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A property of operators characterized by
iteration and a necessary condition
for hypoellipticity

By

Toshihiko HosHIRO*

§0. Introduction.

Let A(x, D,) be a linear partial differential operator of order m(=1) with
coefficients of class C* in a bounded open set 2 of R". For c=1, let us denote by
G°(2, ) the vector space consisting of all u& L*(£2) such that AJ*ues (L) for
k=1, 2, --+, and furthermore

[| Arul| S L (k)™ for k=0,1,2,

with some positive constant L (where || || denotes the norm in L*®2)). In
particular, G°(2, 4) (where 4 denotes Laplacian) coincides with the Gevrey class
of index ¢ in 2.

G. Métivier ([6] and [7]) proved that, if ] is formally selfadjoint and G2, A)
C A(2) (where A(£2) denotes the space of real analytic functions in £2), then /4
is elliptic in £ (see also T. Kotake—M.S. Narasimhan [4]).

On the other hand, Y. Morimoto [8] showed that, for the operator

2 2 1 @ ,
‘-’47 = D,l—l—exp(—l/lxll")D,z (Dzj =g J= 1’ 2)
i 0x;
there exists a function u, belonging to G*(&2, Ay) but not of class C= in 2 if r=1
(where £ is a neighborhood of the origin in R?). Furthermore, he proved that the
operator Py,=D?+ 4, is not hypoelliptic in Rx 2 if =1, in the following way:
Let us define
u(t, x,, x;) = g 1% Akug(x,, x)/(2k)! .

Then, since uy& G'(2, Ay), the series on the right hand side converges in L*2) if
|t] is small enough. But u(z, x,, x,) is a non-smooth solution of the equation

Pu=0 satisfying u(0, x,, x;) = uy(Xy, Xp) «

Hence, P, is not hypoelliptic. (P, is hypoelliptic if 0<<r<(1. See S. Kusuoka—
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D. Strook [5] and Y. Morimoto [9].)

By the above argument, we see that G'(2, 4,) should be contained in C=(2)
for P, to be hypoelliptic. (Note that 4, itself is hypoelliptic whenever r>0. See
V.S. Fedii [2].) Now, we can expect that the same is true for the operators of higher
order, that is, GX(2, A)C C=(2) if A(x, D,) is of order m(=1) and if P=D"+
J(x, D,)is hypoelliptic. In the present paper, noting this property and based on the
method of G. Métivier [7], we shall show a necessary condition for the operators
of the form D}+ A(x, D,) to be hypoelliptic.

The plan of this paper is as follows. We state our main results in §1. In §2,
we prove some auxiliary lemmas, and in §3 we give the proofs of the theorems stated
in §1. In §4 we shall apply our results to some concrete examples of operators
analogeous to JAy.

In the course of the preparation of this paper, the author was communicated
that Prof. Y. Morimoto independently obtained almost the same results as Theorem
1 and Theorem 2 below. The present paper is also based on the works of Y. Mori-
moto [8] and [9].

Acknowledgement. The author would like to express his gratitude to Professors
S. Mizohata, W. Matsumoto and N. Shimakura for invaluable suggestions and
helpful encouragement.

§1. Main results.

Notations. In this paper, we use || || to denote the norm in L*£2), or that
in LA R"). The norm in the Sobolev space H(R") for s>0 is denote by || ||,
Furthermore, for an open set @ C £, we denote H’(w) by the Sobolev space for
s>01in w. H*(w) is defined by r>']0 H(w).

First, let us introduce the space of functions, which is connected with the
method of Y. Morimoto [9].

Definition. For r>0, H°%(R") is the vector space which consicts of all ue
L*R") such that

lalfor,, = { flog@+ €19} ] a(6) e <40,
where
2() = (2n)'”/ZSu(x)e"'"5dx :
Now, we state the results for formally selfadjoint operators.

Theorem 1. Let A(x, D,) be formally selfadjoint partial differential operator
of order m(=1) with coefficients of class C*(2). Assume that, for an open set o C 2
and for some real numbers ¢ =1 and s>0, the restriction u|,, of any function us G°(2,
JA) belongs to H°(w). Then, for any open set o,C Cw, there exists a positive
constant C such that
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1.1) 1ullfog,em = ClAulP+[1ulP)  for all uECF(®,) .

