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Introduction

in this paper we consider Dirichlet finite harmonic differentials with integral
periods on arbitrary Riemann surfaces. From such a differential a on an arbitrarily
given Riemann surface R, we can construct a mapping u ,(p )( , for the definition, see
§1,) from R into S 1 = {lz1=1}, and we can take u; 1(t) as a "level set" of a for every
t E S i. S u c h  a  mapping can be extended continuously onto th e  R oyden's corn-
pactification R * of R .  Now Theorem 1 in  §1 states that for almost all t  in  S 1 —
u ( d )  the set uV (t) consists only of (at most countable number of) simple closed
(, hence compact) curves in R , where d  is the harmonic boundary o f  R * .  In par-
ticular, if ita (d) is a set of linear measure zero on SI, then the holomorphic quadratic
differential ( —  1 . 1 ( 0 2  has closed trajectories (in the sense o f K . Strebel).

Next Theorem 2 states that if t ,  and t ,  are contained in the same component of
—u(4), then the "level sets" u ; 1(t,) and u ; 1(t 2 ) have same length with respect to

the metric naturally induced by a (, or equivalently, *a has same periods along u,,.- 1 (t i )
and u ;'( t 2 ) with suitable orientations).

Definitions and main theorems are stated in §1, and the applications are made
to  basic differentials and functions such a s  reproducing differentials fo r  1-cycles,
Green's functions and harmonic measures in §2. Proofs of main theorems are given
in §3, and examples are provided in §4.

§ 1 .  Definitions and main results

Let R be an arbitrary Riemann surface and F„(R) be the Hilbert space of square
integrable real harmonic differentials on R .  We say that a  differential a in Th (R)

has integral periods if a  is an integer for every 1-cycle c on R, and set

Fht(R)= la E F h (R ): a has integral periods} .

Here note that T h e (R ) is clearly contained in T h i ( R ) .  For every a G r h i (R) and arbi-
trarily fixed point po E R and real constant ia,),
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u,(p)=exp [27r.\/ — 1 • O P  a + a 0 )1
Po

is well defined function on  R whose values fall in S 1 = {lz1=1}. We call u,7(p ) a
circular function f o r a (with the base point p o  and the additive constant a 0 ). F o r
the later use, a circular function u,(p) for a  given a  need to be determined up to
multiplicative factor of modulus one, so the choice of po  and a0  are inessential.

Now since it holds that

I grad = 27c ua(P) • ai= 2 7 rial

(, where (a(z)2 + b(z)2 )dxd y if a = a(z)d x + b(z)d y with a local parameter z =
x — 1 • y), u,7(p ) is  a (complex) Dirichlet finite function o n  R , hence can be
extended to a continuous function from the Royden's compactification R* of R into
S', which is denoted by the same u ,(p ). For the details of the theory of the Royden's
compactification, see [4] o r  [1 1 ] . Let 4 be the harmonic boundary of R*, and set
E = u , (4 ) ,  which we call the set of  essential boundary  v alues o f  tic . Because
A is compact, E „ is also compact, so S' — E  of at most countably many
open arcs on S 1 , each of which we call a supplementary interval for u„.

Next, in general, for a meromorphic quadratic differential on R, a trajectory of
9 is defined as a maximal curve along which 9 is positive. A  trajectory y  of 9  is
called critical if y tends to a zero or a pole of 9  in either direction, and regular if
otherwise. Recall that the number of critical trajectories of cp is at most countable,
and that a compact regular trajectory is a simple closed curve (i.e, Jordan curve).
Now we call a meromorphic quadratic differential 9 has closed trajectories (cf. [12])
if 9z--  0 or the complement of all compact regular trajectories is a set of 2-dimensional
measure zero (, i.e. its intersection with every parameter neighbourhood has area
measure zero). N ote  that yo has closed trajectories if and only if the complement of
all compact regular trajectories has zero area with respect to the m etric  10 . W e set

CA,(R)= {0: 0 is a meromorphic abelian differential whose square has closed
trajectories} .

Now for every a E r h (R ) we set 0,=—*G- +V —1.a and call the holomorphic
differential associated w ith a. Then one of main results can be stated as follows.

Theorem!. L e t  R  b e  a n  arb itrary  R iem ann surface, a e r h i (R), U,7(p )  a
circular function for a and E, se t of essential boundary values of u,. Then for
almost every t in E ,  the set u; 1(t) consists only of compact regular trajectories
of  07., where 0,7 is  the holomorphic dif ferential associated w ith a.

