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A property of operators characterized by
iteration and a necessary condition

for hypoellipticity

By

Toshihiko HOSHIRO*

O. Introduction.

Let ,A(x, Dr )  be a  linear partial differential operator of order in( 1) with
coefficients of class C"' in a bounded open set D of R .  F or l e t  u s  denote by
C (D , a )  the vector space consisting of all uEL 2(2 )  such that ak u e L 2(D) for
k =1, 2, •••, and furthermore

(k !)" for k  = 0, 1, 2, •••

with some positive constant L  (where iid e n o t e s  the norm in  L 2( 2 ) ) .  In
particular, G(r(12, 4) (where 4 denotes Laplacian) coincides with the Gevrey class
of index a in D.

G. Métivier ([6] and [7]) proved that, if a  is formally selfadjoint and G '(,  <_1)
c A(12) (where A(D) denotes the space of real analytic functions in  12), then a
is elliptic in D (see also T. Kotake—M.S. Narasimhan [4]).

On the other hand, Y. Morimoto [8] showed that, for the operator

= DI,±exp(—  I I I  xi I 7)D 112 (D r . = a  , _ 1, 2)
' i  ax ;

there exists a function u0 belonging to G1(2, a.,) but not of class C -  in D if 1
(where D is a neighborhood of the origin in 1:12 ). Furthermore, he proved that the
operator P I = M -F a i  is not hypoelliptic in R x 2  if 7- in the following way:
Let us define

u(t, xi , x2) kE •2kcA u o(x i , x2 )/(2k)! .

Then, since u0 G '(2 , ao, the series on the right hand side converges in L2(2 ) if
I t I is small enough. But u(t, xi , x 2) is a non-smooth solution of the equation

P,,u=0 satisfying u(0, x 1 , x 2) = u 0 (x1 , x2 ) .

Hence, PI  is not hypoelliptic. (P.,, is hypoelliptic if 0 < r < 1 .  See S. K usuoka-
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D. Strook [5] and Y. Morimoto [9].)
By the above argument, we see that G1(12, LAO should be contained in C - (2)

for P y  to be hypoelliptic. (Note that a y  itself is hypoelliptic whenever r >O. See
V.S. Fedii [2].) Now, we can expect that the same is true for the operators of higher
order, that is, G1(,g, cC°°(Q) if a( x ,  D )  is  of order m ( . .1) and if P=D'tn+

D )  is hypoelliptic. In the present paper, noting this property and based on the
method of G. Métivier [7], we shall show a necessary condition for the operators
of the form Dr H- J1(x , D x ) to be hypoelliptic.

The plan of this paper is as follows. We state our main results in §1. In §2,
we prove some auxiliary lemmas, and in §3 we give the proofs of the theorems stated
in § 1 . In §4 we shall apply our results to some concrete examples of operators
analogeous to  a y .

In the course of the preparation of this paper, the author was communicated
that Prof. Y. Morimoto independently obtained almost the same results as Theorem
1 and Theorem 2 below. The present paper is also based on the works of Y. Mori-
moto [8] and [9].

Acknowledgement. The author would like to express his gratitude to Professors
S . Mizohata, W. Matsumoto and N. Shimakura for invaluable suggestions and
helpful encouragement.

§ 1 .  Main results.
Notations. In this paper, we use II II to denote the norm in L 2(12), or that

in L2(R "). The norm in the Sobolev space H s (R") for s>0 is denote by II
Furthermore, for an open set co c 2, we denote M a))  by the Sobolev space for
s>0 in a). H - (0)) is defined by n Hs(co).

First, let us introduce the space of functions, which is connected with the
method of Y. Morimoto [9].

Definition. For r >0, 11°(R n )  is the vector space which consicts of a ll u E
L 2( R )  such that

{log(2+ e I 2)}2 r û(e) I 2dŒ‹ + 0 0

where

Û(e) =  (27r) - "i2 u(x)e - 1 x'tclx

Now, we state the results for formally selfadjoint operators.

