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On the asymptotic behavior of the increments

of a Wiener process

By

Norio KONO

§1. Introduction

For a Wiener process {W(t); 0 <t < + oo}, Erdos-Rényi law [5] implies the
following strong limit theorem:

lim sup [W(t + clogT) — W(t)|/logT = \/2c as. (¢ >0)
T—ow O0stsT —clogT
After them varieties of such limit theorems are proved (for examples, see [3],
[4]). Furthermore, P. Révész [8] has investigated much sharper limit theorems
using the notion of upper class or lower class.

Definition 1. Let f and g be two real (not necessarily random functions)
defined on the positive half line, and we assume that g is a monotone
function. Then g is called an upper-upper function of f(briefly, ge UUC(()) if and
only if there exists t, > 0 such that for all t > t,, f(¢) < g(t) holds, and g is called an
upper-lower function of f (briefly, ge ULC(f)) if and only if there exists an infinite
sequence t; < t, < --- = + oo such that f(t,) > g(t,) holds for all n.

In this paper, we will give an integral test which determines whether a given
determinstic function belongs to UUC or ULC of the folowing functionals of a
Wiener process with probability one:

Xo(T)= sup sup |W(s+1)— Wl//ar,

Osssar 0stsT-s

X((T)= sup sup |W(s+1)— W©)//ar,

Osssar OstsT—ar

X,(T)= sup sup (W(s+1)— W©)/\/ar,

Osssar OstsT—ar

Xy(T)=_ sup |W(+ar) = WOI//ar,

stsT—ar

X (T)= sup (W(t+ap)— W@)/Jar,

OstsT—ar
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where ar is a real function of T satisfying the following conditions:
(a-1) 0<ap £T,

(a-2) ayg is a non-decreasing function and

(a-3) T—ar is also a non-decreasing function.

We remark that the above assumption (a-3) is a little bit weaker than that in
Révész’s paper [8]. (He assumed that a;/T is non-increasing instead of (a-3)).
The case of multi-dimensional Wiener process is also investigated.

Remark 1. We are concerning only with the behavor of functions near at the
infinity, so all statements in this paper about functions defined on the half line hold
only at some neighborhood of the infinity.

We use letters ¢, c,, c,,... for non-essential positive absolute constants which
may be different from line to line. We also use notation aA b = min{a, b}, a v b
= max {a, b}, log;,t = logt and log,t = log(log - ?).

Acknowledgment. I am indebted to Professor P. Révész who kindly sent me K.
Grill’s pre-print “On the increments of the Wiener process” (to be published in the
Annals of Probability) giving a reply to my first draft. A part of his results
(Theorem 1 and 2) give exactly the same conclusion as mine, though regularity
conditions are somewhat different. The main difference between my first draft and
his is that he is investigating X,(T) instead of X,(T). Of course X,(T)
< Xo(T). Therefore I gave a new proof of the original Theorem 1 for X(T). 1
have given the complete proofs in the unifying manner which is standard technique
after Chung-Erdos-Sirao [2] and Sirao [9]. Unfortunately the proof of his
Theorem 2 is omitted saying “there are no new ideas needed”, but in my feeling
this case is more delicate than the case of his Theorem 1. Taking account of these
and the difference of regularity conditions, I believe that this manuscript is also
worth publishing.

§2. Main results.
Set TI‘( = eka dk = aTk’ bk = T;t - dk’
Ye = \/IOg (Ti/dy) + loglog T, and &, = dy/y;.
Theorem 1. If
IU(g) _ i(bk'#l v 1><dk+l - dk v 1))),:1‘3-92(“‘)/2 < 4+ © ,
k 61( 5k

then ge UUC(X)), i =0, 1, 2, 3, 4.

Theorem 2. If

0 _ d _d_ ,
IL(9)=Z<bk5—l v 1><k_5u v 1))’{16—9 T2 — 4 op
k k

k
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then ge ULC(X)), i=0,1,2,3, 4.

Corollary 1.

T_
Case I. If [im ar

T— o ar

geUUC(X) i=0,1,2,3,4 if and only if
J‘+oo (lOg(z)t)llz

log,, T < + o, then

e U2 df < + .
t

Example.

g(T) = \/ﬁog(z,T+ 3logs) T + 2logy T+ -+ + (2 + ¢)logyy T

eUUC(X)) i=0,1,2, 3,4 if and only if ¢> 0.

ap = T— cT/(logyTY, 1=, 0=c.

ar=T—c(log T, 0<c, 0<p (this example is not included in Grill’s

Theorem 2.)