In  particu lar, if  th e  linear m easure o f  E  is  z ero , then th e  holomorphic
dif ferential 0,, associated with a belongs to CA,(R).

Remark. Even if a has not discrete periods, the differential 0„ associated with
a may belong to CA i (R). Such examples for compact surfaces are already known.
Also note that the set u; 1(t) generally consists of trajectories and possibly zeros of
0,i for every t Si.

Finally for every a E r,„(R), let urr (p), E 0 , ,  be as before and {/L } be the
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set of all supplementary intervals for u ( p ) .  Then for every t e S 1 we call the set of
all trajectories of 0,2 contained in u; 1(t)the set of level curves of a f or t (with respect
to u(p)), and denote by L,. This L, is nothing but uV (t) deleted all zeros of 0, as a
p o in t se t. Also note that the set L, depends on the choice of u (p ) , but the whole
family {L,}„,s , depends only on  a. For every t e S l, let L, = J  c., where every Ci

j

is a  trajectory of 0 ,  and in the sequel we assume that every c;  is oriented so that
0,7 (= 1 — * a)  is positive . Then the length m ,(t) of L, is defined by

in ,( t)= E 19, (= E io,d)

Here if  L, is  the empty set, then we consider that m ,(t)= O. A nd we show the
following

Theorem 2 .  L e t R  b e  a n  arb itrary  R iem ann surface, a E T h ,(R ), u,(p) a
circular function for a, E,,  set of  essential boundary values of  u  and {I }  the
set of  all supplem entary  intervals f o r ua(p). Then if  t ,  and  t ,  are  contained in
the sam e IL , then it holds that

m ,(t,)= m o (t2 ).

Moreover if  the linear measure of E,, zero, then it holds that

a(IL )•

where m i =m ,(t) w ith som e (, hence ev ery ) t in  IL , a(lih ..) =a 2 —ol 1 w hen  IL =
{exp (27r\ r—T ct): ct, < ot< ot2 } f or every i, and  I a I R  is  the Dirichlet norm of o- on R.

The proofs of Theorems 1 and 2 will be given in §3.

§ 2. Applications

First for an arbitrary Riemann surface R , we set
A ,S(R) = {0: 0 is a  meromorphic abelian differential on R  such that 0 has an

expansion as ( c±z  +  regular terms)ciz with purely imaginary number

a at every pole}, and
A i S o (R )= { 0 e A ,S (R ): 1m 0  has 1 m -behavior, namely, there is a  canonical

region G in R such that for every component U of R - 6  we can find a
function f u  (of C'-class) on R such that dfu  e Feo (R) and dfu  I rn  0
on LTI

Note that if R  is compact, then A ,S (R )=A ,S o (R), and hence the following Prop-
osition is a generalization of [13] Lemma 6.

Proposition 1 .  L et R  be an  arbitrary  R iem ann surface and 0 e A i S o ( R ) .  I f
Im 0 has integral periods, then 0 belongs to CA ,(R).

c iC j

P ro o f . First because Im 0  has 1 m -behavior, there is a  canonical region G
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as in the definition of A  S o ( R ) .  Here we may assume without loss of generality that
all poles of 0 are contained in G . Since G is relatively compact, 6 has only a finitely
many poles, which are denoted by N e x t  the square 02 has such an expansion
a s (ab

z  
+—

z  
+ regular terms) dz2 with some real negative a near p i for every i. Hence

from the local structure theorem near a pole of order two (cf. [5]) we see that there is
a compact regular trajectory, say y „ of 02 freely homotopic t o  the point p i in  G
for every i.

Now let Di be the disk in G surrounded by yi for every i and set R' =R— Dii=1
and 0' 6  restricted on R '.  Then clearly Tm 0 ' belongs to F k (R ) and has integral
periods. So we can define a circular function u'(p) for Im 0'. Here note that the
number of connected components of R' — G (= R— G) is finite. And it is easily seen
from the assumption that u'(d ' n U) is a constant for every component U of R'— G,
where d' is the harmonic boundary of R'* and U is the closure of U in R '* .  (Recall
that d' n (R'* — G) can be identified with d ) .  Also u'(y i ) is a constant for every i,
for lm 0 =0  along every yi from  the definition. Thus we conclude that the set Eu ,
of essential boundary values of u ' consists of a finite number of points, and the
assertion follows from Theorem I. q. e. d.

