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It is known that if R’ is a generalized ring of quotients of a ring R contained in
the total quotient ring T(R) of R, then for any ring R” with RER"< R’, R’ is a gene-
ralized ring of quotients of R”. In other words, if R’ is R-flat, then R’ is R"-flat,
for R’, R” such that RER"SR'cT(R). (Corollary 1 to Theorem 1 in [1] and
Lemma 2 in [11]).

In this paper, we shall show that the converse, in a sence, to the above is valid if
R’ is a domain. Precisely speaking, let RS R’ be rings such that R’ is R-flat. Con-
sider the following condition (F):

(F) For any ring R” with RER"SR’, R" is R"-flat.

It is clear that if R’ is a field, then R’ satisfies (F) for any subring R of R’. We
shall show the following:

Assume that R’ is a domain. If R’ satisfies (F) and if R"& T(R), then R’ is a
field. (Theorem 2.7 in §2)

In this paper, first we shall give some results on flatness of rings in §1. In §2,
we shall prove the main result of this paper and in §3 we shall give some results in
the general case. Notation is the same asin [1], [2] and [3]. A pair (R, R’) means
that R’ is a ring and R is a subring of R'.

§1. We shall begin with some results on flatness and on the condition (F).

Lemma 1.1. Let (R, R") be a pair and let a’ be an ideal of R’ containing a
non-zero-divisor. Let R"=R+a’, which is a subring of R’ containing R such that
T(R")=T(R’). Assume that R’ is R"-flat. Then we have R’'=R" if R’ is integral
over R or if R=k is a field.

Proof. 1If R’ is integral over R, then R’ is also integral over R” and we have
R’'=R" by Corollary 2 to Theorem 1 in [1]. Assume that R=k is a field. Suppose
that R’5R”. Then there is an ' € R’ such that #'&R”. Since r'&a’, it is easily seen
that (R”: r')=a’ and a’R’=a’x R’ which contradicts Theorem 1 in [1]. Thus we
have R"=R".

Lemma 1.2. Assume that a pair (R, R’) satisfies (F). Then: (1) For any ring
R, such that RS R, & R’, the pair (R, R’) also satisfies (F).
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(2) For any multiplicatively closed subset S of R the pair (Rg, Rj) also satisfies (F).
(3) If R’ is integral over R, then for any ring R} such that RER{SR’, the pair
(R, R}) satisfies (F).

Proof. (1) is clear from the definition. (2) follows from the facts that any
ring between Rg and Ry is of the form Rg where R” is a ring such that R R"S R’
and that if R’ is R”-flat then Ry is Rg-flat. For (3), let R{ be a ring such that Rg

"< R). Since R’is Rj-flat and integral over R}, R’ is faithfully flat over Rj. Since
R’ is Rj-flat, R} is R-{flat, as is easily seen. Thus the pair (R, R}) satisfies (F).

§2. In this section, we assume that R’ is a domain.

Lemma 2.1. Let (k, R') be a pair of domains such that k is a field. If R'=
k+a’ for any non-zero ideal o’ of R’, then R’ is a field.

Proof. Let a’ be a non-zero element of R’. By our assumption, we have
k+a'?R'=R’. Hence there are tek and b’e R’ such that a’'=t+a'?b’, that is,
a'(l—a'b)=t. If t=0, then a’ is a unit since a’x0. If t#0, it is clear that a’ is
a unit since k is a field.

Remark 2.2. It is known that there is a pair (R, R’) of domains such that for
any non-zero ideal a’ of R’, R"=R+a’ and R’ is not a field (see [12]).

Proposition 2.3. Assume that a pair (k, R') of domains satisfies (F), where k is
a field. Then R’ is a field.

Proof. Since for any non-zero ideal a’ of R’, R’ is flat over k+a’, we have
R'=k+a’ by Lemma 1.1, Then Lemma 2.1 implies that R’ is a field.

Corollary 2.4. Let (R, R') be a pair of domains satisfying (F). Then Rg=
T(R'), where S=R—{0}.

Proposition 2.5. Assume that a pair (R, R') of domains satisfies (F). If R’
is integral over R and if R' xR, then R’ is a field.

Proof. If R"<= T(R), then we have R'=R by Corollary 2 to Theorem 1 in [1].
Therefore R’ is not contained in T(R). Suppose that R’ is not a field. Then R is
not a field since R’ is integral over R. Let « be an element of R’ not contained in
T(R). Replacing a with aa for a suitable a € R, if necessary, we assume that R[a]
is a free R-module of a basis {1, «, a2,..., 2" '} with n=2. By Lemma 1.2. we
see that the pair (R, R[a]) also satisfies (F). Let b be a non-zero, non-unit element of
R. Since R[a] is integral over R, R[a]=R+ bR[a] by virtue of Lemma 1.1. Then
we have a=ro+brja+---+br,_ja"! with r,e R. Since {1, a,..., a""1} are linearly
independent over R, we have br;=1, hence, b is a unit which is a contradiction.
Thus R’ is a field.

Corollary 2.6. Assume that a pair (R, R') of domains satisfies (F) and R'§
T(R). If T(R') is algebraic over T(R), then R’ is a field.
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Proof. If T(R)cR’', applying Proposition 2.3 to the pair (T(R), R'), we see
that R’ is a field. On the other hand, if R’ is integral over R, then Proposition 2.5
implies that R’ is a field. Therefore we assume that T(R)& R’ and R’ is not integral
over R. Suppose that R’ is not a field. Then there is a prime ideal p of R such
that pR, % R;. Since the pair (R,, R}) also satisfies (F) by Lemma 1.2, replacing
(R, R) with (R,, R}), we assume that R is a quasi-local domain with maximal ideal
p such that pR’%R’. Let R be the integral closure of R in R’. Then R’ T(R)
by our assumption that T(R’) is algebraic over T(R). Let p be a non-zero element of
p and let R”=R+ pR which is a subdomain of R such that T(R")=T(R)=T(R").
Since R is quasi-local with the maximal ideal p, it is easily seen that R” is a quasi-local
domain with the maximal ideal p”=p+pR. Then, since p"R’=pR’'*xR’, we have
R"=R’, as is easily seen, hence R’=R which is a contradiction.