Case II. If

T—ar

(i) lim
T—+ o ar

logy T = + o,

(i) lim ap/T=1 and

T—+o©
(iii) Tm by, /by < + 00, then
k—

geUUC(X) i=0,1,2, 3,4 if and only if
J‘+oo (log(z)t)S/Z

: e M0 gt <« + 0, where

W (T) = g*(T) — 2 log {(T — ar)/ar}.

Example.

g(T) = \/2log,, T+ 5log, T+ 2log {(T — ar)/ar} + 2log, T+ -+ + (2 + ¢)logyy T
eUUC(X) i=0,1,2,3,4, if and only if ¢ > 0.
(Here we assume that g is non-decrasing.)

In particular, ap = T— ¢T/(log T, 0 <a<1,0<c, then

g(T) = \/210g(2)T+ (5 —2a)log3, T + 2logy T + - + (2 + g)logy, T
eUUC(X)) i=0,1,2,3,4 if and only if ¢> 0.
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Remark. Case I and Il are not considered in Révész’s paper [8], since ar/T can not
be non-increasing unless ar = T.

Case III. If

(i) Tm a;/T<1 and

T—+wo

() 1< lim dypi/de < Tm deyr/dy < + oo, then
-+

k—+ o

geUUC(X)) i=0,1,2,3,4, if and only if
+
J ;e"'z‘"’z dt < + oo, where
h*(T) = g*(T) — {2log(T/ay) + 3log(log(T/ay) + log, T)}.

Example.

g(T) = \/Zlog(T/aT) + 3log{log(T/ay) + log,, T} + 2log T+ -+ + (2 + ¢)logy, T
eUUC(X) i=0,1,2,3,4, if and only if ¢> 0.

(Here we assume that g is non-decreasing.)

In particular, ar = aT 0 < a < 1, then

g(T) = \/2log T + Slog) T + 2log, T+ -+ + (2 + ¢) logy, T
eUUC(X) i=0,1,2,3,4 if and only if ¢ > 0.

ap = Te "2 then for 0 <a <1

g(T) = \/27(log(2,T)“ + 2log,) T + Slog;3, T + 2logy T + -+ + (2 + ¢)logy, T
eUUC(X,) i=0,1,2,3,4 if and only if ¢ >0,

and for o > 1

g(T) = \/2(log(2,T)°’ + 2log;, T+ (2 + 3a)logs) T + 2logy, T + -+ 4+ (2 + ¢)logy, T
eUUCX;)i=0,1,2,3,4 if and only if ¢> 0.
ar = T/(log T)*, o > 0, then

g(T) = /(20 + 2)log5, T + 5log, T + 2loggy T+ -+ + (2 + &) logy, T
eUUC(X) i=0,1,2,3,4 if and only if ¢ > 0.

ar=aTP 0<a<1,0< B <1, then

g(T) = /2(1 — B)log T + Slog) T + -+ 2logs, T+ - + (2 + ¢)logy T
eUUCX,) i=0,1,2,3,4 if and only if ¢ > 0.
Case IV, if

(i) lim dyy /d =1,
k= + o
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. log(T,/d
(this implies that lim d,/T, =0 and lim log (Tu/dy) = 1),
k= + o0

k= + k

(ii) lim k(de,, — dy)/d, = + © and

k= + o0
(i) 0< k}.ij (di+1 — d)/(d — di-1) = k—l:iﬁo (dsy — d)/(d — di— 1) < + 0,

then ge UUC(X)) i=0,1,2,3,4 if and only if

Q0

§ B o~ hypiran < 4 o
T dy dy

T

Example. ar = exp (J

g(t)/t dt), where &(t) is a continuous slowly varying function
1

such that €(t) |0 as t > + o and lim ¢&T)log T= 4 co. Then ge UUC(X)) i
T—+o0
=0,1,2,3,4 if and only if

+o (Jog 1)3/?
j ( gt) e W2 gr < 4 oo, where

h3(T) = g*(T) — {2log(T/ay) + 2loge(T)}.

g(T) = /2log(T/ay) + 2log &(T) + 5log,) T + 2logs, T+ -+ + (2 + ¢)logy, T
eUUC(X) i=0,1,2,3,4 if and only if ¢ > 0.
(Here we assume that g is non-decreasing.)