Theorem 2. Let A(x, D,) be a formally selfadjoint partial differential operator
of order m(=1) with coefficients of class C=(82). Assume that, for an open set @ C 2
and for a real number =1, the restriction u|,, of any function ue G°(2, A) belongs
to H*(w). Then, for any open set ©,C C® and for any €>0, there exists a positive
constant C, such that

(1.2) 1ullfog,em= ell AulP+Cllull®  for all uECF(w)) .
Now, we can present a necessary condition for hypoellipticity.

Corollary. Let A(x, D,) be a formally selfadjoint partial differential operator
of order m(=1) with coefficients of class C=(2). If the operator D}+ A(x, D,)
is hypoelliptic in R X 2 C R**Y, then (1.2) with s=1 holds for any open set o,C C 2.

Proof of Corollary. If (1.2) with o=1 does not hold for w,C C £, then it
follows from theorem 2 that there exists a u,&G*(2, A) not belonging to H*(w)
(o, CCcocC®). Since u,GY(2, JA), the series

u(t, x) = = (@)™ (— A ug(x)/(mk)!

converges in L%((—4&, 8) X 2) for small §>0, and it satisfies the equation (Dy+ A
(x, D)u(t, x)=0.

On the other hand, u(z, x) is not of class C* in (—9, )X £, because u(0, x)=
u(x)eE H*(w). Hence, the operator D7+ A(x, D,) is not hypoelliptic. Q.E.D.

Let us now generalize the above Theorem 1 to the operators which are not
necessarily formally selfadjoint but have maximally accretive extensions (see T.
Kato [9] page 279 for the definition of maximally accretive operator).

Theorem 3. Let JA(x, D,) be a partial differential operator of order m(=1)
with coefficients of class C=(2) which has a maximally accretive realization (4, D(4))
in LX(82). Assume that, for an open set w C 2 and for some real numbers 6=1 and
§>0, the restriction u|,, of any function uc G°(2, A) belongs to H(w). Then, for

any open set @, C C® and for any 6(1<<d<<om), there exists a positive constant C
such that

(1.3) Hulllo .om-s=CUlAulP+ull®)  for all ueCF(w)).
If 4 is a maximally accretive operator, then 442 has bounded inverse for any
2eC with Re 2>0 and [[(4+2)7Y|<(Re A)"L. Moreover, D(4) (the domain of

definition of A) is dense in L*&). So, —A generates a contractive semi-group

{G(#)} ;5o by Hille-Yosida’s theorem. We will make use of G(¢) in the proof of
theorem 3.

Remark. We can apply Theorem 3 to the operators of the form

A= — B X+ Xk,
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where X, X}, ---, X, are real vector fields of class C=(2) and ceC=(2) (see G.
Meétivier [7] §5).

§2. Auxiliary lemmas.

In this section, we treat two spectral resolution of positively selfadjoint oper-
ators. One is related to formally selfadjoint differential operator (A(x, D,), and the
other is related to A=(1+|D,|?"2. Using them, we introduce some spaces of
functions connected with G°(2, ), and characterize the space H*®(R"). Further-
more, in Lemma 2.4 and Lemma 2.5 below, we modify the interpolative method of
G. Métivier [7] §3 to make use of our theorems.

I) Spectral resolutions.

Let (4, D(4)) be a realization in L*2) of a formally selfadjoint differential
operator A(x, D,), of order m(=1), with coefficients of class C=(&2). In this section,
we assume that A4 is positively selfadjoint with domain D(4). (In general case,
we make use of the square root of a Friedrichs extension of 4% The detail will
be stated in the next section.) We denote by E(¢) (—oo<<t<<+ o) the spectral
resolution of (4, D(A4)):

A= S“ tdE(t), E((—o0,0)=0.
First, let us put
F(t) = E¢—D)—E( —1).
e

Then, it is easy to see that

= dt 2
2.1 u=\ F@)u " for all uelL¥(2),

1
where the integral on the right hand side converges in L%(£). Moreover,
2.2) [lu]|? = Sw||F(t)uH2% for all ueL*2),

1

where || || denotes the norm in L*(£).
Next, we introduce the following integrals J,(u) and NJ(u) connected with
D(4*) and G°(2, A).

