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Introduction.

In the previous paper [20], we investigated the problem concerning the
uniqueness of the factorization (under composition) of certain entire functions,
as well as the primeness etc. And in [22], we introduced the notion of prime-
ness in divisor sense (for entire functions) and studied about it.

In this paper, using results obtained in [20] and [22], we shall deal with
some related problems on factorization of certain entire and meromorphic func-
tions (which are closely related to periodic functions). Among others, we are
mainly concerned about entire functions which belong to J(b) or L(b) (cf. §1).
For instance, an entire function f(z) belongs to J(b) (b+#0), if f(z) can be
expressed as f(z)=cz+H(z), where ¢ is a non-zero constant and H(z+b)=H(z)
is, periodic, entire.

In §1, we recall some definitions, terminologies and several known facts,
needed later. In §2, we will generalize and complement the former results on
J) and L(b). §3 contains a result on the deficiency and factorizability,
relating to the work due to Gross-Osgood-Yang [9] (originally Goldstein [4]).
In §4, we shall consider a factorization problem concerning the (iterative)
functional equation: f-f=geg, and prove that certain entire functions f and g
satisfying this equation are identical (see Theorem 6). In §5, applying a result
on primeness in divisor sense, we shall exhibit certain meromorphic functions
which are prime.

§1. Preliminaries.

1.1. Definitions and terminologies. For a meromorphic function F(z), the
factorization under composition operation such as

F(z)=f-g(2)=/(g(2)) (1)

has been considered, where f and g are meromorphic functions. Of course,
when f is transcendental, then g should be entire. Then, by definition ([5]),
F is called to be prime (pseude-prime; right-prime; left-prime), if, for every
factorization as above, we can always deduce the following assertion: f or g
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is linear (f or g is rational; g is linear whenever f is transcendental; f is
linear whenever g is transcendental, respectively).

When F is entire and both factors f (left-factor) and g (right-factor) of F
under (1) are restricted to entire functions, then it is called that the factori-
zation is to be in entire sense. Thus, we may use the phrase “ prime in entire
sense ” instead of “prime” etc. It is well-known that any non-periodic entire
function is prime if it is prime in entire sense (cf. [6]).

Typically, the functions z-¢* and z+e® are prime. And it might be note-
worthy that, especially, the latter function has occupied the significant position
in factorization theory (see [20] etc.).

Suppose that a non-constant entire function F(z) has two factorizations:

F@)=fiofeo - o fm(2)=81°82° -+ °gn(2)

into non-linear entire factors f; and g,. If m=n and if with suitable linear
polynomials T; (1=<;7<n—1) the relations

[(2)=g:°T7'(2), [fl2)=T1°8:°T:'(2), -+, fr(2)=Trn-1°84(2)

hold identically, then the two factorizations are called to be equivalent (in entire
sense). If every factorization of F(z) into non-linear, prime, entire factors is
equivalent, then we say that F(z) is uniquely factorizable.

Of course, prime functions are considered to be uniquely factorizable. In
[20], it is proved, for example, that the function F(z)=(z4e*)°(z+¢*) is uniquely
factorizable.

Now, an entire function F(z) (% const.), with zeros, is called to be prime
in divisor sense (pseudo-prime in divisor sense; right-prime in divisor sense; left-
prime in divisor sense), if, for every identical relation such as

F(z)=f(g(2))-e4*, (2)

where f, g (== const.) and A are entire functions, we can deduce the following
assertion: f has just one simple zero or g is a linear polynomial (f has only a
finite number of zeros or g is a polynomial; g is a linear polynomial whenever
f has an infinite number of zeros; f has just one simple zero whenever g is
transcendental, respectively). As is shown in [22], the function z4e* is also
prime in divisor sense.

1.2. Two fundamental Theorems on J(b) and L(b). Following Koont [13],
we have considered (in [20]) the two classes of entire functions, defined by

J(b)={cz+H(z); H is entire, periodic, with period b (H(z+b)=H(2))
and ¢ is a non-zero constant.}
and

L(b)={z-e"1®+Hy(z); er and H, are entire, periodic, with period b.}

Evidently, J(b)C L(b). For example, z+¢* and (z+e?)+(z+e?) belong to J(2xi),
and (z-e*)°(z+e*) belongs to L(2rz). Concerning the right and left factors into
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which the functions in J(b) or L(b) are factorized, the following theorems will
be used later.