Next take a  1-cycle c  on an arbitrarily given Riemann surface R .  Then the
reproducing dif ferential a(c) on R is characterized by the condition that

1w= (w, a(c)) for e v e ry  co e Fh (R).

For basic facts on the theory of differentials, including reproducing ones, see for
example, [3] Ch. V or [7] Ch. 9. Here we recall a standard construction of *a(c).
First let c be the homology class of n,• c k  with suitable integers nk  and oriented

k=1
simple closed curves ck  on R .  Then take a relatively compact annular neighbourhood
Uk of ck  and consider a function vk  of the C'-class on R—ck  with a compact support
in R such that vk  1  on the right side component of U k -  ck  and v ,  0  on the
other side. A n d  then it is known that

k 1 n
k • dv k =*a(c)+df w ith  df E r e o (R ).

=

In particular, it is clear that *a(c) has integral periods.

Proposition 2 .  L et R  and c be as abov e. T hen the holomorphic reproducing
dif ferential 6 c =a(c)+,1 —1•*a(c) (, i.e . the holom orphic dif ferential associated
with *o-(c)) belongs to CA l (R).

Moreover let u(p) be a circular function for *a(c) and denote by m(t) the length
m.,, ( c ) (t) of the set L, of level curves of *o-(c) for t for every t E .3 1 . T hen it holds that

in(t)= (7 (0 (=

f or ev ery  t S ' ex cept for at m ost single one value.
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P ro o f . Note that u(p)=exp [27TV —1 (ÇP 2 nk - dvk + a o ) 1  on the harmonic
pboundary of R*, where n, and v, are as in the a bk= 1o v e  construction of *a(c) and p c, E R

and ao  are  suitably chosen. So we can see that the set Eu o f essential boundary
values of u is empty or consists of only one value exp (27r\ / — 1 . c/o ). Thus the as-
sertions follow from Theorems 1 and 2. q .  e .  d.

Remark. Proposition 2 is essentially due to  A ccola. See [1 ] and [ 2 ] .  (Also
cf. [8 ] and [ 1 3 ] . )  Note that the first assertion of Proposition 2 is also a corollary
of Proposition 1, for 0, belongs to A i S o (R) (, i.e. it is clear from the construction that
*o-(c) has I' m -behavior.)

Now we state a special but important case of Propositions 1 and 2.

Corollary 1 ([2] and [10]). L et g(p, q) be the Green's function on a hyperbolic
Riemann surface R (R 0 6 ) with the pole q e R . T hen the meromorphic differential
Ou = — *dg(p, q)+ \ / — 1. dg(p, q) belongs to CA ,(R).

Moreover for every t> 0, it holds that

— *dg(p, q)= 27r.
efilelt:g(p,q)> t)

P ro o f . The first assertion follows from Proposition 1, for (9q belongs to A l S o (R).
Anyway, recall that for a sufficiently large a, the region Da = {p e R : g(p, q)> a}  is
a disk in R  with an analytic boundary (cf. the proof of Proposition 1), and that on
the surface R' =R—  Da we have

a- 1  • dg(p,

where c  is a simple closed curve freely homotopic to  the boundary of Da on  R'.
Hence the assertions follows from Proposition 2. (Here the exceptional value 1 for
a circular function u(p)=exp [27tV  — 1. a - 1  • g(p, q)] for dg(p, q) on R ' corresponds
to t = 0 and a, hence is never taken in R'.) q. e. d

Finally we consider HD-harmonic measures. Here we call a Dirichlet finite
positive harmonic function 11(p) on R  an  HD-harm onic m easure if the greatest
harmonic minorant of h(p) and 1-h(p) is identically ze ro . (Hence obviously 0<
h ( p )  1.) Recall that h ( p ) = "  * c y ( c ) _ a o

 w ith  suitable  po e R  and ao  E (0, 1) is
Po

an HD-harmonic measure for every dividing Jordan curve c on R.

Proposition 3 .  L et R  be  a n  arb itrary  R iem ann surf ace and h(p) an HD-
harm onic m easure. Then the holomorphic dif ferential — *dh+ — 1. dh associated
w ith dh belongs to CA ,(R ). A nd for every  t in (0, 1), it holds that

*dh=lidha
.{peR:h(p)=t}

where every curve in { pe R : h(p)=t}  is oriented so that *dh is positive along it.