() = S‘”t”nF(z)u”z ? for integer k=0,
1
Nou) = Swexp(at”""‘)llF(t)uH"% for 0=1and a>0.
1

Furthermore, concerning the integral N (), we define the followings:

Definition (1). For 6=1, we denote by D?(4) the vector space consisting of all



Operators characterized by iteration 405
functions uD(4™) (= n D(4*)) such that
k=0
[|A*u|| < LY (K)o for k=0,1,2, «

with some positive constant L.
(2). For 6=1 and a>0, we denote by Dg(4) the vector space consisting of all
functions u & D(A4") satisfying

Noyu)<oo .
Now, we see the followings:

Lemma 2.1 (i). An element us LX2) belongs to D(A*) if and only if Jy(u)<<oo.
Moreover, for all uD(4%),

(2.3) 1A+ D ulP<Tyw) < e*||(4+ Dtulf?
(ii). For o=1, UD(A) = D(A).
@>0

(iii). For any ue LX), t+—F(v)u is a measurable mapping from [1, o) to Dy(A)
satisfying

(24) N (F(zyu) < exp(e(er)om)||ul[* .
Proof of (1). To verify (2.3), it suffices to remark that
k
@3 () el S+ D FOISAFOU
Integration of (2.5) with respect to ¢ yields (2.3).
Proof of (ii). If usDy(A4), then by (2.3)
kolz< g2k 2 dt
e+ Dt e pue 4
<sup % exp(—atY"™")N(u)
120

omk
g(”i")z (1Yo N () .
a

Hence, we see that ue D(A).
Conversely, if ue LA(2) satisfies

A+ Drul| SLHED)™  for k=0, 1,2, -

with some positive constant L, then by (2.3) we see that
S“tz"llF(t)uH’—‘? =< L¥eL)?(k!)?om for k=0,1,2, -
1

Hence, it follows from Holder’s inequality that
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[ rrempaue
1

[ 1/2am [ (‘oo 1-1/20m
<({ e )= (peu 2™

1 t 1 t
S L¥eL)¥m k! for k=0,1,2, -

Let us divide the both sides of the last inequality by 2*(eL)*°" k!, and sum up them
with respect to k. Then, we see that Nj(u)<<oco with @a=2"YeL) ¥on,

Proof of (iii). By (2.5), we have F(r)usD(4™).
On the other hand, by definition of N(u),

NUFEWS | exp(aremIFOFEulr L
1
Noticing that F(¢)F(z)u=0 for t>er, we have
NIEE)) < explater)'=) | IIFO Pl &
1

= exp (a(er)"™)|| F(x)u||*
< exp(a(er)m)||u||?. Q.E.D.

Next, we introduce the operator A=(1+| D, |?)"?in LA(R") with bomain H'(R"),
that is,

Au(x) = @my et (14 prae)ae
The spectral resolution of A is denoted by E(2) (— oo <A<+ o00):
au= " 2aEQ), B(—e, 1)=0.
Furthermore, let us put
FQ) = E(X—l)—E(%—l) :

Then, by the same way as in (2.1) and (2.2), we have

2.6) "= S”F(z)ud;’-‘, and
1
2 s 2dl 2, "
@7 llull =S IF@uFS®  for all us LR,
1
where || || denotes the norm in L¥R").

Next, let us introduce the following integrals J,(u) and I,(ux) connected with
HYR") and HI*}(R").

2.8) Tu) = S""xzs]|ﬁ(/z)uuz€liZ for 5>0.
1
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7 “ 2r || 7 zd A
2.9) I(u) = 5 (log || FQRQ)ul| 7 for r>0.
1
Lemma 2.2 (i). An element us LA(R") belongs to H*(R") if and only if J ()<
oo, Moreover, there exists a positive constant C; such that
(2.10) Cou|PSTW=Clull?  for all ue H'(R") .

(ii). An element us L¥R") belongs to H**(R") if and only if I (u)<oo. Moreover,
there exists a positive constant C, such that

@11 Cllullfog, S LW =Cllullfog,,  for all ue HPS(R") .

Proof of (1). Noticing that the norms ||u||, and |[(4+1)u|| are equivalent, we
obtain (i) by the same argument as in the proof of (ii) of lemma 2.1.