Theorem 1. L e t a(x , D ) be .formally selfadjoint partial differential operator
of order m( - 1) with coefficients of class C - ( g ) .  Assume that, for an open set co c
and for some real numbers a 1  and s>0, the restriction u J of  any  function uG Gcr(2,
A) belongs to M a ) ) .  T hen, for any  open set co,c co), there ex ists a positive

constant C such that
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(1.1) IluIlLg,0-..5coaull2+11u112) f or all ueC A co l ) .

Theorem 2. L e t a(x ,D x )  be a formally selfadjoint partial dijferential operator
of order in( 1) with coefficients of class C - ( D ) .  Assume that, for an open set coc 12
and for a real number the restriction ul ,0 of  any function u e Gcr(0, LA) belongs
to H - (o)). Then, for any  open set co,c c o) and for any e >0, there exists a positive
constant Ce such that

(1.2) f or a l l  u e C (7(co1) .

Now, we can present a necessary condition for hypoellipticity.

Corollary. L et LA(x, D x )  be a formally selfadjoint partial differential operator
of  order m (_1) w ith coef f icients of  class C 0 0 (32). I f  th e  operator D7'-1-a(x , D e )
is hypoelliptic in  R x  c l in ÷ 1, then (1.2) with a=1 holds f or any open set co,cc12.

Proof  o f  C orollary . If (1.2) with a=1  does not hold for coi c  CD, then it
follows from theorem 2 that there exists a N E 012, ,11) not belonging to 11- (co)
(c01 c  co)O E  C D ). Since u0 E Gi(D, a ) ,  the series

u(t, x ) = (it)mk(--,A)k uo (x)I(mk)!. 

converges in L 2 ((-8, (3)x  D) for small 8>0, and it satisfies the equation (DT-F,)/
(x, D x ))u(t, x )=-  0.

On the other hand, u(t, x) is not of class C-  in (-8 , (7)x S2 , because u(0, x)--
u0 (x)E IP(c0). Hence, the operator Dr d- a(x , D x ) is not hypoelliptic. Q.E.D.

Let us now generalize the above Theorem 1 to the operators which are not
necessarily formally selfadjoint but have maximally accretive extensions (see T.
Kato [9] page 279 for the definition of maximally accretive operator).

Theorem 3 .  L et ,A (x , D x )  be  a partial dif ferential operator of  order m (_1)
with coefficients of class C - (2) which has a maximally accretive realization (A ,D(A ))
in L 2(52). Assume that, for an open set cocl? and for som e real num bers a 1 and
s>0, the restriction u of  any  function uEG'(12- , L A ) belongs to Ils(co). Then, for
any open set co i c  Co) and for any  s(l<a< am ), there ex ists a positive constant C
such that

(1.3) Hug) ,,,.-8 ((ii auird - iluii2) f or all uECF,(co i )

If A  is a maximally accretive operator, then A +2 has bounded inverse for any
2 e C  with Re 2>0 and 11(A-1-2) - 1 1 i .<(Re 2) - 1 . Moreover, D(A) (the domain of
definition of A ) is dense in L 2 ( D ) .  So, — A  generates a  contractive semi-group
-{ G(t)} to by Hille-Yosida's theorem. We will make use of G(t) in the proof of
theorem 3.

Remark. We can apply Theorem 3 to the operators of the form

=
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where X 0 , X „ •••, X 0  a re  real vector fields of class c-( ) and cE cia) (see G.
Métivier [7] §5).

§ 2 .  Auxiliary lemmas.

In this section, we treat two spectral resolution of positively selfadjoint oper-
ators. One is related to formally selfadjoint differential operator ,11(x, D i ), and the
other is related to A =(1+  I D  x 12)1/2. Using them, we introduce some spaces of
functions connected with Gcr(D , a), and characterize the space I-1;.°g(R n ). Further-
more, in Lemma 2.4 and Lemma 2.5 below, we modify the interpolative method of
G. Métivier [7] §3 to make use of our theorems.

I) Spectral resolutions.
Let (A , D(A)) be a realization in L 2(S2) of a formally selfadjoint differential

operator a (x ,  D i ), of order 1), with coefficients of class C - ( g ) .  In this section,
we assume that A  is positively selfadjoint with domain D (A ). (In general case,
we make use of the square root of a Friedrichs extension of a.. The detail will
be stated in the next section.) We denote by E(t) (—  cc <t< ±  0 0 )  the spectral
resolution of (A , D(A )):

A  =  rt d E ( t )  ,  E ( ( —  co , 0)) = 0 .