In particular, a; = exp{f(log T}, 0 <a < 1,0 < B, then

g(T) = \/210g T — 2B(log T)* + (3 + 20)log, T + 2log;) T+ - + (2 + ¢)logyy T
eUUCX;) i=0,1,2,3,4 if and only if ¢>0.
Case V. If

(i) lim dy,,/d, =1 and
k= +

(i) kﬁﬁ k(dy 4, — dy)/dy < + o0, then
-+ 00

geUUC(X) i=0,1,2 3,4 if and only if

J‘+co (log t)l/z
—_—e

. “ROI2 gt < 4 o0, where

h*(T) = g*(T) — 2log(T/ay).

Example.

g(T) = \/2log(T/ay) + 3log, T + 2log) T+ -+ + (2 + &) logy T
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eUUC(X) i=0,1,2,3,4 if and only if ¢ > 0.
(Here we assume that g is non-decreasing.)

ar=c(logT) 0=, 0 <c, then

g(T) = \/2log T+ (3 — 2a)log,, T + 2logs, T+ - + (2 + ¢)logy, T
eUUC(X) i=0,1,2,3,4 if and only if ¢> 0.
Corollary 2 (K. Grill’'s Theorem 1 and 2.).

T

(i) If imsupar/T<1 and a; = ¢, exp(J~
T—©

c

n(y)/y dy),

where n(y) is slowly varying as y - o, then

g(TeUUCX) i=0,1,2, 3,4 if and only if

K(g) = f "1+ 02 ) ™Y o0 gt < 4 oo,

: a
where y(t) = (log(t/a,) + log,t)'/>.
@) If lim ap/T=1 and a;r = T(1 — by), where by is decreasing to O and slowly
T+ o
varying as T — oo, then

g(T)eUUC(X,)) i=0,1,2,3,4 if and only if

® log,,0)'* _ .,
K(g) = f 1+ b,log(z,t)(Og%’)e‘g O2 4t < 4 oo,

1

Remark 2. Corollary 2, (i) corresponds to Case III-V of Corollary 1 and
Corollary 2, (ii) corresponds to Case I-II of Corollary 1.

Remark 3. When #5(t) or b, in Corollary 2 is continuous slowly varying
function, then our conditions (a-2) and (a-3) are not required.

Let W¢ be a d-dimensional Wiener process. Set

X(T)= sup sup |Wis+1t)— W)/ ar,

Osssar 0stsT-s

X(T)= sup W4t +ap)— W) /ar,

OstsT—ar

where || | denotes the d-dimensional Euclidean metric.

Theorem 3. If

® (b dyyy — di d-2 _—g2(Tw)2
14(g9) = "“vl)(—; v 1)yim2em9"MI2 < 4 o0,
u(6) Zk:< Ok Ok
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then ge UUC(X)), i = 5, 6.
Theorem 4. If
I4(g) = i(b““ v 1)(@__‘1""_1 v 1>y£‘2e‘92‘7“’/2 ~ + o0,
T\ O 3y

then ge ULC(X,), i = 5, 6.

§3. Preliminary lemmas.

In order to prove our theorems, we will list several well known lemmas, which are
modified for our purpose.

Lemma 1 (cf. [2], lemma 1). It is enough to prove Theorem 1 and 2 for g
which satisfies

(i) "W/2=29(T) =3y,

(i) lim <b““ v 1)(‘1"—_h v 1>y,;1 e T2 = 0 when I;(g) = + .

k— oo 5,( 6“

Proof. (i) First we assume that Iy{g} < + oco. We will show that there
exists ko, such that for Yk > ko, g(T;) = 7,/2 holds. Assume the contrary, ie. 32
<k, <k, <,-- > + oo such that g(T, ) <7y,/2. Then,

kn b
In@) = Y | =5 v 1)y texp{— gX(TY)/2} = cyi!
Oy

n=1

ewl— 02 5 (20w 1)
z eyt exp{— ¢*(T.,)/2} {Ti/ck,) v ku}/2
> cyp,! exp{ —log (T, /dy,) + log k,)/4}{(T,, /dy,) v k,}/2
— + o0 as k, —» + oo, which yields a contradiction.