Proof of (ii). Let us consider the operator
flog(A+1)}" = S:{log(/l-l—l)}' dEQ)  for r>0.
Then, for =1,
(log 2 ||F(A)ull*— || {log(A+ 1)} "F(A)ull*
— " 100g )7 —(tog 4"}l EGu— DGyl
The integral on the right hand side is non-negative, because
duE(u—1DFQu=0 if ug>2.
Hence, it follows from the above argument that
|| {log(A+1)}"F(2ul* < (log || E(A)ull* < || {log(e4+e)} "F(D)ull?,

where the definition of {log(e4+-e)}” is analogous to that of {log(4+1)}". Inte-
grations of the inequalities with respect to 2 yield (ii), noticing that the norms
[l 10g,r> || {log(A+1)}"u|| and || {log(e4+-e)} "u|| are equivalent. Q.E.D.

II) Interpolation.
Now, we shall prove the following lemmas which play important roles in the
proofs of the theorems.

Lemma 2.3. Let t+— f(t) be a measurable mapping from [1, o0) to H*(R") (s>0)
satisfying

m(r:0) = [Tl <o and

N(fis,a, 8,0) = [“exp(—ar®Ifopd < oo
1

Jor some positive numbers a, £, 6 and s (for brevity, let us denote M(f)=M(f; 6)
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and N(f)=N({; s, a, B, 9)).
Then, the integral

.12) v = S” f(,),dTI
1
converges with respect to the norm in L(R"). Moreover, ve H3(R") and
(2.13) IVIlfog.06= C(M(f)+N(f)) »
where C is a constant independent of f.

Remark. In the integral defining N(f), the factor ¢* is negligible if we take
>0 larger. Also, J,(f(¢)) can be replaced by || f(#)||?. So, the condition N(f)< oo
says that || f(¢)||, increases at most in exponential order as t—>oo,

Lemma 2.4. Let t+ f{(¢) be a measurable mapping from [1, o) to H*(R") satisfy-
ing
M(f; 0)<oco and N(f;s, a, B, )<oo

for some fixed positive numbers a, B and 0, and for any s>0 ( for brevity, let us denote
N(f; 5)=N(f: s, @, B, 0)).
Then, for any € >0, there exists a s>0 independent of f such that

[ aog B <e(rt()+N(S: 5)

where v is the same as in (2.12).

Proof of lemma 2.3. The integral on the right hand side of (2.12) is convergent,
because

([rond Y {Temsor . (T2 — oM<
1 t 1 t a1 t
Let us put exp(t¥#)=r and g(zr)=f(¢). Then, we see that

@14 MOONC) = B lg@+-T e} tog eyer 4"

= ﬂS S (1422 +7=%) (log 7)Y | F(A)g(= )szl dr ,

In the last inequality, we have used (2.7) and (2.8).
On the other hand, since F(2) is a bounded linear operator in LA R"),

Py = Fp| e(@) Gog ) L"

~ A Fe(e) o) 4%

Hence, it follows from Schwarz’s inequality that
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215) IE@pE= £ "1+ 257 (og oy IF@E@IPE
e T
. 25, .~ %) -1 —29p-147
xS (14 2 z=%)1 (log 7)-8-147
e T
Let us estimate the right hand side of (2.15). Changing variable r by #=log r, and
putting a (2)=ilog A, we obtain
a

[Ca+aeygog et
e T

— Sw(l+lzs.e—"!")—lu—2oﬂ-ld'u
1

oo a(\)
=< S ﬂ'””“’dﬂ—l—l‘”s edu .
a(d) 1

Furthermore, since e”*<2° for p=<a(2), we see that

(2.16) [fa+reyaog ey et
¢ T

< (20,9)-1[i log x]'”ﬂw-s[i log ,z]
a a

= eopy £ |+ 2 [22EE ™ tog e

— s—2oﬂ {(20ﬂ)'la”ﬂ—|—a—l(20ﬂ—|— 1)2oﬂ+l}(log Z)—zoﬂ .
The third line of (2.16) holds because

208-+1
-5(log AP+ < [M] for a=1.
S

Therefore, it follows from (2.15) and (2.16) that
(log 2y°|| F(2)v|P*

= [ a4 tog ey Fg(e) 1 L*

where C depends only on s, @, £ and 6.
Hence, it follows from (2.14) that

Sf(log z)”ﬂuﬁ(x)vu”—;ﬁgﬂ-* CM(S)+N()) -

Noticing (ii) of Lemma 2.2, we have Lemma 2.3. Q.E.D.
Proof of Lemma 2.4. In (2.16), let us take s>0 such that
s—zoB {(20/9)‘1a”5+a"(20ﬂ+ 1)2OB+1} ée -;9_1 .
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Then, (2.16) becomes