Theorem A. Let F(z)e L(b) (b+0) and F(z)=f(g(2)) with non-linear entire
functions [ and g then we have fe L(b') for some b’+0 and g J(b).

Theorem B. Let F(z)eJ(b) (b+0) and F(z)=f(g(z)) with non-linear entire
functions f and g, then we have feJ(b’) for some b’+0 and g J(b).

Remark. In the above Theorems, if geJ(b) has the expression g(z)=
cz+H(z) with H(z+b)=H(z), then we know that b'=bc (cf. proof in [20],
around p. 102).

1.3. Concerning the primeness in divisor sense, we obtained in [22] the
following results, which are used in §5.

Theorem C. Let F(z) be one of the following three types of functions; (1)
z+P(e?), where P is a polynomial, (2) P(z)+Q(e?), where P and Q are two non-
constant polynomials such that, for any natural number k and constant c, the
function e **-[Q(e®)+c] s non-constant, (3) P(z)-Q(e?), where P and Q are two
non-constant polynomials such that [P(z+4c)]* is not an even function for any
constant ¢ and Q(z), with Q(0)#0, has only simple zeros. Then F(z) is prime in
divisor sense.

§2. Supplement of former results.

2.1. At first, we recall the following fact.

Theorem D (cf. [20] Cor. 8). The function z+en,(2) is prime, where en(z)
is the m-th iterate of ¢° (en(z)=explen-1(2)], ei(2z)=2).

As a generalization of this fact, we shall show the following result, by
using Theorem B.

Theorem 1. Let F(z)=z+ h(e?), where h is an entire function. Assume that
explh(z)] is periodic, with some period b (#0). Then F(z) is prime.

Indeed, this Theorem is a direct consequence of the Propositions 1 and 2,
below. We wish to note here that we can show also that, if A& is an entire
function with the order p(h)<1, then the function z+ h(e*) is prime.

Proposition 1. Let h be an entire function. Then the function F(z)=z+ h(e?)
is prime if and only if G(z)=z-e"® is so.

Proof. Let F(z)=f-g(z), with non-linear entire functions f and g. Then,
by Theorem B in §1, setting b=2zi, we have
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f(@)=cz+H(2), eJ" (3)
and

8(2)=c'(z+H,y(2)), € J) (4)
with &’=bc¢’. By the assumption, we have

feg(z)=cc'z+cc’ Hy(z)+ Hi[ /(24 Hy(2))]

=z+h(e?). (5)

Here we can write
Hi(2)=h(e*®"), Hyz)=h,(e?, (6)

where h; and h, are holomorphic in the punctured plane 0<|z| <o (since
b’=bc’ with b=2x7). In the identity (5), we see at first c¢’=1. Hence, under
(5), cancelling z and then, in view of (6), replacing the variable (¢ by z), we
obtain the identical relation

ha(2)+ hy(z-e" )= h(z), (7

for z#0. Now, noting Lemma 6 in [20], we know from (7) that h, and h, are
entire functions. Hence the equation (7) must be satisfied for any z. Then,
by (7), we have the following factorization of the function z.¢*® ;

Z,eh(z):z.ehz(n ,exp[hl(z,ehg(n)]
:(z,ehl(z))o(z.ehg(z))’ (8)

where h; (=1, 2) are entire, as shown above. Hence, if G(z)=z-¢"® is prime,
then h, or h, is constant, so that f or g is linear, that is, F is prime. Note
that, since F and G are non-periodic, we need only consider the entire factors

w.r.t. the primeness.
Conversely, if G(z) is not prime, then, under (8), we may assume that both

h; (=1, 2) are non-constant and entire. In this case, using the relations (3)-(8),
we see at once, under F=f-g, that f and g are both transcendental, so that
F is not (pseudo-)prime.

