Dirichlet finite harmonic differentials with integral periods on arbitrary Riemann surfaces

By
Masahiko TANIGUCHI

(Received March 19, 1982)

Introduction

In this paper we consider Dirichlet finite harmonic differentials with integral periods on arbitrary Riemann surfaces. From such a differential σ on an arbitrarily given Riemann surface R, we can construct a mapping $u_{\sigma}(p)$ (, for the definition, see $\S 1$,) from R into $S^{1}=\{|z|=1\}$, and we can take $u_{\sigma}^{-1}(t)$ as a "level set" of σ for every $t \in S^{1}$. Such a mapping can be extended continuously onto the Royden's compactification R^{*} of R. Now Theorem 1 in $\S 1$ states that for almost all t in $S^{1}-$ $u_{\sigma}(\Delta)$ the set $u_{\sigma}^{-1}(t)$ consists only of (at most countable number of) simple closed (, hence compact) curves in R, where Δ is the harmonic boundary of R^{*}. In particular, if $u_{\sigma}(\Delta)$ is a set of linear measure zero on S^{1}, then the holomorphic quadratic differential $\left(-{ }^{*} \sigma+\sqrt{-1} \cdot 1 \sigma\right)^{2}$ has closed trajectories (in the sense of K. Strebel).

Next Theorem 2 states that if t_{1} and t_{2} are contained in the same component of $S^{1}-u_{\sigma}(\Delta)$, then the "level sets" $u_{\sigma}^{-1}\left(t_{1}\right)$ and $u_{\sigma}^{-1}\left(t_{2}\right)$ have same length with respect to the metric naturally induced by σ (, or equivalently, ${ }^{*} \sigma$ has same periods along $u_{\sigma}^{-1}\left(t_{1}\right)$ and $u_{\sigma}^{-1}\left(t_{2}\right)$ with suitable orientations).

Definitions and main theorems are stated in §1, and the applications are made to basic differentials and functions such as reproducing differentials for 1-cycles, Green's functions and harmonic measures in §2. Proofs of main theorems are given in $\S 3$, and examples are provided in $\S 4$.

§ 1. Definitions and main results

Let R be an arbitrary Riemann surface and $\Gamma_{h}(R)$ be the Hilbert space of square integrable real harmonic differentials on R. We say that a differential σ in $\Gamma_{h}(R)$ has integral periods if $\int_{c} \sigma$ is an integer for every 1-cycle c on R, and set

$$
\Gamma_{h I}(R)=\left\{\sigma \in \Gamma_{h}(R): \sigma \text { has integral periods }\right\} .
$$

Here note that $\Gamma_{h e}(R)$ is clearly contained in $\Gamma_{h I}(R)$. For every $\sigma \in \Gamma_{h I}(R)$ and arbitrarily fixed point $p_{0} \in R$ and real constant a_{0},

$$
u_{\sigma}(p)=\exp \left[2 \pi \sqrt{-1} \cdot\left(\int_{p_{0}}^{p} \sigma+a_{0}\right)\right]
$$

is well defined function on R whose values fall in $S^{1}=\{|z|=1\}$. We call $u_{\sigma}(p) a$ circular function for σ (with the base point p_{0} and the additive constant a_{0}). For the later use, a circular function $u_{\sigma}(p)$ for a given σ need to be determined up to multiplicative factor of modulus one, so the choice of p_{0} and a_{0} are inessential.

Now since it holds that

$$
\left|\operatorname{grad} u_{\sigma}(p)\right|=2 \pi\left|u_{\sigma}(p) \cdot \sigma\right|=2 \pi|\sigma|
$$

(, where $|\sigma|^{2}=\left(a(z)^{2}+b(z)^{2}\right) d x d y$ if $\sigma=a(z) d x+b(z) d y$ with a local parameter $z=$ $x+\sqrt{-1} \cdot y), u_{\sigma}(p)$ is a (complex) Dirichlet finite function on R, hence can be extended to a continuous function from the Royden's compactification R^{*} of R into S^{1}, which is denoted by the same $u_{\sigma}(p)$. For the details of the theory of the Royden's compactification, see [4] or [11]. Let Δ be the harmonic boundary of R^{*}, and set $E_{u_{\sigma}}=u_{\sigma}(\Delta)$, which we call the set of essential boundary values of u_{σ}. Because Δ is compact, $E_{u_{\sigma}}$ is also compact, so $S^{1}-E_{u_{\sigma}}$ consists of at most countably many open arcs on S^{1}, each of which we call a supplementary interval for u_{σ}.

Next, in general, for a meromorphic quadratic differential φ on R, a trajectory of φ is defined as a maximal curve along which φ is positive. A trajectory γ of φ is called critical if γ tends to a zero or a pole of φ in either direction, and regular if otherwise. Recall that the number of critical trajectories of φ is at most countable, and that a compact regular trajectory is a simple closed curve (i.e, Jordan curve). Now we call a meromorphic quadratic differential φ has closed trajectories (cf. [12]) if $\varphi \equiv 0$ or the complement of all compact regular trajectories is a set of 2-dimensional measure zero (, i.e. its intersection with every parameter neighbourhood has area measure zero). Note that φ has closed trajectories if and only if the complement of all compact regular trajectories has zero area with respect to the metric $|\varphi|$. We set
$C A_{1}(R)=\{\theta: \theta$ is a meromorphic abelian differential whose square has closed trajectories $\}$.
Now for every $\sigma \in \Gamma_{h}(R)$ we set $\theta_{\sigma}=-^{*} \sigma+\sqrt{-1} \cdot \sigma$ and call the holomorphic differential associated with σ. Then one of main results can be stated as follows.