By simple calculus we have

© (b d —d
;(?’VQ(H%—iVQn*wm—%ﬁm<+w.
k k

Therefore choosing a monotone continuous function g’ < g such that g'(Tp)
=g(T) A (Bn), we have Iy(@)<SIylg)+1, <+, and 3/2<g(T) < 3,
Obviously if g'e UUC, then ge UUC. It shows that it is enough to prove
Theorem 1 under the condition (i).

Next we assume that I;(g) = + 0. Choose a monotone function g’ such that
g(T) =g(T) v (y/2) and g = g. If g(T,) > y,/2 holds for all k, then nothing is to
be proved. Otherwise there exists a sequence k; < k, --- = + oo such that g'(T; )

I')‘
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= .,/2. Then we have

IL(g)>Z<b"‘ )(d—"%w) exp{ — ¢'(T)/2)

)

2 oyt exp(— y2./8) {(Th./dy,) V k)

— + o0 as k,— + oo.

_ kn (b _
2 oy, exp(— y2./8) D ( ':s :
k=1 k

Let g, be a monotone continuous function satisfying g,(7;) = 3y,. Easily we can
check I, (g’ A g,) = + oo0. Since g,e UUC by Theorem 1 (Theorem 1 must be
proved before Theorem 2), if g’ A g,€ ULC, then g'e ULC.
b, d, —d,_

i) Since lim < S 1)(6— v 1)y;*exp(— 992/2)=0 and I,() <

k=o k k
+ oo, where y(T;) = 3y,, we can replace g(T;) by a smaller function (say g") which
satisfies (i), (i) and I,(g") = + oo. Clearly ¢g"e ULC implies ge ULC. This
completes the proof of Lemma 1.

Lemma 2. Let {A,} be a sequence of events.
(i) Z P(4,) = + «,

(i) for each n there exists a finite subsequence n < n, <n, < --- < ny, such that
i(n)
(ii-a) Z (A,nA,) < c,P(4,),

(ii-b) P(A,NA;)) < c,P(A) holds if i # n, and n <,
then P(imA,) = 1/c,.

Lemma 3 ([2] lemma 3, 4). Let (X, Y) be a two dimensional random variable
with the Gaussian distribution such that E[X] = E[Y] =0, E[X?] = E[Y*] =1 and
E[XY]=r. Set ¢(x)=P(X =x), x>0. Then,

(i) c(x+ 1) texp(— x?/2) £ ¢(x) < P(1X| Z x) < c,x ™ 'exp(— x?/2),
(ii) PX=x, Y=2y)Zc,d(x)p(y) for any — 1 <r <ef(xy) and x, y >0, where

limc, = 1.
el0

(i) P(X=x, Y=y)<c exp{— (1 —r)y?/4} ¢(x) for any y =2 x =0 and r 2 0.

The idea of the following lemma has been used in the proof of Theorem 1 in
[9]. After him many people modified it.

Lemma 4 ([1],[7]) Let {X(t);teS} be a centered separable Gaussian
process with the pseudo-metric d(s, t) = (E[(X(s) — X(t))*])*'* satisfying the
Sfollowing conditions;

(i) (S,d,) is a compact space,
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(i) 0<g<[EX*])'*£6<+ o0 for teSs.

Then for 0<sj§ﬁ, 0<44+1,ji=01, 2,... and 0 < x,
P(sup X(t) = 6(x + Y. &4;41) = (Nx(S, gg9) +3 Y N(S, gg)e™ M) ¢(x),
teS =0 =1

where N (S, €) is the minimal number of balls B(t, €) = {s€S; dx(s, t) < ¢} whose
union covers S.

§4. Proofs of Theorems.

First, we shall prove two lemmas to prove Theorem 1.

Lemma 5. For y,/3 £ x, <3y,

P(sup  sup  |W(s+ ) — WOl 2 Jdslx, + 36x0 1 > j~2(log(j + 1))
=1

0<ssdi O0stsTk+1—5
b —
<2l div1 — i v 1)éx).
Oy Oy

Proof. Seta,=1—1/32,5,=8, Y ai'=daz(n=0,1,2,..),5={(s1)

i=n¥l
10<5Sd, 0StS Ty — s} Ay={(510); 841 S5 S 0<t<Ty,—s} and
X,(s, t) = (W(s + ) — W(©))/</dy, (s, )€ A4,. Then we have ¢ = \/s,,,/d; < (E[X]
(s, 0DV < /saJdy =G and  E[X,(s,0) — X,(s, t))’1 S 4(s — s'| + |t — t'])/aw.
Now we can apply Lemma 4 by setting ¢; = (8,/s,+1)"* (j + 1)7% 4; = 6(log(j
+ 1)'2 and x = \/d,/s,x,. Then we have

o(x + .20 gjdj+1) = X + 6/(68,)/(diSn+ 1)) _Zo:lj_z(IOg(j + 1))