P ro o f . Because u(p)=exp [27r/ — 1 h(p)] is a circular function for dh, and the
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set E, is clearly { 1 } . Thus the assertion follows from Theorems 1 a n d  2 . (Here the
exceptional value 1 is never taken in R.) q. e. d.

§3 . The proofs of Theorems

Let R be an arbitrary Riemann surface, a e T h AR), u(p) a circular function for
a and 0, the holomorphic differential associated with a. Also we set

E0 = {u,(p): p is a zero of 0 } .

Then obviously E, is a countable set, and for every t ES —E0 the set u (t) consists
only of analytic curves ( , hence coincident with L , defined in  § 1 ) .  We note the
following lemma essentially due to Accola (cf. [1]).

Lemma 1. For every  t e Si —E0 , the set L, of  level curves (with the  relative
topology induced from that of R) is locally connected.

Pro o f . Take Po e L, arbitrary, and set z(p)= 0,, then because t e S1 — E0 ,
Po

z(p) is local parameter near po . Now take a  sufficiently small positive s(< 1) and
set U ,= {p e R: Iz(p)I < c } .  If g e L, n U,, le t f3 be an arc connecting po  a n d  g  in
U , .  Then u,( 16) is an arc in S i starting from and ending at t, which implies that
Tm z(q) = Ç  a is an integer. Hence we conclude that L, n U, is the arc {p ER: Im
z(p )=0 , IRe z(p)l< e}, which shows the assertion. q. e. d.

In particular, L, consists of simple analytic curves not accumulating to any point
in R and every non-compact component of L, tends to the ideal boundary of R in
both directions for every t ES' — Eo . Here we recall the following crucial lemma
due to Y. Kusunoki and S. Mori [6] ( ; also see [11] III2G).

Lemma 2 . L et G  be a  subregion of  R  whose relative boundary components
are sim ple analy tic curv es not accum ulating to any  po in t in  R .  A nd suppose
that the closure o f  G  in  R * is disjoint f rom  the harm onic boundary . T hen the
double C of G along the relative boundary of G is parabolic (, i.e. G e 0 o .).

Now let E = u , (4 )  and {IL} be as in §1, and fix a  supplementary interval
Then for every interval / = {exp (27r,/ —1•cx): oc i <a< oc2 } such that exp (2n,/ — 1.a i )
are not contained in Eo (j =1, 2) and Ï is contained in ' L ,  the closure of u; '(1) in R* is
disjoint from 4, hence by Lemma 2 we see that the double C of G is parabolic for every
component G of 14; V ). Also we can exteded a  restricted o n  such a G anti-sym-
metrically to an element, say 6, in T h (0 ).  (Namely, letting j ( p )  be the  canonical
anti-conformal involution fixing the relative boundary o f G, we define 0=0, on
G and Ô=0 1, oj  on C—G, then d is, by definition, Im O. See, for example, [3] Ch.
V . 1 3 .)  Here it is clear from the construction that (1/ 2(a2 — oci ))• 6 has integral
periods, hence Theorems 1 and 2 can be reduced to the following Lemma, which
seems to be interesting in itself.
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Lemma 3. L et R  b e  a  parabolic R iem ann surface, e T H (R ) and u ( p )  a
circular function f o r a. T h e n  the holom orphic dif ferential 61,, associated w ith a
belongs to CA ,(R ) and for every  t e S i it holds that

in c (1) = II ca .

Lemma 3 was stated by Accola in [2], but for the sake of completeness we give
a proof, which depnds on the following classical result.

Lemma 4 (cf. [9]). Let R  be a parabolic R iem ann surface and B be a square
integrable holom orphic dif ferential on R . T hen  there  is  an  exhaustion {Q„} 1

of R such that the relative boundary 5 f2„ of Q„ consists of a finite number of analytic
simple closed curves for every n, and it holds that

lim 101=0 .
n -co  10,,

Proof  of Lemma 3. First suppose that 0,, does not belong to CA ,(R ), and X
be the complement of the set of all compact regular trajectories of O . (N o te  th a t
X  is a closed set, for sufficiently small neighbourhood of a compact regular trajectory
is swept out by mutually freely homotopic compact regular trajectories.) Then
there is a point po e R  such that the area measure of X  n U  is positive for every
parameter neighbourhood U  of po . Here we may assume that p o  is no t a zero of
8,„ so z(p) in Lemma 1 is a local parameter near po and X  near po corresponds to a
set of lines parallel to the real axis near z=0  on the z-plane. So ti a (X  n J )  has
positive linear measure for every open are J  containing p o  a long w hich *u = O.
Because critical trajectories are countable, we can find a  measurable set, say F,
in u,,,(X  n J )  such that F  has positive linear measure and there is a non-compact
regular trajectory y, intersecting with J for every t e F .  In the sequel we fix a relatively
compact arc J  and measurable set F in ua (X  n J)  as above.