First, let us put

F(t) E (t — 1)— E (  t  — 1) .

Then, it is easy to see that

-u F(t)u —
d t

for a ll u E LAD)(2.1)

where the integral on the right hand side converges in I 2(.s2). Moreover,

(2.2) 11/1112 = 61: for a ll uGL 2(12)

where II II denotes the norm in L 2(12).
Next, we introduce the following integrals J k (u ) and N ( u )  connected with

D(Ak) and GŒ(D ,

Jk (u) = t2/eliF(1)02 —
d t t

for integer k 0.

N (u )  = S:exp(atuam)11F(t)uir d
t
tf o r 1 and a >0.

Furthermore, concerning the integral N (u ) , we define the followings:

Definition (1). For a 1, we denote by D°(A) the vector space consisting of all
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functions ue D(A - ) (=(1D (A k)) such thatk ° 

I lAk u I I k i-1(k  Dam

with some positive constant L.
(2). For and a > 0 ,  w e denote by D (A ) the vector space consisting of all
functions uGD(A - ) satisfying

N:(u)< co .

Now, we see the followings:

Lemma 2.1 ( i ). An element u eL 2(D) belongs to D(A) ff and only i f  Jk (u)< 00.

Moreover, for all uED(A k ),

(2.3) 11(A-Mku112•4(u)_e"11(A-kl)kull2

(ii). For cr l ,  U D:(A) = DT(A) .&> 0
(iii). For any u eL 2(2), ri--).F(r)u is a  measurable mapping from [1, co) to D (A )
satisfying

(2.4) N:(F(r)u)._<_. exp(a(er) 1/ffm)llull 2
.

Proof of ( i ) .  To verify (2.3), it suffices to remark that

t k
(2.5) IIF(t)ull—II(A+1)kF(t)ull t k ilF(t)ull •

Integration of (2.5) with respect to  t yields (2.3).

Proof of (ii). If uED :(A ), then by (2.3)

ii(A+ 1 )k nii2t2 k 11F(t)n ii2  dt 

S sup  t2k exp(—at l ianz)N (u)t o
2amy c r

a ( k ! ) 2 N .(u) .

Hence, we see that ueDcr(A).
Conversely, if u L 2 (D) satisfies

IKA+ 1)kulI Lk (k !) m for k = 0, 1, 2, •••

with some positive constant L, then by (2.3) we see that

dtt2 k 1IF(t)u!12 — L2 (eL)2 '(k!)2 c"" for k = 0, 1, 2, ••• .

Hence, it follows from Holder's inequality that

for k = 0, 1, 2, •-•
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t 1'11F(t)uII 2  dl

5 ( S  t 2k IIROuli 2  6 P -
t ) 112 " d t t )  

1- 1/20-m

L2(eL)w" k! for k  = 0, 1, 2, ••• .

Let us divide the both sides of the last inequality by 2k (e L)kl k ! ,  and sum up them
with respect to k .  Then, we see that N (u)< 0o with a =2 - 1 (eL) - Vc""

Proof of  (iii). By (2.5), we have F(r)u ED(A - ).
On the other hand, by definition of N (u),

dtN :(F(r)u)S r exp(a t v ( 0 4 2  •

Noticing that F(t)F(r)u= 0 for t> er , we have

N:(F(r)u) 5_ exp (a(er)vain) l F(t)F(z-)u1I2  6 1:

= exp (oe(er) ")1 F(r)u I 12
exp (* O l t " )  lui 12 • Q.E.D.

Next, we introduce the operator A = ( 1  I D  2)112 in L 2(R") with bomain 11'(R ),
that is,

Au(x) = (270 - I  ely/.12(ode .

The spectral resolution of A is denoted by B (2) (—  <2<+ co):

Au = L 2 d  (2 )  , E ((—  co , 1)) -- 0 .

Furthermore, let us put

P(2) =  E(2 — 1)— E( 2  1 )  .