Theorem 1. Let R be an arbitrary Riemann surface, $\sigma \in \Gamma_{h I}(R), u_{\sigma}(p)$ a circular function for σ and $E_{u_{\sigma}}$ the set of essential boundary values of u_{σ}. Then for almost every t in $S^{1}-E_{u_{\sigma}}$, the set $u_{\sigma}^{-1}(t)$ consists only of compact regular trajectories of θ_{σ}^{2}, where θ_{σ} is the holomorphic differential associated with σ.

In particular, if the linear measure of $E_{u_{\sigma}}$ is zero, then the holomorphic differential θ_{σ} associated with σ belongs to $C A_{1}(R)$.

Remark. Even if σ has not discrete periods, the differential θ_{σ} associated with σ may belong to $C A_{1}(R)$. Such examples for compact surfaces are already known. Also note that the set $u_{\sigma}^{-1}(t)$ generally consists of trajectories and possibly zeros of θ_{σ}^{2} for every $t \in S^{1}$.

Finally for every $\sigma \in \Gamma_{h l}(R)$, let $u_{\sigma}(p), E_{u_{\sigma}}$ and θ_{σ} be as before and $\left\{I_{u_{\sigma}}^{i}\right\}$ be the
set of all supplementary intervals for $u_{\sigma}(p)$. Then for every $t \in S^{1}$ we call the set of all trajectories of θ_{σ}^{2} contained in $u_{\sigma}^{-1}(t)$ the set of level curves of σ for t (with respect to $u_{\sigma}(p)$), and denote by L_{t}. This L_{t} is nothing but $u_{\sigma}^{-1}(t)$ deleted all zeros of θ_{σ} as a point set. Also note that the set L_{t} depends on the choice of $u_{\sigma}(p)$, but the whole family $\left\{L_{t}\right\}_{t \in S^{1}}$ depends only on σ. For every $t \in S^{1}$, let $L_{t}=\bigcup_{j} c_{j}$, where every c_{j} is a trajectory of θ_{σ}^{2}, and in the sequel we assume that every c_{j} is oriented so that $\int_{c_{j}} \theta_{\sigma}\left(=\int_{c_{j}}-{ }^{*} \sigma\right)$ is positive. Then the length $m_{\sigma}(t)$ of L_{t} is defined by

$$
m_{\sigma}(t)=\sum_{j} \int_{c_{j}} \theta_{\sigma}\left(=\sum_{j} \int_{c_{j}}\left|\theta_{\sigma}\right|\right)
$$

Here if L_{t} is the empty set, then we consider that $m_{\sigma}(t)=0$. And we show the following

Theorem 2. Let R be an arbitrary Riemann surface, $\sigma \in \Gamma_{h I}(R), u_{\sigma}(p) a$ circular function for $\sigma, E_{u_{\sigma}}$ the set of essential boundary values of u and $\left\{I_{u_{\sigma}}^{i}\right\}$ the set of all supplementary intervals for $u_{\sigma}(p)$. Then if t_{1} and t_{2} are contained in the same $I_{u_{\sigma}}^{i}$, then it holds that

$$
m_{\sigma}\left(t_{1}\right)=m_{\sigma}\left(t_{2}\right) .
$$

Moreover if the linear measure of $E_{u_{\sigma}}$ is zero, then it holds that

$$
\|\sigma\|_{R}^{2}=\sum_{i} a\left(I_{u_{\sigma}}^{i}\right) \cdot m_{i},
$$

where $m_{i}=m_{\sigma}(t)$ with some (, hence every) t in $I_{u_{\sigma}}^{i}, a\left(I_{u_{\sigma}}^{i}\right)=\alpha_{2}-\alpha_{1}$ when $I_{u_{\sigma}}^{i}=$ $\left\{\exp (2 \pi \sqrt{-1} \cdot \alpha): \alpha_{1}<\alpha<\alpha_{2}\right\}$ for every i, and $\|\sigma\|_{R}$ is the Dirichlet norm of σ on R.

The proofs of Theorems 1 and 2 will be given in $\S 3$.

§ 2. Applications

First for an arbitrary Riemann surface R, we set
$A_{1} S(R)=\{\theta: \theta$ is a meromorphic abelian differential on R such that θ has an expansion as $\left(\frac{a}{z}+\right.$ regular terms $) d z$ with purely imaginary number a at every pole $\}$, and
$A_{1} S_{0}(R)=\left\{\theta \in A_{1} S(R): \operatorname{Im} \theta\right.$ has $\Gamma_{\{0\}}$-behavior, namely, there is a canonical region G in R such that for every component U of $R-\bar{G}$ we can find a function f_{U} (of C^{∞}-class) on R such that $d f_{U} \in \Gamma_{e 0}(R)$ and $d f_{U} \equiv \operatorname{Im} \theta$ on $U\}$
Note that if R is compact, then $A_{1} S(R)=A_{1} S_{0}(R)$, and hence the following Proposition is a generalization of [13] Lemma 6.