S”(l L2 log 1) 19T < e gi(log 2) .
e T

Hence, it follows from (2.15) that

(log 2| F(2)v||*
=ef S (1+2-27) (log r)”ﬂ“llﬁ(x)g(r)lv% :
Now, if we integrate the last inequality with respect to 2, we obtain
("aog 2yt d?

ds da
fodi,

<ep|"| U207 Qog e IF@EEIP

The conclusion of lemma 2.4 follows from (2.14). Q.E.D.

§3. Proofs of Theorems.

First, let us prove Theorem 2, because the proof of Theorem 1 is parallel to that
of Theorem 2.

Proof of Theorem 2. The differential operator B=A* is formally positive and
selfadjoint. Let us denote by (B, D(B)) the Friedrichs extension of @B in L% 2),
defined in the following way:

Let €I/ be the vector space consisting of all functions ueL*(®2) satisfying
AucsL¥(2) (where A is operated to u in distribution sense). The domain of
definition of B is

D(B)= {usCV; there exists a function f € L¥2) such that
(Au, A+, v)=(f,v)  forall ve(}

where ( , ) denotes the scalar product in L*(£2).

Now, we define Bu by f—u in the above definition of D(B). It is evident that
(Bu, v)=(Au, Av) for all u&D(B) and for all v&C}/. In particular, (Bu, u)=||A||?
for all us D(B).

Now, it is clear that, for uD(B~), Bfu=A*u and

[ Aull = ||B*||  for p=0,1,2, .

Next, let us denote by B2 the positive square root of B. Then, since [|Av||*=
(Bv, v)=||BY||* for all v&D(B), we see that, for uD(B™),

| A=+ | * = || AB?ul[* = (B-B?u, B*u) = ||B***u|* forp=0,1,2, .

Hence, we can show the inclusion D°(BY?)C G°(2, A).
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Now, we fix @ >0 and define V=D (B"?). The above argument and (ii) of
lemma 2.1 imply that ¥ is a Banach space and contained in G°(2, J{). Further-
more, let us take a function ¢ € Cy(w) satisfying 0=¢=1in w and ¢=1in w,. Then,
the hypothesis of theorem 2, i.e., G°(2, JA)C H"(w), yields that ¢u belongs to
H>(R") for any uc V. Hence, the following holds by the closed graph theorem.

For any s>0, there exists a positive constant C,=C(¢) such that

3.1 J(du)<C,N; () forall ucVv.
(Recall that \/J () is equivalent to the norm in H*(R"). See (i) of lemma 2.2.)
Now, we can apply lemma 2.4 to f(t)=¢F(t)u for ueD(BY?) (4=B"?), with
0=1, f=om and a@>a,. Then, we have
() = [erouiee < IF@upe &
= &*l|(B* 4 1ul]?

and for any s>0,

N(f; 9) = [ exp(—aniomi@FOw e

< Csswexp(—at‘/”’”)NZI(F(t)u)ﬁ%
1
= Ciull.

In the above inequalities, we have used lemma 2.1 and (3.1).
Therefore, since

y= Sff(r)% - S:’qu(z)u% = gu,

ou belongs to H'S%(R"™). Furthermore, for arbitrary small e >0, there exists a posi-
tive constant C/ such that

oo " 2
(32 [ aog ay=iiEpul22
< e(@lI(B Dul - CEllulf)  for all ue DB

Hence, by (ii) of lemma 2.2, we obtain the following inequality.
For any >0, there exists a positive constant C, such that

l[8ullfog,om = el BY2ul P+ Cllul*  for all ucD(BY).

Since, gu=u and ||B"2u|[*=||Au|[? for uE C§(w,) (note that Cg(w,) CD(B)), the last
inequality gives Theorem 2. Q.E.D.

Proof of Theorem 3. The following proof is quite analogous to the proof of
G. Métivier [7] §5. But, we give the proof for the sake of self-containedness. Since
the proof is long, we devide it into two parts.
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Part 1 (preparation). Let (4, D(4)) denote a maximally accretive realization
of A(x, D,) in L*2). The contractive semi-group generated by —A is denoted by
G(t) (t>0). First, we prove the following lemmas.

