ,y.Y1 where a( A y , ),,) =0)11 2  +  TO 1 / 2

fo r  some positive constant C .  Thus in  view o f  Theorem 2  in  [3 ]  we can see,
a fte r th e  sam e a rgum en t in  § 2, th a t  the condition (H )  is necessary for the
estimate (E ) in  Theorem 2.

2). Next we show tha t the estimate (7.7) follows from ( H ) .  This is proved
in  th e  sam e w ay a s  th e  estimate in  Theorem I, i f  w e  a d d  th e  following lo-
calization.

Since B(y, t, 1), 0, 1)k 0 f o r  a n y  (y, t), (See Theorem 1 i n  [3 ]), we
can find C°° functions 0 ,  and 0 2 satisfying
(1) 0 1 +0 2 =1 o n  R!',+2 x E 3  (x, y, t) x(, T ), where X= firil 2 + 111 2 =1, Imr
(2) 0 , vanishes in  a  neighbourhood o f  (0, y, t, 0, I) e RI.+2  x E, while th e  sup-
p o r t  o f  0 2  is  c o n ta in e d  in  another neighbourhood o f  (0, y, t, 0, 1), such that
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=B(y, t, t), T )  does not vanish on the support of 02 .
T o  the homogeneous extensions of ,  and 0 2  w e correspond the pseudo-

differential operators with a  parameter y. (See §6  i n  [3]). Put 1/11(D )u = u,
and 02 (D)u = u2  fo r  any  u in Cco°(R ir x R '). Assume th a t  the operators P and
B are extended to 1<0, satisfying the condition (H).

From  the support of tif, we have

_
(7.8) <A 2 < Const. luli .Y 9y,r

if w e rem ark that < A - 2  1u  > 1 , <Const. < A u
I
> 1 , y  holds for u1  and thaty -Y,Y Y_

< A  2  U 1 > 1U1 alw ays holds, w here a( A y ,7)= (II/12 + y 2 )1 / 2  and A  =
Y

e7 t F(11112 + It 12 ) 1 /2 Fe — Yt . Thus we have

11 1
2 271(7.9) E <A A l ici  > <  - -y =2y Bu > 02,y+ u  I 1 , ,

N ow  w e consider the quadratic differential form (7.2) replaced u  b y  u„
and integrate it in R1+ 1 x R ' using (7.9). Then we have for large y

_
(7.8) Ylui li' y +  E  <A D-1111

f=0

< C r - I Pui I + - < A Y Bu i > +  I u ? o ,  •
Y Y Y,Y

As for u2 , by virtue of uniformity of 121  0

Ylu2li, 7 +  E  <D iu  >  2  •x  2 1- j ' y
f=0

<cl_
1

ipu21 +<B u2>k y +1,4 L y }Y

in the same way as Kreiss-Sakamoto. (See Appendix A.3 o f [3 ] in o u r  cases)
Thus we have (7.7).

3 ) .  H e re  w e  show  an  ex istence  theorem  in  t h e  w e a k  s e n s e . Namely we
have an existence theorem  of the solution of

(P)o 1Pu=f(x, y, t), x> 0, yeRn,tER ',

Bu=g(y, t), x = 0, y eR n ,teR '.

Assume fe..re k ,7 (R 14.+2 )  and A ;,,qg e.re k . ,(R" + ' )  f o r  y >y k . T hen there  ex ists a
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solution u  o f  (P) 0 b e lo n g in g  to  ,Yek + 1 ,y(RT+2 ). T h is  p roof depends on  the
fa c t  th a t  th e  dual problem  below  also satisfies the  cond ition  (H ) ,  (See § 9.1
o f [3].)

F o r  convenience we notice th a t  u e Yeak +  ,, y(R 2 )  is  p ro v e d  b y  th e  inter-
polation theorem, in  view of the  following facts:
u = A -7 (k+i) e zyt A  -.(k+1 P*w and

( j )  e 2yt A !y--(k + 1) w  G uyip i  , y ( R
)

,T + 2 ,  where A 'y is the adjoint of A y ,

Dx2e 2y t A  ;---(k+i) w e y e -0 (m_+2 ,
5) because

.reo,- y (R++ 2 ).