Proposition 1. Let R be an arbitrary Riemann surface and $\theta \in A_{1} S_{0}(R)$. If $\operatorname{Im} \theta$ has integral periods, then θ belongs to $C A_{1}(R)$.

Proof. First because $\operatorname{Im} \theta$ has $\Gamma_{\{0\}}$-behavior, there is a canonical region G
as in the definition of $A_{1} S_{0}(R)$. Here we may assume without loss of generality that all poles of θ are contained in G. Since G is relatively compact, θ has only a finitely many poles, which are denoted by $\left\{p_{i}\right\}_{i=1}^{N}$. Next the square θ^{2} has such an expansion as $\left(\frac{a}{z^{2}}+\frac{b}{z}+\right.$ regular terms $) d z^{2}$ with some real negative a near p_{i} for every i. Hence from the local structure theorem near a pole of order two (cf. [5]) we see that there is a compact regular trajectory, say γ_{i}, of θ^{2} freely homotopic to the point p_{i} in G for every i.

Now let D_{i} be the disk in G surrounded by γ_{i} for every i and set $R^{\prime}=R-\bigcup_{i=1}^{N} \bar{D}_{i}$ and $\theta^{\prime} \equiv \theta$ restricted on R^{\prime}. Then clearly $\operatorname{Im} \theta^{\prime}$ belongs to $\Gamma_{h}\left(R^{\prime}\right)$ and has integral periods. So we can define a circular function $u^{\prime}(p)$ for $\operatorname{Im} \theta^{\prime}$. Here note that the number of connected components of $R^{\prime}-G(=R-G)$ is finite. And it is easily seen from the assumption that $u^{\prime}\left(\Delta^{\prime} \cap \bar{U}\right)$ is a constant for every component U of $R^{\prime}-G$, where Δ^{\prime} is the harmonic boundary of $R^{\prime *}$ and \bar{U} is the closure of U in $R^{\prime *}$. (Recall that $\Delta^{\prime} \cap\left(R^{\prime *}-G\right)$ can be identified with $\left.\Delta\right)$. Also $u^{\prime}\left(\gamma_{i}\right)$ is a constant for every i, for $\operatorname{Im} \theta=0$ along every γ_{i} from the definition. Thus we conclude that the set $E_{u^{\prime}}$ of essential boundary values of u^{\prime} consists of a finite number of points, and the assertion follows from Theorem 1.
q.e.d.

Next take a 1 -cycle c on an arbitrarily given Riemann surface R. Then the reproducing differential $\sigma(c)$ on R is characterized by the condition that

$$
\int_{c} \omega=(\omega, \sigma(c)) \quad \text { for every } \quad \omega \in \Gamma_{h}(R)
$$

For basic facts on the theory of differentials, including reproducing ones, see for example, [3] $\mathrm{Ch} . \mathrm{V}$ or [7] Ch .9 . Here we recall a standard construction of $* \sigma(c)$. First let c be the homology class of $\sum_{k=1}^{m} n_{k} \cdot c_{k}$ with suitable integers n_{k} and oriented simple closed curves c_{k} on R. Then take a relatively compact annular neighbourhood U_{k} of c_{k} and consider a function v_{k} of the C^{∞}-class on $R-c_{k}$ with a compact support in R such that $v_{k} \equiv 1$ on the right side component of $U_{k}-c_{k}$ and $v_{k} \equiv 0$ on the other side. And then it is known that

$$
\sum_{k=1}^{m} n_{k} \cdot d v_{k}=* \sigma(c)+d f \quad \text { with } \quad d f \in \Gamma_{e 0}(R) .
$$

In particular, it is clear that $* \sigma(c)$ has integral periods.
Proposition 2. Let R and c be as above. Then the holomorphic reproducing differential $\theta_{c}=\sigma(c)+\sqrt{-1} \cdot * \sigma(c)$ (, i.e. the holomorphic differential associated with $* \sigma(c))$ belongs to $C A_{1}(R)$.

Moreover let $u(p)$ be a circular function for $* \sigma(c)$ and denote by $m(t)$ the length $m_{* \sigma(c)}(t)$ of the set L_{t} of level curves of ${ }^{*} \sigma(c)$ for t for every $t \in S^{1}$. Then it holds that

$$
m(t)=\|\sigma(c)\|_{R}^{2} \quad\left(=\left\|^{*} \sigma(c)\right\|_{R}^{2}\right)
$$

for every $t \in S^{1}$ except for at most single one value.

Proof. Note that $u(p)=\exp \left[2 \pi \sqrt{-1}\left(\int_{p_{0}}^{p} \sum_{k=1}^{m} n_{k} \cdot d v_{k}+a_{0}\right)\right]$ on the harmonic boundary of R^{*}, where n_{k} and v_{k} are as in the above construction of $* \sigma(c)$ and $p_{0} \in R$ and a_{0} are suitably chosen. So we can see that the set E_{u} of essential boundary values of u is empty or consists of only one value $\exp \left(2 \pi \sqrt{-1} \cdot a_{0}\right)$. Thus the assertions follow from Theorems 1 and 2.
q.e.d.