(by using s,/s,+1 = 1o =(1—1/%)"" £2)

lIA

X+ 12y j7*(log(j + 1)/
=1

lIA

x, +36 3 j72(log(j + 1)2/xi,
=1
Sp = Sp+1 = 5,‘&2 = 5k,
N (A4, &) = Nx(A,, (6/d)*"* (G + 1)72) S o(Tory /8 + 1)®
S c((bes1/00 v Dy — /) v DU + 1)8,

Nx(A,, ag)) + 3 ¥ Ny(A,, ge)exp(— 43)
=1

< c((bes 1 /30 Y D((esr — d)/S) v 1) S G+ 171,
j=1
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0 _ 3 d _ 00 _
L oWl xS et Y exp( — o xf) =o' Y exp(— o "x}/2)

n

=cx; texp(— x2/2)(1 + Z exp{— (" — 1)x2/2})
(by using xf(o " — 1) = x@(e ' — 1)( R R e L o (P T

)2 en) < cpxi texp(— xg/2)(1 + z exp(— cyn)).
Combining all these estimations, ;v_e1 have

P(sup [Wis +0) — W(O| 2 /d(x + 36 5" 3. j*log (G + 1))
=1

(s,t)e

< 3 P(sup [W(s+ 1) — Wl 2 /dylxe + 36 xS i~ 2(log (j + 1))
i=1

n=0 (ss1)€ An
< ci((bis1/00 v D@y — dd/Si) v Dxi texp(— xi/2)(1 + Z exp(— ¢;n)).

This completes the proof of Lemma 5.

Lemma 6. For y,/3 < x, < 3y,,

P,=P( sup sup sup |W(s+1t)— W(@)|//ar = x, + 180 x;* .Zl j 2
i

TiksTSTk+1 di<ssar 0stsT—s

(log(j + 1) = cl(bi+ 1/ v D (s — di)/3i) v 1) ().
Proof. (i) The case of dyy; S 3T11/4. Set S={(s,0);d, <s<dy+, 051t
S Typy —dJ, X(s, t) = (W(s + t) — W(1)/s/s. Then we have E[X?(s, )] = 1 and
E[(X(s, t) — X(s, t)*] <4(]s — §'| + |t — t'])/d,. Now we can apply Lemma 4 by
setting ¢; = (j + 1)7%/x,, 4; = 6(log(j + 1))"/* and x = x,. Since we have

Glx + Z & Ajr1) =X + 6% ! Z J™*(log (j + )2,
Nx(T, a¢)) £ c((Tavy — d)xi/d) v D ((dysy — d)Xx/d) v 1)(j + 1)®
< c((bes1/00) v D(((dis 1 — do)/d) v D(j + 1B,

Ny (T, ago) + 3 ), Nx(T, ae))exp(— 4}/2)
=1

S eltbirs/00) ¥ D(@uos ~ /) v 1) § (41"

This yields the desired inequality.
(ii) The case of d,,, = 3T,,,/4.
First under our conditions we recall the following;
divy — dy 2 3Ts /4 — T, = (3¢/d — DT,
d 2 T, = (i) — diyy)  (by (a-3)),
2T — Ty /4=(1 —e/4)T, and
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log k <y <2log k.
Now set
T..=T, +id/logk, i=0,1,.... 4
Tii+1= Tist and d,; =ar,,
where 4, = T+, — T, and i, = [log k]. Then we have
deivr — dii < Tivr — Tii < 4/log k < ¢ dy/log k < cé,.

Set A; = {(s, t); dy <s < dy;, 0=t < Tp; — s}, then it follows that

P, < Z P(  sup |W(s+t W(t)l/\/dk.zngxk'*']goxk—lzlj_z
=

=0 (S eAi+1—
(log (j + 1)'?).
Set A,y ={(s,8): di; <S5 Sdiisrs 0= Thin — s} and

Ay ={610;d<sZdy;, T St+s= Tiis1)-

Obviously we have A;,, — A, < 4;,U4;,.
Step 1.