Now let {S-2„} 1 be  as in Lemma 4 with 0 = B„, namely,

lilT1 lO,,I =0.
00„

Also we may assume tha t J  is contained in f21. Then since y, tends to  the ideal
boundary of R  for every t e F (as noted after Lemma 1), hence should intersect with
every as2„ for every t e F, we see that u,(00„) contains F  for every n. So it should
holds that

0 5 2 .
1° oo„

eon
Next note that a can not be exact, hence u , ( R ) = S '.  Now we take any open

arc I= {exp (27r,/ — 1 a): cx <OE < oz2 } and  app ly  the Green-Stokes' formula to O ,,

for every n, where 2na is the linear measure of F .  Thus it should holds that lim
10,1> a> 0, which is a contradiction, and we conclude that 06, belongs to CA ,(R).

n—oz)
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on the union On n u ;  i (/ )  of regions. Here because the relative boundary, say T„,
(2„ n u ;  i (/ )  is piecewise analytic and Oa is  holomorphic also on En ,  we can apply
the Green-Stokes' formula. And we have that

0 = = —*CT
F„ u 1 ( t i ) nn„ .çu.i(r2)npn

+

an„nu;i(i) e a '

where t = exp (27c/ —1 oci ) for each j=  1, 2. Thus it holds that

*0- + 16,1
Lino„ 2 nn„ an„

rt1J 12) + 10,71.

Letting n tends t o  + co, we conclude from Lemma 4 th a t  m(t 1) < m,(t2 ). And
by considering S1 - 1  instead of I, we have the converse inequality. Hence we have
th a t ma (t i )= m 0.(t2 ). Since I  is arbitrary, m ( t )  i s  a constant, say  in , o n  Sq.
Finally note that

(—*(3) A  Cr Lt= ( —*(7) A  ( )27.t.\ /— 1 .1

=
o  

mo.(exp (2n,/ — 1 -s))ds =m.

Thus we conclude that ma ( t )= m =  I oMI, for every t e SI. q. e. d.

Finally we modify the first assertion of Lemma 3 as follows.

Lemma 5. Let R, o-, u a (p) and Oa be as in Lemma 3. A nd set

EN = fu a (p )eS 1 : p is on a non-compact regular trajectory  of 0,2 1.

Then the linear measure of  EN is zero.

P ro o f . Let {t2„} , be as in Lemma 4 with 0=0,7 , and set
Eg,= {u a (p )e  S :  p  is in On  and on a non-compact regular trajectory of B}.

Then it is clear that Eig c E 7 . EN for every n  and m with n < m , and that EN is
the union of all E .

Now suppose that the linear measure of EN is positive, then there is an n, such
that the linear measure of Ego is greater than a positive constant ao . Note that the
linear measure of EA,' is also greater than ao for every n> no , and similarly as in the
proof of Lemma 3, we can show that

liM 10•71 217c
/1 — .00 052n

ao

which is a contradiction ,q .  e .  d.



Dirichlet fin ite  h a rm on ic d i f ferentia ls 365

P ro o f of  T h eo r em s 1 and 2. Let R, o•, u (p ), E ,„  and 0 , be as in Theorem 1,
and {/ } be the set of all supplementary intervals for u , .  Also let EN be as in Lemma
5, namely,

EN= {u,(p) e S 1 : p  is on a non-compact regular trajectory of 0} ,
then we see from Lemma 5 that EN n 1 is a set of zero linear measure for every i.
In other words, u ;i ( t )  consists only of compact regular trajectories of 0,2 for almost
every t in S' — IL ), which is the first assertion of Theorem 1. If the linear
measure of E„ is zero, then the linear measure of EN itself is zero. On the other hand,
we can show similarly as in the proof of Lemma 3 that, if 0 , does not belongs to
CA,(R), then the linear measure of EN should be positive. Thus we conclude that
0, belongs to CA,(R).