Remark. Proposition 2 is essentially due to Accola. See [1] and [2]. (Also cf. [8] and [13].) Note that the first assertion of Proposition 2 is also a corollary of Proposition 1, for θ_{c} belongs to $A_{1} S_{0}(R)$ (, i.e. it is clear from the construction that * $\sigma(c)$ has $\Gamma_{\{0\}}$-behavior.)

Now we state a special but important case of Propositions 1 and 2.
Corollary 1 ([2] and [10]). Let $g(p, q)$ be the Green's function on a hyperbolic Riemann surface $R\left(R \notin O_{G}\right)$ with the pole $q \in R$. Then the meromorphic differential $\theta_{q}=-^{*} d g(p, q)+\sqrt{-1} \cdot d g(p, q)$ belongs to $C A_{1}(R)$.

Moreover for every $t>0$, it holds that

$$
\int_{0\{p \in R: g(p, q)>t\}}-* d g(p, q)=2 \pi .
$$

Proof. The first assertion follows from Proposition 1, for θ_{q} belongs to $A_{1} S_{0}(R)$. Anyway, recall that for a sufficiently large a, the region $D_{a}=\{p \in R: g(p, q)>a\}$ is a disk in R with an analytic boundary (cf. the proof of Proposition 1), and that on the surface $R^{\prime}=R-\overline{D_{a}}$ we have

$$
a^{-1} \cdot d g(p, q)=* \sigma(c)
$$

where c is a simple closed curve freely homotopic to the boundary of D_{a} on R^{\prime}. Hence the assertions follows from Proposition 2. (Here the exceptional value 1 for a circular function $u(p)=\exp \left[2 \pi \sqrt{-1} \cdot a^{-1} \cdot g(p, q)\right]$ for $d g(p, q)$ on R^{\prime} corresponds to $t=0$ and a, hence is never taken in R^{\prime}.)
q.e.d

Finally we consider HD-harmonic measures. Here we call a Dirichlet finite positive harmonic function $h(p)$ on R an HD-harmonic measure if the greatest harmonic minorant of $h(p)$ and $1-h(p)$ is identically zero. (Hence obviously $0 \leq$ $h(p) \leq 1$.) Recall that $h(p)=\int_{p_{0}}^{p} * \sigma(c)-a_{0}$ with suitable $p_{0} \in R$ and $a_{0} \in(0,1)$ is an HD-harmonic measure for every dividing Jordan curve c on R.

Proposition 3. Let R be an arbitrary Riemann surface and $h(p)$ an HDharmonic measure. Then the holomorphic differential $-{ }^{*} d h+\sqrt{-1} \cdot d h$ associated with dh belongs to $C A_{1}(R)$. And for every t in $(0,1)$, it holds that

$$
\int_{\{p \in R: h(p)=t\}} * d h=\|d h\|_{R}^{2}
$$

where every curve in $\{p \in R: h(p)=t\}$ is oriented so that ${ }^{*} d h$ is positive along it.
Proof. Because $u(p)=\exp [2 \pi \sqrt{-1} \cdot h(p)]$ is a circular function for $d h$, and the
set E_{u} is clearly $\{1\}$. Thus the assertion follows from Theorems 1 and 2. (Here the exceptional value 1 is never taken in R.)

§3. The proofs of Theorems

Let R be an arbitrary Riemann surface, $\sigma \in \Gamma_{h I}(R), u_{\sigma}(p)$ a circular function for σ and θ_{σ} the holomorphic differential associated with σ. Also we set

$$
E_{0}=\left\{u_{\sigma}(p): p \text { is a zero of } \theta_{\sigma}\right\} .
$$

Then obviously E_{0} is a countable set, and for every $t \in S^{1}-E_{0}$ the set $u^{-1}(t)$ consists only of analytic curves (, hence coincident with L_{t} defined in $\S 1$). We note the following lemma essentially due to Accola (cf. [1]).

Lemma 1. For every $t \in S^{1}-E_{0}$, the set L_{t} of level curves (with the relative topology induced from that of R) is locally connected.

Proof. Take $p_{0} \in L_{t}$ arbitrary, and set $z(p)=\int_{p_{0}}^{p} \theta_{\sigma}$, then because $t \in S^{1}-E_{0}$, $z(p)$ is local parameter near p_{0}. Now take a sufficiently small positive $\varepsilon(<1)$ and set $U_{\varepsilon}=\{p \in R:|z(p)|<\varepsilon\}$. If $q \in L_{t} \cap U_{\varepsilon}$, let β be an arc connecting p_{0} and q in U_{ε}. Then $u_{\sigma}(\beta)$ is an arc in S^{1} starting from and ending at t, which implies that $\operatorname{Im} \mathrm{z}(q)=\int_{\beta} \sigma$ is an integer. Hence we conclude that $L_{t} \cap U_{\varepsilon}$ is the $\operatorname{arc}\{p \in R: \operatorname{Im}$ $z(p)=0,|\operatorname{Re} z(p)|<\varepsilon\}$, which shows the assertion.
q.e.d.