2.2. Relating to the uniqueness of the factorization, we note the following
two facts. As a supplement of Theorem 3 in [20], we have

Theorem 2. Let
F(z2)=(z+e **- P(e?))°(z+Q(e?)) ,

where P and Q are polynomials with P(0)+0 and k is a natural number. Then
F(z) is uniquely factorizable.

The proof of this result can be done quite similarly as that of Theorem 3
in [20] (even somewhat simpler), hence omitted. As a generalization of Theo-
rem 7 in [20], we obtain
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Theorem 3. Let
F(z)=(z+H\(2))-exp[Hy(2)],

where H, and exp[H,] are periodic entire functions with the same period b (+0)
(hence Fe L(b)). And assume that F(z)=f(g(z)), with non-linear entire functions
f and g. Then, two functions z-+H,(z) and H,(z) must have g(z) as the common
right-factor, that is,

z+H(2)=Ki(g(2)) and H,y(z)=K,(g(2))
for some entire functions K; (=1, 2).
Remark. In the above Theorem, F is prime, if two functions z+H,(z) and

H,(z) have no common, non-linear, entire function as the right-factor. Further,
if z+H,(z) is prime, then F(z) is uniquely factorizable such as

F(z)=(z-exp[Ky(K 7' (2)]°(z+H\(2)) .
Here note that, in this case, K, is a linear polynomial and so the function
z-exp[ Ky(K1%(z))]e L(b) (in the above expression) is prime.

As noted above, in particular, we have

Proposition 2 (cf. [20] Cor. 3). The function z-e"®, which is contained in
L(b) (b#0), is prime.

Proof of Theorem 3. Since Fe L(b), by Theorem A and Remark there, we
may write
f(@)=Hy(2)+z-e"+?, g(z)=z+Hy(2), (9)
where H,, exp[H,] and H; are periodic, entire, with period . Hence
f(g(2))=Hz)+z-exp[H,(z+ Hy(2))] (10)

with Hy(z)=Hy(z+ Hy(z))+ Hs(z)-exp[ H(z+ Hy(2))]. Clearly Hy(z+b)=Hy(z). Now,
F=f.g and

F(z)=H,(2)-exp[Hy(2)]+z-exp[Hx(2)] . (11

By considering F(z+b)—F(z) and cancelling the periodic parts from (10) and
(11), we have exp[H,(z)]=exp[H.(z+ Hs(z))]=exp[ H,(g(2))]. Hence

z+H,(z)=f(g(2))-exp[— Hy(2)]
=(f(2)-exp[—H,(2)])*(g(2)),

and Hy(z)=H,(g(z))+2mni for some integer m. Thus, in order to obtain the
assertion, we may take

K(z2)=f(z)-exp[—H(2)], Kz)=H,(z)+2mmni.

Clearly, these K; (j=1, 2) are entire functions.
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2.3. Here we show the following result, which is needed in §3.

Theorem 4. Let
F(2)=2z-exp[4-en(h(2))]+H(z),
where A is a non-zero constant, en(w) is the m-th iterate of e and both h(z)

(zEconst.) and H(z) are entive, periodic, functions with the same period (b, #0,
say). Further assume that h(z) is prime. Then F(2) is prime.

Remark. We know that there exist prime, periodic, entire functions (cf.

(2], [10], [17], [21D).

Proof of Theorem 4. Let F(z)=f(g(z)), with non-linear entire functions f
and g. Since Fe L(b), as before, we may write

f(@)=H(2)+z-e"2® and g(z)=z+Hy(2),

where Hj(z+b)=H,(z) (j=1, 3) and exp[Hy(z+b)]=exp[H,(z)] are entire func-
tions. Note that H,(z)#const., since FeJ(b), and also H,(z)=*const., since g is
non-linear by assumption. Under F=f-g, by considering F(z+b)—F(z) and
cancelling the periodic parts, we have exp[ H,(z-+ H,(z))]=exp[4-en(h(z))]. Hence

Hy(z+Hy(2))=2-en(h(2))+2k,mi , (12)

for some integer k,. Because z+ H,(z) takes every values (cf. [20], footnote at
p. 102), from (12), it follows that