(iii) Pu =f e<Y e k ,y (RT+ 2 ) .

o f  (i) and A ;-(k+ )p* w

4). N ow  w e have the following energy inequality for the solution of (P) 0 :
For any interval [so , to]  w e  have

1
(7.9) E  <A - ,Y2 Du> E 11(Diu)(011?-;,,

j=0 j= 0

C  ( i  1 . 1 2 1/2 2IJ I 6,y,(so,t0 A+  < y,Y 0, y,(so,t0)}

if the supports of f  and g  in  t  are  in  [s e , Do).
P ro o f. If f a °  a n d  g a - 0  in  ( — co, t , ] ,  then tending y  t o  oo in  (7 .7), we

have u  0  in  ( — co, t,). Rem ark that n o  singularity appears in  th e  right hand
o f (7.7), even if  w e replace f  and  g  in  P i , co) by  zeros. H ence w e have (7.9)
except th e  th ird  te rm  in  th e  left hand-side i f  w e  p u t  11 =1 0 . T he  estimate of
that term is obtained by the integration by parts

(Pu, c Qu) 0 ,7 ,(s 0 ,11) —(c Qu,

where Q  is  th e  operator defined in  th e  previous section and c  is  a  small posi-
tive constant. q. e. d.

5). H ere w e state  som e properties o f  th e  dual problem  fo r {P, B}. Let
u  a n d  y  b e  i n  CT, ( R r 2 )  a n d  le t  P *  b e  th e  form al ad jo in t operator o f  P.
Then the first order boundary operator B ' is uniquely determined such that

(7.10) (Pu, v)— (u P*v)= i{ <B u, y> + <u, B 'v>}  ,

where (  ,  )  a n d  <  ,  >  a re  L 2 n o r m s  i n  R 'r 2 a n d  R n +  1  respectively. N ow
b y  P* a n d  13' w e denote  the  operator 1 "  a n d  B ' replaced D , a n d  t  b y  —D,
a n d  — t. Then {P*, D'} satisfies the condition (H ) i f  a n d  on ly  i f  IP , B I does
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so  a s  in  Lemma 9.1 in  [3 ] .  Therefore we have an existence theorem concerning
the problem

1 P* v =t1i, x > 0 ,  y  e R " ,  t e  R ',  e C c o'(R ir 2 ) ,

B 'u=cp, x = 0 , y eR ",tE R I,cpeC co°(R" -" ) .

And from (7.9) we have the estimate

(7.9)' 11)1i +  E < A ' 1 2 D-iv> 2
x 1- j , -  y , ( s o , t o )

j= 0

+ E 11(a/v)(so) i—j,—y 111P I < A .i•,/ y2 9> 6,—y,(so,t0)} •j=o Y

6 ) .  Now by means of the  results in  the previous steps we can prove Theo-
rem 2 .  In  o rd e r  to  o b ta in  th e  estimate f o r  th e  second  te rm  o f  the energy
inequality (E), we consider the following identity for smooth functions u  and v:

(7.11) (Pu, Dv) ( 0 ,0 —(Du, P*u) ( 0 . 0

= if < Bu, Dv> ( 0 ,0 + <Du, B'v> ( " I +  R(u, v)+ y],

where D  means D t o r  Dy i , (j=1,..., n). Here we have

(7.12) IR(u , v)I y,(0,t)

I I Di C[11(0)] 1 ,y [O n  1, -

Let us take y  as the solution o f the problem

f  P*v= 0

B 'v =9(y , t),

w ith  th e  boundary d a ta  yo(y, 0  i n  3(R" x (0 , t ) ) . T he  so lu tion  v (s) vanishes
i n  t < s  a n d  satisfies (7.9)' w ith s o = 0 a n d  to = t. Therefore form  (7.11) and
(7.12) we have

I <Du, 9 > (o,r)I C"))-
1 1 2  < A :,,q 9 > o ,— y , (0 ,t ){F - F l uI 1, 7 ,(0 ,0 )

1 / 2
where F=

I
-I Pu 16, y , ( 0,1 -

1 
< A B u> (

2
) , y . ( 0 , f ) (On i . y t.•1 y Y

Thus we have

(P * )

where [u( 0 )]k, y = II(Diu)(0)11k-J,7j=0

y < A  / 2 Du> A,,, ( 0 ,0 _C(F2  4 -  lu i  • , y,( OM)



tr +  I
{  Re B = Dx o +  E  Re b„(x)Dx j ,; ,---1

where
#1+ I

1m B =  E  1m b .(x')D
j x i  •

1=1

(1)„ + 1(0 = —  c(x ))
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Hence we have

(7.13) y < A ) ,—,y 2 D1u> +  u I .
1=0

Moreover from the integration by parts of

(Pu, ( 2u, Pu)0, y ,0,0

we have

(7.14) y lu li +  [u(t)];, ),< C (F 2 + y  E <
1=0

By (7.13) and (7.14) we have the energy estimate (E ) in  Theorem 2.