Next Lemma 3 implies that if t ,  and t2 are contained in the same interval, say
IL , then it holds that m,(t i. )= m a (t 2 ), which we denote by mi (as in  Theorem 2),
and that for every 1 , it holds that

,in t i )  = a(P .,) .1 1 1 1

where a(IL ) is as in Theorem 2 and 110-ii. :r iu t o  is  the Dirichlet norm of a  on the
open set u„.- 1 (P„) in R .  And if the linear measure of E„. . is zero, then we can easily
seen that the Dirichlet norm of a  on the set R—U u;'(IL ‘„) (=u,7 1 (E ,) )  is  zero,
hence we have that

II 0- II = E a ( I ) • m .

Thus we have shown Theorem 2. q. e. d.

§ 4. Examples

First we construct the following

Example 1. There is an HB-harmonic measure u (p ) on a surface R  (, i.e. the
greatest harmonic minorant of u(p) and 1 —u(p) is the constant zero,) such that du
does not belong to I",(R), but the holomorphic differential 0= —*du+,1 —1. du
associated with du belongs to CA,(R).

Construction. L et R= {Izi <1} — I„, where in = [r 2 ,_ ,, r 2 „ ]  with an  in-
n=1

creasing sequence {r„},7=1 of positive numbers converging to 1, and u(p) the uniquely
determined harmonic function on R  whose boundary value is  1 on i n an d  0

n= 1
on {izI =1} — {1}. Then we can see that all zeros of the holomorphic differential
0 associated with d u  are contained in the positive real axis and there is exactly one
simple zero, say s„, of 0 in (r 2 n , r 21 , , )  for every n.

Now by choosing {r„} ,', sufficiently scarcely ( , fo r example, choose {r„}nc°_,
inductively so that (r„_,—r„)1(1—r„.r + 1 ) converges to 1 as n tends to + co), we can
assume that du EV  h(R) and u ( s )  converges to zero as n tends to + co. Then u- 1 (c)
consists only of compact connected components for every c  in (0, 1), which implies
that 0 belongs to CA,(R).
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Remark. Similarly as above we can construct an  unbounded Dirichlet finite
harmonic function u(p) on a surface R  such that the holomorphic differential as-
sociated with d u  belongs to CA 1 (R).

A lso recall that th e  typical example o f  (unbounded and D irichlet infinite)
harmonic function u(p) such that the  differential associated with d u  belongs to
CA l (R) is the G reen's function o r  th e  so-called Evans-Selberg potential o n  a
surface k considered as a harmonic function on R=R— {p o }

, where po  is  the only
singularity of the function.

Next we show by an example that, even for a (non-dividing) simple closed curve
c, every set L 1 (t e S') of level curves of the conjugate of the reproducing differential
u(c) may be non-compact.

Example 2. Let R o =f lz i<+ co; —(— co, —2] U [ — 1/2, 1/2] U [2, + c o ) ,  and
for every n set I „= [r2,,  1, 1.2n ] and J„=[-1  Ir2n — —  1Ir2 „], where 1< r , and r„

converging increasingly to 3/2. Next set R = R o — (I„U.1„)— {3/2, —2/3} and let
n=1

1 4 (Z ) be the uniquely determined harmonic function whose boundary value is  1 on

[ —1/2, 1/2] u 1„) a n d  0  o n  (— co, —2] u [2, + co) U('J J„). Here by taking
n=1 n=1

{r„}„̀°_, so that r2 „ _  — r2 „ converges sufficiently rapidly to zero as n tends to  + co,
we may assume that du c FAR) and u(s„) converges to a value, say d, less than 1/2,
where sn is the unique simple zero of the holomorphic differential 0 associated with
du  on  (r2 „, r2 „ , , )  for every n. Also note that u(-11z) -- 1— u(z). Hence — 1/s„
is  the unique simple zero of 0 on (-1/r 2 17, —1/r2 „, ,) and u(-1/s„) converges to
1 — d (>1/2). In particular, we can see that u- 1 (t) is non-compact and consists of
infinitely many (compact) connected components for every t e  S '.  O n the  other
hand it is clear that du =*o -(c) with the simple closed curve c on R which separates

[ — 1/2, 1/2] U ( /„) U {3/2} from ( — co, —2] u [2, + co) u ( J„)U { — 2/3}.
n=1 n=1

Finally let 11 be the double of R along all non-degenerate boundary components
of R and â  be  the anti-symmetric extention of du on R .  Then it is clear that a =
2. *a(t), where 'e is the non-dividing simple closed curve on  R  corresponding to c,
and that the set L, of level curves o f  ( )  is non-compact and consists of infinitely
many compact connected components for every t E SI .
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