Hy(z)=2k,mi+A-exp[U,(2)], (13)

for some entire function U,(z) (Zconst., since H, is so). In view of (12) and
(13), we have exp[U,(z+ Hy(z))]=en(h(2)), and so

Ui(z+Hy(2)=emn-(h(2))+2k,m1,

for some integer k,. Then, U,(z2)=2k,ni+exp[U,(z)] for some entire function
U,(z). Hence exp[U,(z+ Hy(z))]=en-1(h(2)) so that ---. Repeating this argument,
we have that

Un-1(z+Hy(2))=exp[ h(z)]+2kn7i,

Um-1(2)=2km7fi+EXD[Um(2)] ’
and
Un(z+Hy(2))=2kn+1mit+ h(2), (14)

for some entire functions U; (sconst.) and integers k;.

Now, h(z) is prime by assumption. Since g(z)=z- H,(z) is non-linear, then
by (14), U.(z) must be linear ;=az-+b (say). In this case, the identity (14) can
be rewritten as

a-Hyz)—h(z)=—az—b+2k 7t . (15)

By the way, the left hand side of (15) is periodic with period b. While a=+0,
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since Un(z) is non-constant. Under (15), these clearly lead us to a contradic-
tion. Thus, under F=f-g, f or g is linear. Hence F is prime, which is to be
proved.

Remark. Also, as a generalization of Theorem 12 in [20], we can prove
the following result: The function p(e*)+z-exp[z+qg(e’)] is prime, where p
and ¢ are two entire functions with the order p(p), p(¢)<1 (both).

§ 3. Deficiency and factorizability.

Here, in connection with the work due to Gross-Osgood-Yang [9], we will
exhibit prime entire functions of infinite order (arbitrary rapid growth) with
prescribed Nevanlinna deficiency. For this purpose, using their line of argument
in [9], we note the following

Proposition 3. For constant 2;>0 (j=1, 2) and an entire function g(z)
(Fconst.), we consider the function F(z) defined by

F(z)=exp[4,g8(2)]- {exp[.8(2)]+z+c},

where ¢ is a constant. Then, for a suitable value of ¢ (precisely, if ceC—E,
where E is a set with inner Cap E=0), we have

5(0, F)le/(zl'*‘lz) ’

where 0(x, *) denotes the Nevanlinna deficiency.

Proof. We wish to show, firstly, that
T, F)~(A4+2)-T(r, e2®). (16)

To do so, we shall take certain nN and A>0 such that A+4,=nl, and we
consider the function
G(z)=e**®.F(z), 17

which is rewritten as

G(z)=exp[n,g(z)]-{exp[4.g(z)]+z+c}
=h(z)*-{h(z)+z+c}, (18)

where h(z)=exp[4,g(z)]. Here we note the following fact: For a positive
constant g and an entire function g(z), T(r, e*#®)=pT(r, e*®), where T(x, %)
denotes the Nevanlinna characteristic function. Then, using this fact, we
obtain that

T, Gy~ n+1D)T(r, h)=(n+1)2A,T(r, e£®),

by (18). Note also that the first assertion above can be shown by considering
m(», G), in which the set where |A(re??)| is large should only be considered.
Hence, using (17), we have
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T(r, F)=T(r, e **.G(2))
=T, G)—T(r, e*#®)
~{(n+1)2,—A}-T(r, e®®)
=(A,+24,)-T(r, e#).
While,
T(r, F)ST(r, ¢}18@)+T(r, e*22“ +2z+¢)
~ T(r, eP18)+T(r, e'28®)
=1 42,)-T(r, e8®).
From above, we know that the assertion (16) is valid.
By the way, noting a well-known fact ([15], p.276), for ce C—E where E
is a set with inner Cap E=0, we have
N, 0, F)=N(r, —c, e*2#®42)
~T(r, e'28@42) ~ T(r, e*28®)

=A,-T(r, e*¥).

Hence 6(0, F)=1—limsup N(r, 0, F)/T(r, F)=A4,/(4,+24,) (for a suitable value of

¢), which is to be shown.