Now we shall prove the main result of this paper.

Theorem 2.7. Assume that a pair (R, R') of domains satisfies (F). If R'&
T(R), then R’ is a field.

Proof. It is clear that there is a proper subfield K of T(R’) such that T(R)c K
and T(R’) is algebraic over K. Let R,=R’'n K. Then the pair (R, R’) satisfies
(F) and T(R’) is algebraic over T(R,) since T(R,;)=K by Corollary 2.4. Therefore,
applying Corollary 2.6 to the pair (R,, R’), we see that R’ is a field.

§3. In this section, we assume that rings are reduced.

Proposition 3.1. Let (R, R’) be a pair of rings such that R’ is integral over
R. IfR’(or R)is a regular ring (in von Neumann’'s sense throughout this section),
then (R, R') satisfies (F).

Proof. Since every ring R” between R and R’ is regular, the assertion is obvious.

Proposition 3.2. Let (R, R’) be a pair of rings such that R’ is regular. If R
is integrally closed in R’, or, more generally, if every idempotent of R’ is contained
in R, (R, R’) satisfies (F).

Proof. This follows from [7] (see Footnote 4 in [4]).

Lemma 3.3. Let k be a field, R’ a (reduced) ring containing k. If the pair
(k, R’) satisfies (F), R’ is regular.

Proof. First we show that R"=T(R’). Let a be an element of R’ which is not
a zero-divisor. Then by Lemma 1.1, R'=k+a?R’. Hence there are e R’ and
u € k such that a=u +a?p, that is, a(1 —af)=u, which implies that « is a unit. Thus
we see that R"=T(R’). Since k is a field, for any y in R’, T(k[y]) is semi-simple and
contained in R’. Then it is easily seen that R’ is regular.

Proposition 3.4. Assume that a pair (R, R') satisfies (F). If T(R) is reqular
and is contained in R', then R’ is also regular (recall that we assume that R’ is
reduced).
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Proof. By Lemma 1.2, we may assume that R is regular. Let m’ be a maximal
ideal of R’ and m=m’'n R. Then, again, by Lemma 1.2, the pair (R,,, R},) satisfies
(F). Since R, is a field, R}, is regular by virtue of Lemma 3.3. Then it is clear
that R’ is regular.

Remark 3.5. From Nagata’s theorem in [8], we see that there is a pair (R, R’)
of rings not satisfying (F) even though R is a field and R’ is regular (see Remark in

[3D.

Theorem 3.6. Let (R, R’) be a pair such that T(R) is regular and is contained
in R'. Then the following are equivalent.
(1) The pair (R, R') satisfies (F).
(2) R’ is regular and for every a € R', T(R[a]) is regular and is contained in R’.
(3) R’ is regular and for any zero-divisor o€ R’, T(R[a]) is regular and is con-
tained in R'.

Proof. (1)=>(2): By Proposition 3.4, R’ is regular. Let o be an element of
R’. Since T(R)< T(R[x]), we may assume that R is regular. Then it is easily seen
that R[«] is locally a domain, that is, for every maximal ideal m” of R[«], R[e],.~
is an integral domain. Since R’ is regular and is flat over R[a], the set of minimal
prime ideals of R[] is compact with respect to Zariski-topology by [9]. Then we
see that T(R[«]) is regular by [10]. Since R’ is R[a]-flat, T(R[]) is contained in R’'.
(2)=(3): Trivial. '
(3)=(1): Let R” be an arbitrary ring between R and R’. To prove that R’ is flat
over R”, it is sufficient to show that T(R") is regular and is contained in R’. First
we show that T(R")SR’. Let «” be an element of R” which is not a zero-divisor
in R”. If «” is a zero-divisor in R’, «” is also a zero-divisor in R[a"]< R” by our
assumption which is a contradiction. Hence a” is a non-zero-divisor in R’ which
implies that T(R")cR’. To see that T(R") is regular, it is sufficient to show
that every element of R” is expressed as a product of an idempotent and a non-zero-
divisor in R” which is clear from our assumption. (Recall that a ring is regular
if and only if every element is expressed as a product of an idempotent and a unit
by [6].)

Corollary 3.7. Let (R, R’) be a pair of rings such that R’ is regular and flat
over R. If R is an integral domain or noetherian, (R, R’) satisfies (F) if and only
if for any zero-divisor a in R’, T(R[a]) is contained in R'.

Proof. Since, in these cases, T(R[«]) is regular for any a € R’, the assertion
follows from the theorem.

Examples 3.8. Let R[x] be a polynomial ring of a variable x over a regular ring
R and let I be an ideal of R[x] such that I n R=(0) and R[x]/I=R[«a] is reduced.
We denote by C(I) the content ideal of I, that is, the ideal of R generated by
coefficients of polynomials in I. Then the following are easily shown (see [5]).
(1) If C(I)=R, R[o] is regular and integral over R. Therefore the pair (R, R[])
satisfies (F).
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(2) IfIisa principal ideal generated by ex —a with e?=e and ea=a, then T(R[«]) is
regular and the pair (R, T(R[«])) satisfies (F).
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