Lemma 3.1. Let us put
H(t) = e™™G(t)—e~MG(et)

for positive constant 2. Then, we have
(.3) w— S”H(t)u% for all ueD(A),
0

the integral on the right hand side being conver gent with respect to the norm in L¥(2).

Proof of Lemma 3.1. For ueD(A4), H(t)u can be written as
et
H(tu = S eNG(r) (A+u dr .
t

Furthermore, since G(¢) is contractive, i.e., ||G(¢)||=1, we obtain
(3.4) [|H(#)ul| <2t e™||(A+A)ul] .

Hence, the right hand side of (3.3) converges with respect to the norm in L*9).
Moreover, exchanging the order of integrations, we have

S:H(t)u—a;—t — S:e‘”G(r) (A+Du dr ST, %

— S:e‘”G(r) (A+u de
= A+ A+Du=u.
This proves (3.3). Q.E.D.
Lemma 3.2. Taking a function v Cy(R) satisfying
(i) =0, (ii) suppyC(l,2) and (iii) Sw/r(r)dr =1,
we put:
T(t) — S:«p&)H(TT)dr .
Then ,we have
3.5) "u— S:T(t)u% for all uED(A),
the integral on the right hand side being convergent with respect to the norm in L*(2).

Proof of Lemma 3.2. By (3.4), we obtain immediately the following.
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3.6) NT@ul|= %e'“’ll(A—l—/l)ull for all usD(4).
So, the right hand side of (3.5) converges. Moreover,
S”T(t)ufli - S”w(r)dzrﬂ(i) a8 — S“H(s)ué .
0 t 0 0 t t 0 N

This proves (3.5). Q.E.D.

In the proof of theorem 3, we make use of T(¢) with a function of the Gevrey
class of index p(1<p<<om), that is,

(3.7) sup |y®(2)| SLH*k!)®  for k=0,1,2, -
T>0

with some positive constant L.
It is easy to see that, if we put G(¢)=e~ G(¢) (semi-group generated by —(4+2))
then

i = o (2 vmon( S
for k=0,1, 2, +-.
So, noting that ||G(?)||<e™, we obtain by (3.7) that
(3.8) (AT (2)ul| S 20 LF+ (ke ) ™ |
for k=0,1, 2, .-+ and for all u L3 2) .
Now, we denote by W the Banach space which consists of all u&D(4~) satisfy-
ing

o A+ D]
Ilullw—s,go) (khyonLF <oo.

Then, (3.8) yields
(3.9) |1 T@)ully 2L et exp((om—p)t/°»~?)|lu|]|  for all usL¥ ).

On the other hand, since W is contained in G°(£2, ), the hypothesis of theorem
3 implies that, for any uEw, ¢u belongs to H*(R") (where ¢ & C7(w) is the same as
in the proof of theorem 2). So, the following inequality holds by the closed graph
theorem.

There exists a positive constant C,=C,(¢) such that

(3.10) LG =Cllullz  forall ucw.
(Recall that \/J(x) is equivalent to the norm in H*(R"). See (i) of lemma 2.2.)

Part 2. We take up the proof of theorem 3. According to lemma 3.2, we can
write u&D(A4) in such a way that

U= Ugt+u,
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where

1 oo
"y = S T and u — S T |
0 t 1 t
Now, let us show that both of ¢u, and ¢u, belong to H%_(R"), for any ue
D(4). At first, (3.89) yields

dt
t

lul|< oo .

1
lluglly <2L eg Nt
1]

Therefore, we see by (3.10) that ¢u, is an element of H'(R"). To show that
du,c H%E_(R"), we apply lemma 2.3 to f(t)=¢T(t)u with g=om—p and
a>2(em—p). We have, for 0=6<1,

() = [ &<z e &

< 16S°°z2°-3e-zwdt>< (A4 Ayul?
1

= 8(1—=0)7M|(A+ul[f<oo

and

N = [Texp(arvm-nirape &

< . exp(—ar ) T(ully 0 L
1
= Gllulf<eo.