Theorem 5. Let a be a given constant with 0<a<1. Suppose that h(z) is
a prime, periodic, entire function and 2; (=1, 2) are positive constants such that
A (A +A)=a. We consider the function F(z) given by

F(z)=exp[A,en(h(2))]-{exp[A.en(h(2))]+2+c},

where c€C—E for a suitable subset of C with inner Cap E=0. Then F(z) is a
prime entire function with Nevanlinna deficiency 6(0, F)=a.

This is valid by Theorem 4 and Proposition 3.

Remark. 1) Prime entire functions (of infinite order) with Nevanlinna
deficiency 0 or 1 can easily be given by using Theorem 1 or Theorem 4 in §2,
respectively. 2). As a prime entire function with prescribed Nevanlinna
deficiency, by the results due to Y. Noda ([16], Theorem 3, etc.), we may also
take the function of the form: (z+c¢)- f(z), where f is a suitable transcendental
entire function and ¢ is a certain constant.

§4. Equation f-f=g-g.

Relating to the problem on the uniqueness of the factorization, or special-
izing this, we shall consider the following problem: When f and g are entire
and they satisfy the identity f(f(z))=g(g(z)), then what can be said about f
and g? Generally, it seems very difficult to get a positive answer for the
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above question. However, if we put a certain specific condition on f(z), we
can prove the following result.

Theorem 6. Let f be an entire function of the form:
f(@)=z+p(e?),

where p(z) is a non-constant entirve function such that explk-p0)]#—1 for any
natural number k. Suppose that g is entire and satisfies the following identical
relation

g8(g@N=f(f(2). (19)

Then we have necessarily g(z)=f(z).

Corollary. Let f(z)=z+en(2), where m is a natural number (en(z) denotes
the m-th iterate of e*). And, if g is entire and satisfies the identity g(g(z))=
f(f(2)), then we have necessarily g(z)=z+en(2).

Remark. In the case where m=1 (for the above f), we know further that
the composite function (z-+e?)e(z+e®) is uniquely factorizable. But, so far, we
have not been able to prove that the function (z4e,(2))°(z+en(2)) is uniquely
factorizable (or not), in the case where one of (natural numbers) .2 and m is
larger than one.

Also, note that, if f(z)=z—sinz and g(z)=—(z—sinz)+2kxr with an integer
k, then we have f(f(2))=g(g(z)) (cf. [8], p. 242).

For the proof of Theorem 6, we shall need the following fact.

Lemma A. Let G(2) be entire and q(z) be holomorphic in 0<|z| <oo. Sup-
pose that they satisfy the equation

1 - 2 p—
g —q( e ) =06 | (20)
for any z#0. Then q(z) must be entire.

This is proved similarly as Lemma 6 in [20]. Indeed, if the Laurent
expansion of ¢(z) at z=0 contains terms of negative powers of z, then there
exists a sequence {z;} (z;#0), z;—0 (j—o0) such that

- 1 R ASER
25

=1, @D

because the function e~%*’/z has the origin (z=0) as the essential singularity.
Then, for the sequence {z;} satisfying (21), we have Reg(z;)—oo (j—o0). Hence,
putting z=z; in (20), we know that the real part of the left hand side of (20)
tends to infinity, while the right hand side remains bounded, as j—oo. This
is a contradiction. Thus ¢(z) has no terms of negative powers of z, so that ¢
is to be entire.
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Proof of Theorem 6. Since f(f(2))=z+ p(e®)+plexp[z+p(e®)])eJ(2ni), by
Theorem B, it follows that, under (19), ge€J(2nri). Writing g(z)=c(z+ H(2)),
with H(z+2ri)=H(z), entire, we see firstly c==+1. Now, we have H(z)=q(e?),
for some holomorphic function ¢(w) in 0<|w|<oo.

Then, from the identity (19), cancelling z and replacing the variable (from
¢* to z, as before), we have two identical relation for z#0, according as c¢=1
or c=—1. In both cases, we see that ¢ is entire. Indeed, when ¢=1, then we
know it by Lemma 6 in [20], and when ¢=—1, then we know it by the above
Lemma A.

By the way, we can rule out the case where ¢c=—1. In fact, in this case,
the identical relation (valid for z#0) mentioned above can be written as

0@ —q(5e%) =)+ pla-en).