Then, by the same way as in (2.1) and (2.2), we have

(2.6) u **.t.'(.1)u—d 2  , and

(2.7) = V)u1I21 2
for all uc LA R"),

where II denotes the norm in L2(R").
Next, let us introduce the following integrals .78 (u) and 1,(u) connected with

Hs ( Ir)  and H i
r°g(R")•

(2.8) fs(u) Si 22sliF(À)ull2dja for s > .
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(2.9) Ir(u) = (log 2)2 I 1-P(2)u' I2 d
2

2f o r  r > 0 .

Lemma 2.2 ( i ). An element uELA R") belongs to  H s ( R n )  if  and only i f  js (u)<
Moreover, there exists a positive constant C, such thatC °  •

(2.10) CTilluill_ js(u)_ Csilug f o r all u E ll s (R") .

(ii). A n element uEL 2(R") belongs to 111.°R(R") if and only if Ir (u)< oo. M oreover,
there exists a positive constant C r  such that

(2.11) C,711lulliog,r 4(u)_---CriiullL f or all uE 11;Pg(R") .

Pro o f  o f  ( i) . Noticing that the norms !lull s and II(A +1)sull are equivalent, we
obtain ( i ) by the same argument as in the proof of (ii) of lemma 2.1.

Proof of (ii). Let us consider the operator

{log(A+1)} r =  i:{log(2+1)}r a - ( ) for r>0 .

Then, for 2

(log 2 )2r IIP(2 )u112 - - - 11 {log(A +1)} rP(2 )ul 12

= {(log A ) 2 r _  (log fir } —1)P(2)ulI2 .
1

The integral on the right hand side is non-negative, because

d1.B (jt-1)P(2)u = 0 if u > 2 .

Hence, it follows from the above argument that

II {log(A+1)} rP(2)Ui 12 ( lo g  An IF(2)u j 2 ._.‹. j {log(eA +e)}"P(2)4 2

where the definition of flog(eA+e)Ir is analogous to that of flog(A+1)1'. Inte-
grations of the inequalities with respect to  A yield (ii), noticing that the norms
Iluillog,r, il{log(A+1)} r ull and II {log(eA + e)} '7411 are equivalent. Q.E.D.

H )  Interpolation.
Now, we shall prove the following lemmas which play important roles in the

proofs of the theorems.

Lemma 2 .3 .  Let ti— f(t) be a measurable mapping from [1, co) to 11"(Ir)(s>0)
satisfying

r-

M (f ; 0 ) 3 iifttArt"-dt <  œ  and

N(f; s, a, f l, 0) Vexp(—at'Ig)Jxf(t))1,20 dt <

f or some positive numbers a, f i, 0  and  s (for brevity , let us denote M (f )=M (f ; 0)
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and N (f )=N (f ; s, a, 13, 0)).
Then, the integral

(2.12) v dt 

converges with respect to the norm in L2 (R " ).  Moreover, vEHA g(lin) and

(2.13)I  v a g , o p  C(M (f )+N (f ))

where C is a constant independent off.

Remark. In the integral defining N (f ), the factor t2 ° is negligible if we take
a>0 larger. Also, ". s(f (t)) can be replaced by I If (t)II. So, the condition N (f )< co
says that lif(t)11, increases at most in exponential order as t--->00.

Lemma 2 .4 .  Let f (t) be a measurable mapping from [1, 00) to II -  (R a ) satisfy-
ing

M (f ; 0)< 00 an d  N (f; s, a, P, 0)< 00

for some fixed positive numbers a, fi and 0, and for any s>0 (for brevity, let us denote
N (f ; s)=N (f ; s, a, 19, 0)).

Then, for any  e >0, there exists a s>0 independent off such that

2 )2 0 P lIF( 2 )v112 ‘  1
2

2 .__E(M (f )+N (f ; s))

where v is the same as in (2.12).