In particular, L_{t} consists of simple analytic curves not accumulating to any point in R and every non-compact component of L_{t} tends to the ideal boundary of R in both directions for every $t \in S^{1}-E_{0}$. Here we recall the following crucial lemma due to Y. Kusunoki and S. Mori [6] (; also see [11] III2G).

Lemma 2. Let G be a subregion of R whose relative boundary components are simple analytic curves not accumulating to any point in R. And suppose that the closure of G in R^{*} is disjoint from the harmonic boundary. Then the double \hat{G} of G along the relative boundary of G is parabolic (, i.e. $\hat{G} \in O_{G}$).

Now let $E_{u_{\sigma}}=u_{\sigma}(\Delta)$ and $\left\{I_{u}^{i}\right\}$ be as in $\S 1$, and fix a supplementary interval I_{u}^{i}. Then for every interval $I=\left\{\exp (2 \pi \sqrt{-1} \cdot \alpha): \alpha_{1}<\alpha<\alpha_{2}\right\}$ such that $\exp \left(2 \pi \sqrt{-1} \cdot \alpha_{j}\right)$ are not contained in $E_{0}(j=1,2)$ and \bar{I} is contained in $I_{u_{\sigma}}^{i}$, the closure of $u_{\sigma}^{-1}(I)$ in R^{*} is disjoint from Δ, hence by Lemma 2 we see that the double \hat{G} of G is parabolic for every component G of $u_{\sigma}^{-1}(I)$. Also we can exteded σ restricted on such a G anti-symmetrically to an element, say $\hat{\sigma}$, in $\Gamma_{h}(\hat{G})$. (Namely, letting $j(p)$ be the canonical anti-conformal involution fixing the relative boundary of G, we define $\hat{\theta}=\theta_{\sigma}$ on G and $\hat{\theta}=\overline{\theta_{\sigma} \circ j}$ on $\hat{G}-G$, then $\hat{\sigma}$ is, by definition, Im $\hat{\theta}$. See, for example, [3] Ch. V. 13.) Here it is clear from the construction that $\left(1 / 2\left(\alpha_{2}-\alpha_{1}\right)\right) \cdot \hat{\sigma}$ has integral periods, hence Theorems 1 and 2 can be reduced to the following Lemma, which seems to be interesting in itself.

Lemma 3. Let R be a parabolic Riemann surface, $\theta \in \Gamma_{h I}(R)$ and $u_{\sigma}(p)$ a circular function for σ. Then the holomorphic differential θ_{σ} associated with σ belongs to $C A_{1}(R)$ and for every $t \in S^{1}$ it holds that

$$
m_{\sigma}(t)=\|\sigma\|_{R}^{2}
$$

Lemma 3 was stated by Accola in [2], but for the sake of completeness we give a proof, which depnds on the following classical result.

Lemma 4 (cf. [9]). Let R be a parabolic Riemann surface and θ be a square integrable holomorphic differential on R. Then there is an exhaustion $\left\{\Omega_{n}\right\}_{n=1}^{\infty}$ of R such that the relative boundary $\partial \Omega_{n}$ of Ω_{n} consists of a finite number of analytic simple closed curves for every n, and it holds that

$$
\lim _{n \rightarrow \infty} \int_{\partial \Omega_{n}}|\theta|=0 .
$$

Proof of Lemma 3. First suppose that θ_{σ} does not belong to $C A_{1}(R)$, and X be the complement of the set of all compact regular trajectories of θ_{σ}^{2}. (Note that X is a closed set, for sufficiently small neighbourhood of a compact regular trajectory is swept out by mutually freely homotopic compact regular trajectories.) Then there is a point $p_{0} \in R$ such that the area measure of $X \cap U$ is positive for every parameter neighbourhood U of p_{0}. Here we may assume that p_{0} is not a zero of θ_{σ}, so $z(p)$ in Lemma 1 is a local parameter near p_{0} and X near p_{0} corresponds to a set of lines parallel to the real axis near $z=0$ on the z-plane. So $u_{\sigma}(X \cap J)$ has positive linear measure for every open are J containing p_{0} along which ${ }^{*} \sigma=0$. Because critical trajectories are countable, we can find a measurable set, say F, in $u_{\sigma}(X \cap J)$ such that F has positive linear measure and there is a non-compact regular trajectory γ_{t} intersecting with J for every $t \in F$. In the sequel we fix a relatively compact arc J and measurable set F in $u_{\sigma}(X \cap J)$ as above.