Here, we know that ¢ is entire, as noted above, by Lemma A. Further, by
considering the behavior of the above identity near z=0, we have that the
right hand side is naturally holomorphic at the origin, but the left hand side
has singularity there (cannot be extended holomorphically). Thus, we have a
contradiction.

Hence, in the following, we need only consider the equation

9(2)+q(z-1?)=p(2)+ p(z-e??), (22)

which is valid for any z in C. In this case, note that g(z)=z-¢(e?), since c=1.
Under (22), setting z=0, it follows that ¢(0)=p(0). Here we put s=¢? =
e?® (say). Then it is assumed that 14+s™+0 for any natural number m.
In the following, we wish to show that

g™ O)=p™(0) (meN), (23)

by induction. We note that, differentiating the both sides of (22) and setting
z=0, we have (145s)-¢’(0)=(14s5)-p’(0) so that ¢’(0)=p’(0). Assume now that
we have

qO=p(0), =, g™ O)=p™1(0) . 24
Then by differentiating (22) m-times, we have
(m) " (2)y} — p(m) - (€}
@D+ a2 ) =p ™)+ < (plz-eP ). (25)
Now, for instance,

d;dzmﬁ {p(z-eP®))=p™)(z.ePD){(z-eP @) }™ -

+ 7;‘?‘;1 p(k)(z.ep(z)),Dmk[z.ep(z)] s
=1

where D, ,.[***] is a homogeneous differential polynomial of degree & (cf. [19]).
In particular,
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m-1

. d
Dml[z'ep< )]=m' dz™-!

p@ d™ s
z  —_ p(z
{eP®} 42 i {er®},

Here note that the second term of the above equation is zero at z=0, and so
that we have D,[z:-¢?®]=D,,[z-e?®] at the origin. Also we obtain

Dnil2:¢2]|,co=Dnr[2-27]|,=0

for k=1, ---, m—1 under (24). Hence, in view of (24) and (26), by setting z=0
in the identity (25), we see that (14+s™)-¢™(0)=(1+s™)-p™(0) so that ¢g‘™(0)
=p™(0), since 1+s™=+0 by assumption. Therefore the assertion (23) is checked.

Hence, by the unicity theorem, we conclude that ¢ and p are identical.
This means that two functions f and g are identical; g(z)=f(z), which is to
be proved.

§5. Certain prime meromorphic functions.

In this section, by using the results on primeness in divisor sense shown in
[22] (cf. Theorem C, §1), we shall exhibit certain prime meromorphic functions.
For instance, we can prove the following results.

5.1. Theorem 7. Let

P(2)+Q(e?)

F&O=sorre B0

where P (const.), Q (Fconst.), R (¥0) and S are polynomials such that, for
any kN and c€C, the function e **-[Q(e*)+c] is non-constant, and H(z) is an
entirve function which is periodic with the period 2zi such that the order and
lower order of H satisfy 1<p(H)=<p(H)<2. Assume that the numerator and
denominator have no common zeros. Then F (2) is prime.

Theorem 8. Let

_ P@+Q(e)
F@)= S(z)+R(z)-a(e?)’

where P (Fconst.), Q (FEconst.), R (£0) and S are polynomials such that, for
any keN and ceC, the function e **-[Q(e*)+c] is non-constant, and a is an
entire function such that the order of a(e®) is finite and not integer and the lower
order of it is larger than one. Assume that the numerator and denominator have
no common zeros. Then F(z) is prime.

The proof of Theorem 7 is quite similar to that of Theorem 8 (even some-
what simpler). Hence, we shall only prove Theorem 8.

Proof of Theorem 8. Suppose that
F(z)=f(g(2)), 27
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where f and g are non-linear meromorphic functions. Here, g cannot be a
polynomial, as easily seen by noting the distribution of the zeros of F(z) (they
are distributed mainly in the right half plane). In the following, we’ll consider
the two cases separately.