Proof of lemma 2.3. The integral on the right hand side of (2.12) is convergent,
because

ir - eon m i r  t _20 dtt (20) - 1 111(f)< 00 .U i llf(t)II '411 251:

Let us put exp(t1/13)=r and g(r)=f (t). Then, we see that

(2.14) M (f )+N (f ) 13 -
e fig(z)112+z- - `̀ • Js(g(r)))-  (log r)2 0 1 3 - 1 d r

= fin - 0 +2 2 s •r - ') (log -111F(2 )8(0112 4 ,fi
e (

1

1
In the last inequality, we have used (2.7) and (2.8).

On the other hand, since P(2) is a bounded linear operator in L 2 (Rn),

P(2)v = 11(2)19S -  g(r) (log r) - ' d r

ry id r= fir  P(2)g(r) (log

Hence, it follows from Schwarz's inequality that
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(2.15) 11F(2)v112_ /92 S:(1 +22  • T - 6 )  (log r)2 0 0 - 1 11P(2)g(r)112 ck:

X e**(1+22s.r.--c)_i (lo g  0 -20 _1dr

Let us estimate the right hand side of (2.15). Changing variable r by = log r, and

putting a  (2)=  3  log 2, we obtain

-(1 +22s• r 100g 0-200- d r

_ ( 1 _1_2 2s -20f3-idm
1\

a (X)
— 20P —1 dg + e w p . d m

aW 1

Furthermore, since e fo r /LS  a(2), we see that

(2.16) P1+2 2s•r - c
1
(log r) - 2 0 f3 - 1 d r

—2013
(2019) - 1 [ 3 log 21 + 2 s [ =s -' log 21

L a a

s F2019 + 1 120 '8 + 1 1(10 g  2) - 2 0 g{(20,9) - 1 1-  s 1 -2 °13 +La J a L  s J

= s - wo {(20 19)- 1 a2° + a - 1 (2013 +1)2013+1(log 2) - 2 0 P.

The third line of (2.16) holds because

2-8(l0 g  2 )20A+1 [2 0 ,8 + 1 7 13+ ' for .

Therefore, it follows from (2.15) and (2.16) that

(lo g  2)20ftliF(2)v ir

C (1 +22 r ).2. - ) (log r)2" - I I1P( 2 )g(r)112 d:

where C depends only on s, a, /3 and O.
Hence, it follows from (2.14) that

i
c*(log 2)201311F(2)V112 d 1 C ( M ( f ) +  N( f )) •

Noticing (ii) of Lemma 2.2, we have Lemma 2.3.

Proof of Lemma 2.4. In (2.16), let us take s>0 such that

s -20 {(20 fly 'a20+a-1(20i9+ 020+31 _5.6 . # -1 .

Q.E.D.
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Then, (2.16) becomes

S- (1±2 2s • r ) (log r) - 2 0 - 1 d r  e • 19- 1 (log 2) - 2 0  .

Hence, it follows from (2.15) that

(log 2)2 0 11P(2)v112

_.<e 9r( 1 + 2 2 s • r- ')  (log 0 2913-1 1 iF(a)g(r)112 —d:  •

Now, if we integrate the last inequality with respect to A, we obtain

Plog 2 )20 t1 IF(A)vi 2
d2 

 ( l o gefin - (1-1,12' • r - ') r)2°-111F(A)g(r)11
,

—
d r

.
e r  A

The conclusion of lemma 2.4 follows from (2.14). Q.E.D.

§ 3 .  Proofs of Theorems.

First, let us prove Theorem 2, because the proof of Theorem 1 is parallel to that
of Theorem 2.

Proof of  Theorem 2. The differential operator g9=J1 2 is formally positive and
selfadjoint. Let us denote by (B , D(B)) the Friedrichs extension of i n  L2(2),
defined in the following way:

Let cV  be the vector space consisting of all functions uE L 2 (12) satisfying
a u L 2 (S2) (where a is operated to u  in distribution sense). The domain of
definition of B is

D(B)= Itt e  ;  there exists a function f  e L 2 (2) such that

(au , av)-1-(u, y ) = (f , y ) for all YE W }

where (  , )  denotes the scalar product in L 2 (S2).
Now, we define Bu by f— u in the above definition of D(B). It is evident that

(Bu, v)=(,.A u, ay) for all u D(B) and for all v  cV. In particular, (Bu, u)=
for all u e D(B).