Now let $\left\{\Omega_{n}\right\}_{n=1}^{\infty}$ be as in Lemma 4 with $\theta=\theta_{\sigma}$, namely,

$$
\lim _{n \rightarrow \infty} \int_{\partial \Omega_{n}}\left|\theta_{\sigma}\right|=0 .
$$

Also we may assume that J is contained in Ω_{1}. Then since γ_{t} tends to the ideal boundary of R for every $t \in F$ (as noted after Lemma 1), hence should intersect with every $\partial \Omega_{n}$ for every $t \in F$, we see that $u_{\sigma}\left(\partial \Omega_{n}\right)$ contains F for every n. So it should holds that

$$
\int_{\partial \Omega_{n}}\left|\theta_{\sigma}\right| \geq \int_{\partial \Omega_{n}}|\sigma| \geq a>0
$$

for every n, where $2 \pi a$ is the linear measure of F. Thus it should holds that $\lim _{n \rightarrow \infty}$. $\int_{\partial \Omega_{n}}\left|\theta_{\sigma}\right| \geq a>0$, which is a contradiction, and we conclude that θ_{σ} belongs to $C A_{1}^{n \rightarrow \infty}(R)$.

Next note that σ can not be exact, hence $u_{\sigma}(R)=S^{1}$. Now we take any open $\operatorname{arc} I=\left\{\exp (2 \pi \sqrt{-1} \cdot \alpha): \alpha_{1}<\alpha<\alpha_{2}\right\}$ and apply the Green-Stokes' formula to θ_{σ}
on the union $\Omega_{n} \cap u_{\sigma}^{-1}(I)$ of regions. Here because the relative boundary, say Γ_{n}, $\Omega_{n} \cap u_{\sigma}^{-1}(I)$ is piecewise analytic and θ_{σ} is holomorphic also on Γ_{n}, we can apply the Green-Stokes' formula. And we have that

$$
\begin{aligned}
0=\int_{\Gamma_{n}} \theta_{\sigma}= & \int_{u \sigma^{-1}\left(t_{1}\right) \cap \Omega_{n}}-* \sigma-\int_{u \sigma^{-1}\left(t_{2}\right) \cap \Omega_{n}}-* \sigma \\
& +\int_{\partial \Omega_{n} \cap u \bar{\sigma}^{-1}(I)} \theta_{\sigma},
\end{aligned}
$$

where $t_{j}=\exp \left(2 \pi \sqrt{-1} \cdot \alpha_{j}\right)$ for each $j=1,2$. Thus it holds that

$$
\begin{aligned}
\left|\int_{L_{t_{1}} \cap \Omega_{n}}{ }^{*} \sigma\right| & \leq\left|\int_{L_{t_{2} \cap \Omega_{n}}} * \sigma\right|+\int_{\partial \Omega_{n}}\left|\theta_{\sigma}\right| \\
& \leq m_{\sigma}\left(t_{2}\right)+\int_{\partial \Omega_{n}}\left|\theta_{\sigma}\right| .
\end{aligned}
$$

Letting n tends to $+\infty$, we conclude from Lemma 4 that $m_{\sigma}\left(t_{1}\right) \leq m_{\sigma}\left(t_{2}\right)$. And by considering $S^{1}-\bar{I}$ instead of I, we have the converse inequality. Hence we have that $m_{\sigma}\left(t_{1}\right)=m_{\sigma}\left(t_{2}\right)$. Since I is arbitrary, $m_{\sigma}(t)$ is a constant, say m, on S^{1}. Finally note that

$$
\begin{aligned}
\|\sigma\|_{R}^{2} & =\iint_{R}\left(-{ }^{*} \sigma\right) \wedge \sigma=\int_{S^{1}} \int_{L_{t}}(-* \sigma) \wedge\left(\frac{d t}{2 \pi \sqrt{-1} \cdot t}\right) \\
& =\int_{0}^{1} m_{\sigma}(\exp (2 \pi \sqrt{-1} \cdot s)) d s=m .
\end{aligned}
$$

Thus we conclude that $m_{\sigma}(t)=m=\|\sigma\|_{R}^{2}$ for every $t \in S^{1}$.
q.e.d.

Finally we modify the first assertion of Lemma 3 as follows.
Lemma 5. Let $R, \sigma, u_{\sigma}(p)$ and θ_{σ} be as in Lemma 3. And set

$$
E_{N}=\left\{u_{\sigma}(p) \in S^{1}: p \text { is on a non-compact regular trajectory of } \theta_{\sigma}^{2}\right\} .
$$

Then the linear measure of E_{N} is zero.
Proof. Let $\left\{\Omega_{n}\right\}_{n=1}^{\infty}$ be as in Lemma 4 with $\theta=\theta_{\sigma}$, and set
$E_{N}^{n}=\left\{u_{\sigma}(p) \in S^{1}: p\right.$ is in Ω_{n} and on a non-compact regular trajectory of $\left.\theta_{\sigma}^{2}\right\}$.
Then it is clear that $E_{N}^{n} \subset E_{N}^{m} \subset E_{N}$ for every n and m with $n \leq m$, and that E_{N} is the union of all E_{N}^{n}.

Now suppose that the linear measure of E_{N} is positive, then there is an n_{0} such that the linear measure of $E_{N}^{n_{0}}$ is greater than a positive constant a_{0}. Note that the linear measure of E_{N}^{n} is also greater than a_{0} for every $n \geq n_{0}$, and similarly as in the proof of Lemma 3, we can show that

$$
\lim _{n \rightarrow \infty} \int_{\partial \Omega_{n}}\left|\theta_{\sigma}\right| \geq \frac{1}{2 \pi} a_{0}
$$

which is a contradiction.
q.e.d.