(1) The case where f is transcendental meromorphic (not entire) and g is
transcendental entire. In this case, by a Theorem of Edrei-Fuchs ([3], Cor.
1.2), we have p(f)=0 and p(g)<oo, so that we can write

f)=p)/r2),

where 8 and y (const.) are entire functions, without common zeros, both of
order zero. Then, by (27) and (28), we have the identities

P(z)+Q(e’)=p(g(2))-e4® (29)
and
S(2)+R(2)- a(e”’)=7(g(2))- e, (30)

for some entire function A(z), since by the assumption the numerator and
denominator of F(z) have no common zeros. By Theorem C, the left hand side
of (29) is prime in divisor sense (by the assumption in Theorem 8). Hence, by
definition, B(z) must be linear. Here, without loss of generality, we may
assume that f(z)=z. Then, from (29), it follows that

8=2)=(P(2)+Q(e))-e 4. (€1

Since the order p(g)<oo, we know that A(z) is a polynomial. Now, from (30)
and (31), we have the following identical relation

{S(2)+R(2)-a(e)} -e~4® =y([P(2)+Q(e")]-e4®). (32)

Here, when deg A=0 or 1, then we compare the growth of the both sides of
the above identity (32) along the upper or lower half of the imaginary axis
(If e4® is periodically bounded on the imaginary axis, then any selection will
do. If it is not the case, then the selection must be made so as to e 4 —oo
as z—oo on the considered part.). When deg A=2, there exists a straight half
line L issued from the origin and contained in the left half plane such that, if
z—oo on L, e"4®—oco. Then we compare the growth of the both sides of (32)
along this half line L. In either case, by applying the minimum modulus
theorem (if necessary), we have a contradiction (cf. argument around p. 108 in
[20]). Note that y is transcendental entire with p(y)=0, and that both a(e?)
and Q(e*) are bounded on the considered half line.

(m) The case where f is rational and g is transcendental meromorphic
(not entire). Write

f(2)=U(2)/V(2), (33)
where U and V are polynomials without common zeros. Note that, because

the order p(F) is finite and not integer, in this case, the same is true for p(g).
Further note that the lower order _p(g)>1 (since F is so). If degU=0, degV=2
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as f is non-linear. Now, in this case, the poles of g are the multiple zeros of
F. And they are infinite in number. But the zeros of F are all simple except
at most a finite number of them (as easily seen). This is a contradiction.

If (1=) degU<degV under (33), then, letting b be a zero-point of U(z), we
have

N(r, o, g)+N(r, b, )=N(r, 0, F). (34

Here, N(», 0, F) is clearly of order 1 (cf. [11], around p. 16), and hence the
left hand side of (34) is also. But this is not valid, when p(g) is finite and not
integer with p(g)>1, by a Theorem due to Nevanlinna ([14], p.51). This is a
contradiction.

If degU=degV, then degU=2 (f is non-linear). Since the zeros of F(z) are
almost simple, U(z) must have at least two distinct zero-points. Hence, letting
b and ¢ (b+c¢) be two zeros of U(z), we have

N(r, b, g)+N(r, ¢, )=N(r, 0, F).

Using this inequality, we obtain a contradiction similarly as above.
Thus, under the factorization such as (27), f or g must be linear. Hence
F is prime. This completes the proof of Theorem 8.

5.2. Remark. For the functions of the form:

_ P (2)+Q.(e?) Pi(2)+Q,(e?)

FoO=p o700 @ P@toes’

where P; and Q; are some non-constant polynomials, generally, we can only
prove that they are right-prime.

Note, for example, that the function ([P(z)]*+e?)/([P(z)]*—e?)=({w*+1}
J{w*—1})e(P(z)-e~*'*) is not prime for any polynomial P(z) (%£0) if £=2.

By the way, concretely speaking, we do not know whether the functions
such as [z+e*]/[z+¢°] and [z+e*]/[z+e %] are prime or not, though we have
the following assertion.

Proposition 4. For a meromorphic function h(z), the function [h(z)+e*]
JL[h(z)—e*] is prime if and only if h(z)-e~* is so.

In fact, this is trivially valid in view of the relation such as [h(z)+e?]
/[h(z)—e*]—1=2/[h(z)-e~*—1]. Hence, in particular, the function [z+e¢*]/[z—e¢?]
is prime, by Proposition 4, because z-e~* is prime (cf. Proposition 2).
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