Now, it is clear that, for ue D(B - ), B Pu =a 2Pu and

IIBP ull for p  = 0, 1, 2, ••• .

Next, let us denote by B 1 1 2 the positive square root of B .  Then, since 11av11 2 =
(By, v)-11.102 y112 for all y  D (B ) , we see that, for ueD (B - ),

1,-A2 P - H ul 12 = IIJlBufl 2 =  (B • BPu, BPu) = 11B P + 1 1 2 u112 f o r  p  = 0, 1, 2, ••• .

Hence, we can show the inclusion Dm(Bv2) c  Gcr(D,
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Now, we fix cf1>0 and define V—ID:1(B 112) .  The above argument and (ii) of
lemma 2.1 imply that V is a Banach space and contained in  Ga(D- , LA). Further-
more, let us take a function 0 G  C (c )  satisfying OS 0  1  in co and 0  1 in co,. Then,
the hypothesis of theorem 2, i.e., Ga(D, C H ( co ) , yields that Ou belongs to
I-10 (R n) for any u E V. Hence, the following holds by the closed graph theorem.

For any s>0, there exists a positive constant Cs—C,(0) such that

(3.1) J,(0u)SC,N ;1(u) for a ll uE V .

(Recall that V./ (u) is equivalent to the norm in H s( R " ) .  See ( i ) of lemma 2.2.)
Now, we can apply lemma 2.4 to f ( t ) -0 F( t)u  for u D(B 112)(A -13 112) , with

0=1, 19=crm and a> Then, we have

e _dt dt
liF(t)uirt 2 —

t

M (f ) = V 10(01111'

< e 2 I I/2 4_ ) uli 2

and for any s>0,

N(f; s) =V exp (— atwerm).4(0F(t)u)t 2  dt

1

Cs
- exp(— atvain)N:i (F(t)u)t 2 —

d t

0 1 4 2 .

In the above inequalities, we have used lemma 2.1 and (3.1).
Therefore, since

=  f ( t )  —

d t  

= O F ( t ) u   d t,
t

Ou belongs to 1/'0.° (R n). Furthermore, for arbitrary small e >0, there exists a posi-
tive constant C's such that

(3.2) -  (log1 2)2°' I 1P(2)042 d2
2

< *2103 312+  042 + c/s ilt/In for all uED(131/2) .

Hence, by (ii) of lemma 2.2, we obtain the following inequality.
For any e >0, there exists a positive constant C, such that

ii(bulliog ..-5_ 6 11B"214 112 ±Cdiull 2f o r  a ll uED(B 112) .

Since, 0u=u and I I./P 2u 12 = 1 ,-Ru I 12 for u  Co- (co,) (note that Q°(co,)c D(B)), the last
inequality gives Theorem 2. Q.E.D.

Proof of Theorem 3. The following proof is quite analogous to the proof of
G. Métivier [7] §5. But, we give the proof for the sake of self-containedness. Since
the proof is long, we devide it into two parts.
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Part 1  (preparation). Let (A , D(A )) denote a maximally accretive realization
of ,A(x, Dx) in L A D ). The contractive semi-group generated by — A  is denoted by
G(t) ( t > 0 ) .  First, we prove the following lemmas.

Lemma 3 .1 .  Let us put

H(t) = e - mG(t)—e - emG(et)

for positive constant A . Then, we have

(3.3) u =  H ( t ) u '1 '
Jo t

f or all ueD (A ) ,

the integral on the right hand side being conver gent with respect to the norm in L 2(12).

Proof of Lemma 3.1. For ueD (A ), H(t)u can be written as

H ( t) u  = 
et 

e - x G(r) (A  +2)u dr

Furthermore, since G(t) is contractive, i.e., I IG(t)i 1, we obtain

(3.4) 11H(t)u11 2t e - xtli(A±A)ull .

Hence, the right hand side of (3.3) converges with respect to the norm in  L 2(12).
Moreover, exchanging the order of integrations, we have

H(t)u  d t  —  e - xT G(r) (A+ 2)u dr if —

d t

O t o ave t

=  e - "G(r)(A -I-A )u dr

= (A+2) - 1 (A±A)u = u .