Proof of Theorems 1 and 2. Let $R, \sigma, u_{\sigma}(p), E_{u_{\sigma}}$ and θ_{σ} be as in Theorem 1, and $\left\{I_{u_{\sigma}}^{i}\right\}$ be the set of all supplementary intervals for u_{σ}. Also let E_{N} be as in Lemma 5, namely,

$$
E_{N}=\left\{u_{\sigma}(p) \in S^{1}: p \text { is on a non-compact regular trajectory of } \theta_{\sigma}^{2}\right\}
$$

then we see from Lemma 5 that $E_{N} \cap I_{u_{\sigma}}^{i}$ is a set of zero linear measure for every i. In other words, $u_{\sigma}^{-1}(t)$ consists only of compact regular trajectories of θ_{σ}^{2} for almost every t in $S^{1}-E_{u_{\sigma}}\left(=\cup_{i} I_{u_{\sigma}}^{i}\right)$, which is the first assertion of Theorem 1. If the linear measure of $E_{u_{\sigma}}$ is zero, then the linear measure of E_{N} itself is zero. On the other hand, we can show similarly as in the proof of Lemma 3 that, if θ_{σ} does not belongs to $C A_{1}(R)$, then the linear measure of E_{N} should be positive. Thus we conclude that θ_{σ} belongs to $C A_{1}(R)$.

Next Lemma 3 implies that if t_{1} and t_{2} are contained in the same interval, say $I_{u_{\sigma}}^{i}$, then it holds that $m_{\sigma}\left(t_{1}\right)=m_{\sigma}\left(t_{2}\right)$, which we denote by m_{i} (as in Theorem 2), and that for every $I_{u_{\sigma}}^{i}$ it holds that

$$
\|\sigma\|_{u_{\sigma}-1\left(I_{u_{\sigma}}^{i}\right)}^{2}=a\left(I_{u_{\sigma}}^{i}\right) \cdot m_{i}
$$

where $a\left(I_{u_{\sigma}}^{i}\right)$ is as in Theorem 2 and $\left.\|\sigma\|_{u_{\sigma}^{-1}\left(I_{u_{\sigma}}\right.}\right)$ is the Dirichlet norm of σ on the open set $u_{\sigma}^{-1}\left(I_{u_{\sigma}}^{i}\right)$ in R. And if the linear measure of $E_{u_{\sigma}}$ is zero, then we can easily seen that the Dirichlet norm of σ on the set $R-\bigcup_{i} u_{\sigma}^{-1}\left(I_{u_{\sigma}}^{i}\right)\left(=u_{\sigma}^{-1}\left(E_{u_{\sigma}}\right)\right)$ is zero, hence we have that

$$
\|\sigma\|_{R}^{2}=\sum a\left(I_{u_{\sigma}}^{i}\right) \cdot m_{i} .
$$

Thus we have shown Theorem 2.
q.e.d.

§4. Examples

First we construct the following
Example 1. There is an HB-harmonic measure $u(p)$ on a surface R (, i.e. the greatest harmonic minorant of $u(p)$ and $1-u(p)$ is the constant zero,) such that $d u$ does not belong to $\Gamma_{h}(R)$, but the holomorphic differential $\theta=-* d u+\sqrt{-1} \cdot d u$ associated with $d u$ belongs to $C A_{1}(R)$.

Construction. Let $R=\{|z|<1\}-\bigcup_{n=1}^{\infty} I_{n}$, where $I_{n}=\left[r_{2 n-1}, r_{2 n}\right]$ with an increasing sequence $\left\{r_{n}\right\}_{n=1}^{\infty}$ of positive numbers converging to 1 , and $u(p)$ the uniquely determined harmonic function on R whose boundary value is 1 on $\bigcup_{n=1}^{\infty} I_{n}$ and 0 on $\{|z|=1\}-\{1\}$. Then we can see that all zeros of the holomorphic differential θ associated with $d u$ are contained in the positive real axis and there is exactly one simple zero, say s_{n}, of θ in $\left(r_{2 n}, r_{2 n+1}\right)$ for every n.

Now by choosing $\left\{r_{n}\right\}_{n=1}^{\infty}$ sufficiently scarcely (, for example, choose $\left\{r_{n}\right\}_{n=1}^{\infty}$ inductively so that $\left(r_{n-1}-r_{n}\right) /\left(1-r_{n} \cdot r_{n+1}\right)$ converges to 1 as n tends to $\left.+\infty\right)$, we can assume that $d u \notin \Gamma_{h}(R)$ and $u\left(s_{n}\right)$ converges to zero as n tends to $+\infty$. Then $u^{-1}(c)$ consists only of compact connected components for every c in $(0,1)$, which implies that θ belongs to $C A_{1}(R)$.

Remark. Similarly as above we can construct an unbounded Dirichlet finite harmonic function $u(p)$ on a surface R such that the holomorphic differential associated with $d u$ belongs to $C A_{1}(R)$.

Also recall that the typical example of (unbounded and Dirichlet infinite) harmonic function $u(p)$ such that the differential associated with $d u$ belongs to $C A_{1}(R)$ is the Green's function or the so-called Evans-Selberg potential on a surface \bar{R} considered as a harmonic function on $R=\bar{R}-\left\{p_{0}\right\}$, where p_{0} is the only singularity of the function.