In the above inequalities, we have used (3.6), (3.10) and (3.9). Therefore, since

* o dt

ou = %,

1 t
¢u, belongs to HI2%_,,(R"). Now, for any given d(1<d<<om), we can choose p
and 6 such that 1<<p<<om, 0<0<1 and (6m—p)6=0om—0. This means that ¢u,
belongs to H%® (R") for any uD(4). Hence, the following inequality holds by
the closed graph theorem.

For any 8(1<<6<om), there exists a positive constant C, such that

lpulliog,om-s = Co(llAul[*+[lul[)  for all uD(4).

Since ¢u=u and Au=Au for uc Cy(w,) in the last inequality, Theorem 3 is now
completely proved. Q.E.D.

§4. Examples.

In this section, we shall verify that some operators similar to <4y in Introduc-
tion of the present paper violate at least one of (1.2) or (1.3).
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Let 2 be a bounded open set in R? which contains the origin O. Let us consider
the following differential operators defined in 2:

Jl = Dzl-‘l—sz(‘ﬁ(xls xz)sz) ’ JZ = D21+i¢(xl’ xZ)sz
and
J3 = iD,l+D;2(¢(xls xl)sz) 2

where we denote ¢(x;, x,)=exp(—1/|x|Y) with 7>0.

They are of elliptic or parabolic type degenerated at the origin in infinite order,
and hypoelliptic in 2 (see Fedii [2]).

Proposition 4.1 (i). A, violates the condition (1.2) with =8, o=1 and
m=2, if r=1.
(ii). A, (Ay) violates the condition (1.3) with o=8, c=1 and m=2, if r>2(r>1
respectively).

Therefore, none of D +A; (j=1, 2, or 3) is hypoelliptic in any neiborhood of
the origin in R®.

Remark. J, is formally selfadjoint. 4, and 4; have maximally accretive
realizations in L*(£).

Proof. Let us verify the assertion (i). The proof of (ii) is parallel to that of
(1).
First, let A, (t=1) be the family of linear transform in R? defined by
hx = (tx,;, exp(t”)x,) for x = (x;, x,)ER®.
Furthermore, we put 4,==det h,=¢ exp(¢") and denote

wp = {(x, X)) ER?; | x| <R} for given R>0.

Notice that uoh,(x)=u(h,x)= Cq(wyg) for any ue Cg(wg). So, we shall prove
the assertion (i), by showing that the growth order of [|uec/,||} g, as t—>co is not
smaller than that of || A (uwoh,)| |+ ||uch,|%

It is easy to see that

4.1) AJuch,|* = ||ul*.
Now, let us denote #,D=(¢D,,, exp(t")D,,).
Then,
Ay(uoh)ohi(x) = A(h7'x, hD)u(x)
and
(4.2) 4| Auoh )P = || A(hi'"x, hDyull® .

On the other hand, since the total symbol A,(x, &) of .4, is equal to

Ei+o(x)E—ig,, (06 (8(x) = (%1, X7)) ,
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it is clear that, for xE wp,

| Ay(x, DYu(x)| < | 8%u(x) | +6(x)|02,u(x) | +Cv/8(x)|8,,u(x)| ,
where C=+/ szeltg |8%,6(x) |2

So, noting that A7y is contained in @y if =1, we obtain the following inequality:
For xE wp,

| Au(h7'x, hDyu(x)| 17| 87,u(x) | +8(t, X) | 87,u(x)| +C\/8(t, x) [0,u(x) | ,

where we denote ¢(¢, x)=exp(2t")¢(h7'x)=exp(2t¥—1/|hr2x|").
In the last inequality, it is easy to show that ¢(z, x) is uniformly bounded in wg
as t—oo, if we take R>0 small enough. Thus, returning to (4.2), we obtain

4.3) A)|| A (uohy)||? = O(t*) ast—>o0 .,
Concerning the left hand side of (1.2), we can write
leohilloe =  flog@t 1 19H416) e x (4)
Hence, Fatou’s lemma yields that

(4.4)  lim inf 794 ||uoh,| |},
t>oo
= lim infg {t-"og(2+ | h,E |} |4(E) | *dE = Sa(f) [4(6)|2dE>0 ,
t>oo

where a(§)=0 if £,=0, and a(§)=16 if £,=0.
Now, we can see that the condition (1.2) with 6=1 and m=2 contradicts (4.1),
(4.3) and (4.4), if y=1. This completes the proof of (i). Q.E.D.
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