I n  th e  sim ilar w ay, (cf. (9 .11) in  [3]), fo r any  sm oo th  func tion  u  w ith
compact support, we have the estimate

(E)' Y I u t, y ,( 0 ,0  +Y <  A ;:y12 41 ,11>  j,y ,(0 ,0+  E U M N
, Y

j = 0

I  I  P  12
, y , ( 0 , 0 + <  A ;,!, B u> t_ 0  , t ) + [u( 0 ) ] , y } •y

7 ) .  T he  existence theorem follows from th e  above energy estimate in the
sam e w ay a s  §  9 .5  in  [3 ] ,  if- w e  co n sid e r  tw o  existence theorems concerning
a  suitable C auchy problem  and the boundary value problem  (P o ). W e  c a n
show  the existence theorem in  th e  general cylindrical domain and  the  finiteness
o f  th e  propagation speed since the condition ( I I )  is invariant under th e  space-
like transformation, as in § 10 of [3].

Appendix

§  A .1 . Proof o f Lemma 2.4.

F or sim plic ity  let u s  r e w r ite  (x , y ,,  y 2 , y„, t) b y  (x o , x 1 ,..., x„ , x , I ),
which we denote also by (xo , x'). ((x o , x') e RT+ 2 , x o > 0, x' e R"+ 1 .) We denote
the boundary operator B  as

B = Re B+  il ITI B,
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Associating to th e  boundary operator Re B , w e consider th e  Cc° mapping
= (Ow 0 1,.• O w  O + 1 ) from  Rn+2  to Rn+ 2 such that

(1) 0  is diffeomorphic i n  a  neighbourhood w o f  origin to another neighbour-
hood co' o f  o r ig in . Moreover 0  m aps w n R 4+ 2  in to  R 14+2 . (S o  la te r  w e  use
0  a s  th e  mapping restricted in RT+ 2 .)
(2) 0(0, x') = (0, x') and the Jacobi matrix at the origin is the identity.
(3) Re B o u = Re B (u (0 (x ))) a t  a n y  point (0, x') e w , f o r  any smooth function u
E C(/V2F+ 2 ).

1Now we define  u ( x ) = u (  « i x ) ) .  T h e n  w e  c a n  s e e  th a t  i i ( x )  tends to

U (X )  uniformly up to all derivatives if u(x ) is smooth and  bounded function with
com pact support. Here rem ark that if  B  has real coefficients then Û E(x ) satisfies
the desired properties for given function u ( x ) .  In fact, since (3) means

n+ 1
b (0 )(D

X j
0 (0

,
Jr=o

n+ 1
=  E  bi (x')'E- 1 ( "

j=o 1= 0  a X i  
1 )(x ')(D x ,u)(0, x')

where b o (x)= 1, it follows

n i l

(3)' 
a o  ( x

)b ; (x ')=  b i (0) for any x' ewl
.J=0 ux ;

I f  w e  assume Re Bo uixo , o =  0  then  w e  h a v e  Re Be fic lx . =  =  0 from  (3)' replaced
x ' b y  Ex'. So Lemma 2.4 is true, if B  has real coefficients.

Next we proceed to the general case . B o u 0 = 0 means

(4) Re — Im B o  on x , =  0 .

Here we remark that from (2) we have for any s  in [0, 1).

(5) Im = Im BEr i ,  o n  x o = 0

Therefore since we have Re Bo u = Re B ,  it follows

(6) Bct e = i(Im B E — Im Bo ) u  o n  x o = 0.

Denote the  right-hand side of (6) by a ( x )  and  ex tend  it to  x o  > 0  b y  constant,
w h ic h  w e  d e n o te  b y  a(x 0 , x'). T h e n  at (x o , x )  tends t o  z e r o  i n  d(R  ' r 2 ).
We define u , by

tie = Ci, + a ,  (x0 , x ')(P (_ !_  ( e x ) )  ,

where go(x)= 9(x 0 ,  x ')  i s  a  real function in  C ( R 2 )  satisfying (pa x')= 0 and
Bo go =1 at (0, x') e -65. T h e n  u  satisfies the  desired conditions , q. e. d.
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