Next we show by an example that, even for a (non-dividing) simple closed curve c, every set $L_{t}\left(t \in S^{1}\right)$ of level curves of the conjugate of the reproducing differential $\sigma(c)$ may be non-compact.

Example 2. Let $R_{0}=\{|z|<+\infty\}-(-\infty,-2] \cup[-1 / 2,1 / 2] \cup[2,+\infty)$, and for every n set $I_{n}=\left[r_{2 n-1}, r_{2 n}\right]$ and $J_{n}=\left[-1 / r_{2 n-1},-1 / r_{2 n}\right]$, where $1<r_{1}$ and r_{n} converging increasingly to $3 / 2$. Next set $R=R_{0}-\bigcup_{n=1}^{\infty}\left(I_{n} \cup J_{n}\right)-\{3 / 2,-2 / 3\}$ and let $u(z)$ be the uniquely determined harmonic function whose boundary value is 1 on $[-1 / 2,1 / 2] \cup\left(\bigcup_{n=1}^{\infty} I_{n}\right)$ and 0 on $(-\infty,-2] \cup[2,+\infty) \cup\left(\bigcup_{n=1}^{\infty} J_{n}\right)$. Here by taking $\left\{r_{n}\right\}_{n=1}^{\infty}$ so that $r_{2 n-1}-r_{2 n}$ converges sufficiently rapidly to zero as n tends to $+\infty$, we may assume that $d u \in \Gamma_{h}(R)$ and $u\left(s_{n}\right)$ converges to a value, say d, less than $1 / 2$, where s_{n} is the unique simple zero of the holomorphic differential θ associated with $d u$ on $\left(r_{2 n}, r_{2 n+1}\right)$ for every n. Also note that $u(-1 / z) \equiv 1-u(z)$. Hence $-1 / s_{n}$ is the unique simple zero of θ on $\left(-1 / r_{2 n},-1 / r_{2 n+1}\right)$ and $u\left(-1 / s_{n}\right)$ converges to $1-d(>1 / 2)$. In particular, we can see that $u^{-1}(t)$ is non-compact and consists of infinitely many (compact) connected components for every $t \in S^{1}$. On the other hand it is clear that $d u={ }^{*} \sigma(c)$ with the simple closed curve c on R which separates $[-1 / 2,1 / 2] \cup\left(\bigcup_{n=1}^{\infty} I_{n}\right) \cup\{3 / 2\}$ from $(-\infty,-2] \cup[2,+\infty) \cup\left(\bigcup_{n=1}^{\infty} J_{n}\right) \cup\{-2 / 3\}$.

Finally let \hat{R} be the double of R along all non-degenerate boundary components of R and $\hat{\sigma}$ be the anti-symmetric extention of $d u$ on R. Then it is clear that $\hat{\sigma}=$ $2 \cdot{ }^{*} \sigma(\hat{c})$, where \hat{c} is the non-dividing simple closed curve on R corresponding to c, and that the set L_{t} of level curves of $* \sigma(\hat{c})$ is non-compact and consists of infinitely many compact connected components for every $t \in S^{1}$.

Department of Mathematics Kyoto University

References

[1] R. D. M. Accola, Differentials and extremal length on Riemann surfaces, Proc. Nat. Acad. Sci. U. S. A., 46 (1960), 540-543.
[2] R. D. M. Accola, On semi-parabolic Riemann surfaces, Trans. A. M. S., 108 (1963), 437-448.
[3] L. V. Ahlfors and L. Sario, Riemann surfaces, Princeton Univ. Press (1960), 382pp.
[4] C. Constantinescu and A. Cornea, Ideale Ränder Riemannscher Flächen, Springer (1963), 244pp.
[5] J. A. Jenkins, Univalent functions and conformal mapping, Springer (1958), 169pp.
[6] Y. Kusunoki and S. Mori, On harmonic boundary of an open Riemann surfaces I, Japanese J. Math., 29 (1959), 52-56.
[7] Y. Kusunoki, Riemann surfaces and conformal mappings, (Japanese), Asakura (1973), 408pp.
[8] A. Marden, The weakly reproducing differentials on open Riemann surfaces, Ann. Acad. Sci. Fenn. A. I., 359 (1965), 32pp.
[9] R. Nevanlinna, Quadratische integrierbar Differentiale auf Riemannschen Mannigfaltigkeit, Ann. Acad. Sci. Fenn. A. I., 1 (1941), 31pp.
[10] M. S. Pallmann, On level curves of Green's functions, Kōdai Math. Sem. Rep., 29 (1977), 179-185.
[11] L. Sario and M. Nakai, Classification theory of Riemann surfaces, Springer (1970), 446pp.
[12] K. Strebel, On quadratic differentials with closed trajectories on open Riemann surfaces, Ann. Acad. Sci. Fenn A. I., 2 (1976), 533-551.
[13] M. Taniguchi, Abelian differentials whose squares have closed trajectories on compact Riemann surfaces, Japanese J. Math., 4 (1978), 417-443.