This proves (3.3).

Lemma 3.2. Taking a function Ib'E CA R) satisfying

( i ) (ii) s u p p  ,i/rc  (1 , 2) an d  (iii) i i i r ( r ) d r  =  1 ,

we put:

T (t) = 1 ,te (r)H ( 2 )dor .

Then ,we have

Q.E.D.

(3.5) u  =
dt f orai! u  E D(A) ,

the integral on the right hand side being convergent with respect to the norm in L2(2).

Proof of Lemma 3.2. By (3.4), we obtain immediately the following.
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4 (3.6) iiT (t)u il- 
t  

e- x i t ii(A+ 2 )uli for a ll uE D(A) .

So, the right hand side of (3.5) converges. Moreover,

• dt-• T(t)u Vr(r)dr1 H ( dtu = H(s)u
d s

 .
0 t o o t t o

This proves (3.5). Q.E.D.

In the proof of theorem 3, we make use of T(t) with a function of the Gevrey
class of index p(1<p<am ), that is,

(3.7) su p  ip,(k)(r) I L k -1-1(k op for k  = 0, 1, 2,
l> 0

with some positive constant L.
It is easy to see that, if we put OW= e t G(t) (semi-group generated by —(A + A))

then

(A +2)k T (t) = t k  l i r ( k ) (06 (r) d  —  t* 0 0 ( z - ) 0 ( e r ) d r
e o

for k  = 0, 1, 2, ••• .

So, noting that we obtain by (3.7) that

(3 .8 ) I KA+ 2)kT(t)ull
for k  = 0, 1, 2, ••• and for all uE L 2 (2) .

Now, we denote by W the Banach space which consists of all uED (A ) satisfy-
ing

=  SUp110+10kUll 
k ° Vdr i n Lk <

Then, (3.8) yields

(3.9) T(t)u I I w  2 1  e - x/' exp((am— P)Pic r m - P )i lui for a ll  u  L 2 (12) .

On the other hand, since W is contained in GV , ,A ), the hypothesis of theorem
3 implies that, for any u G  W, OU belongs to BAR") (where ç5 e C (0 " )  is the same as
in the proof of theorem 2). So, the following inequality holds by the closed graph
theorem.

There exists a positive constant C1—C1(0) such that

(3.10) lug- for all uE W.

(Recall that -V.10(u) is equivalent to the norm in 1 0 R ) .  See ( i ) of lemma 2.2.)

Part 2. We take up the proof of theorem 3. According to lemma 3 2, we can
write uED(A) in such a way that

U Uo+
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where

T(t)u
 a t

 a n d  th T(t)u- .

Now, let us show that both of q5u0 and Oth belong to Higf_8 (R"), for any uG
D (A ). At first, (3.89) yields

e a . '" o 
e _v t   dt .111411.<

 t

Therefore, we see by (3.10) that Ou, is an element of I l s (R n ). To show that
Ou,GH1,1_8(R "), we apply lem m a 2 .3  to  AO = OT(t)u with ig = am— p  and
a >2 (am— p ) .  We have, for 0 5 0 < l,

IIT(t)uil2M U ) I-y (0112  t20

t
 dt adt

S 16V t 2" c 2ve dt xll(A - 1- 1 )u112

• 8(1 - 0 )-1 110 + 2)ui12< °°
and

N (f ) s**exp(—atif"1-P):1s(f (t))t 20 -d 1

1

• CI V exp(— atn - ) )IIT(t)ujilv  t26 —d t

C2I1uii2<°°

In the above inequalities, we have used (3.6), (3.10) and (3.9). Therefore, since

Oui  =  f (t) jd  ,
t

u, belongs to 1-141„_,)0( 1 r) .  Now, for any given 41<8<am ), we can choose p
and 0 such that l < p < am, 0 <  < 1 and (am— p)0 =am-6 . This means that 15u1

belongs to H _ 8(R ") for any u D (A ). Hence, the following inequality holds by
the closed graph theorem.

For any 8(1< 8< am), there exists a positive constant C, such that

lloul IL ,.-1 C3(11Aull2 + Ilul 12) for a l l  u E D(A) .

Since Ou=u and Au= ,y7tt for uG C0*(co,) in the last inequality, Theorem 3 is now
completely proved. Q . E . D .

§ 4 .  Examples.

In this section, we shall verify that some operators similar to c_4 y  in Introduc-
tion of the present paper violate at least one of (1.2) or (1.3).
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Let D be a bounded open set in R 2 which contains the origin O .  Let us consider
the following differential operators defined in D:

a l =  M 1 + D x 2 (
0 (X1, 4 D x 2 )  a 2  D 1 4-i0(x1 , x0Dx2

and
= iD x1 d-D x 2 (0(x1, x1).Dx 2) ,

where we denote s6(x1 , x2)—exp(— 1/ 1 xi 1 ) with r >0.

They are of elliptic or parabolic type degenerated at the origin in infinite order,
and hypoelliptic in D (see Fedii [2]).

Proposition 4.1 ( 0 .  a l  v iolates the condition (1.2) w ith 0)=12, a=1 and
m=2, if  r 1.
(ii). a 2 (A) violates the condition (1.3) with u)=12, c=l and  m =2, if r> 2 (r> !
respectively).

Therefore, none of D 3 +01 ;  (1=1, 2, or 3) is hypoelliptic in any neiborhood of
the origin in le.

Remark. a l  is formally selfadjoint. "12 and a ,  have maximally accretive
realizations in L 2 (2).

Proo f . Let us verify the assertion ( i ). The proof of (ii) is parallel to that of
).

First, let k (t 1 )  be the family of linear transform in R 2 defined by

ht x = (tx,, exp(t 1 ).x2) for x = (x 1 , x2 ) E R 2

Furthermore, we put zit —clet h = t  exp(0) and denote

cot t = x2) eR 2 ; Ix' < RI for given R >0 .

Notice that uoh,(x)=u(h,x)e C,;(0),) for any u e C t7(coR ). So, we shall prove
the assertion ( i ), by showing that the growth order of 11/4011 ,, 2 a s  t —>oo is not
smaller than that of lia i (uolif )112 +11/40h,112 .

It is easy to see that

(4.1) 11u112.

Now, let us denote h,D=(tD x i , exp(0)D 2 2).
Then,

a1(u°11,)ohT1(x) ai(hT l x, h,D)u(x)
and
(4.2) 4t11,14(w)ht)112 = 1 lai(hT i h A u l l 2 •

On the other hand, since the total symbol axx, e) of a i  is equal to

eN-0(x)e—ig5 x 2 (x)e2 (95(x) = 15(x1 , x 2)) ,
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it is clear that, for xG cox,

I a i ( x ,  Mt/WI I 0 u(x) I +15(x) I a!p(x) I + c  q5(x) I 0,u(x) I ,
where C= N/ 2 sup I 8 2

0 (x ) 1t2.
X E .R

So, noting that liTicoR  is contained in coR  if t I ,  we obtain the following inequality:
For x eco R ,

a 1(hT1 x, h t D)u(x) I t2
 I 8 u ( x )

 I + 0(t , x) I a L u ( x )  I ± ç6(t, x)I 2 u(x)1

where we denote 0(t, x)—exp(2t 1 )15(hT1x)= exp(2tY-1/ h7 2.x I 7).
In the last inequality, it is easy to show that k t, x) is uniformly bounded in C°R

as t--> co , if we take R > 0  small enough. Thus, returning to (4.2), we obtain

(4.3) 4:11,A (u°ht)1120 (t 4) as t .

Concerning the left hand side of (1.2), we can write

iu0 1 7 e =  f lo g (2 +  I h1  12)14 a(e)1 2de x  I

Hence, Fatou's lemma yields that

(4.4) lim inf t - 4 7 4 t1I u 0 hill L8 ,2

= lim ft-l1og(2+ I h t e 12)1 112(01 2c 1 e (e) 1 2 d e >0 ,

where a(C)=O if 4 = 0 , and a(e)= 16 if e2 * O.
Now, we can see that the condition (1.2) with a = 1 and m =2 contradicts (4.1),

(4.3) and (4.4), if 1. This completes the proof of ( i) .Q . E . D .
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