P( sup [W(s+ 1) — WI//s = x, + 180! Z j " (log(j + 1))

(s,t)e Ai, 1
< c((bys1/00) vV D (x).

Proof. Set X(s, t) = (W(s + 1) — W(1))//s, then we have E[X?(s, )] =1 and
E[(X(s, 1) — X(s, t)* ] S 4(s — §'| + |t — t'|)/d,. Now we can apply Lemma 4 by
setting &; = (j + 1)72/xy, 4; = 6(log(j + 1)Y2, ¢ =6=1, and x = x,,

Since we have

a(x + Z Ajr1) =X+ 6 x. ! Z 2(log (j + 1)'/2,

Ny(T; ae) < c((Trivr — di)xi/dd) v DG+ D?
< (T — di. /o) v D+ 1)
< c((bes+1/6) v D + )%, and

N, g60) + 3 3 Nx(T. g2)exp(— /2) < cllbuss /30 v 1) S G+
J= ji=1

Step 2.
P( sup |W(s+1t)— W)/ /de; = x+180x, 1 Y j~2(log(j + 1))

(s.0€ Ai,2 “

= ¢ ¢lxy)-
Proof. Set Af:'% = {(S, I); Sn+1 <s é Sns T;c,i g s+t g T;t,i+ 1}5 where Sp = (dk.i
— n(dysy — d/yi) v d. Then

P( sup |W(s +t) — W(O)|/\/di; Z x + 180 X i j~*(og (j + 1))

(s,)e Ai,2 j=1
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<) P( sup [ W(s + 1) — W)//di Z x, + 180 x, ! Z J7 2 (log (j + 1)),
n=0 (s, t)eAI 5
Set X(s, 1) = (W(s + 1) — W(1))/\/dy;- Then g = /s, ,/dy; < (E[X*(s, )])'7?
<6 =/su/dy;. Now apply Lemma 4 by setting &; = (6,/s,4,)""> (j + 1)7% A;=
6(log (j + 1)'/2, x = x;o/dy.i/s,, We have

a(x + ‘zo & /lj+1) =x,+6 (5ksn)/(dk,isn+1) .Zl j_2(10g(j + 1))1/2,
j= 7=

S X+ 607! ZJ_Z(IOg(J+ D)2, (su/3p41 < 10)

=1
S x4+ 180x. 1 Y jT2(log(j + 1),
=1
Spr1 — Sp S (dysy — dk)/)’l% < cdy,

Nx(A43, ag) = Nx(Af}, G/de)'*(j + D7) S c(j + 1P,

Nx(47, ggg) + 3 Z Nx(A{), ae;)exp(— '12) <c Z (j+1n7te.

j=1

Finaly we have

Y P(sup |W(s+1t)— W(Et)l//de: = x, + 180 x;* Z j %(log(j + N3

n=0  (s,0eA{")

<c

(J + 1)_10 Z d(xy V dk,i/sn)

||M3

<ex! i exp(— dy i xE/(25,)
S cex texp(— xg/2)(1 + Z exp(— {(dx; — s,)/(25,)})x7)

S e p(x)(1 Z exp(— ¢;n))
Step 3, Combining setp 1 and step 2, we have
Py < c(log k)((bx+1/6) v D(xi) £ c((bis1/6) v D(((dy+1 — d)/6) v D(x,).
Proof of Theorem 1. There exists k, such that g(T,) = 2B for all k = k,,
where B = 180 Z j~%(log(j + 1))*2. Set x, = g(T;) — B/g(T;). Then x, + 180x, !

Z J72og(j+1)'? = g(T) and ¢(x) < cd(g(Ty)) < ey, “exp(— g*(T)/2) (by
Lemma 1). Applying Lemma 5 and 6, we have

P(  sup sup [W(s+1t)— W)/ ar = g(Ty)

TksTsTk+1 OsssarOstsT—s
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< e((bi+1/80 v D(((@y+1 = d)/3) v Dy texp(— g*(T)/2).

The first Borel-Centelli lemma implies that there exists k; with probability one
such that

sup sup  |W(s + 1) — W(O)|//ar < g(T)

TksTsTk+1 OsssarOstsT—s

holds for all k = k,. Then it follows for T, < T< T, that

sup |W(s +t) — W(@t)|//ar S  sup sup

Osssar0stsT-—s TksTsTi+1 Osssar0stsT—s
[W(s + 1) — W)/ ar < 9(Ty) < g(T),
which implies ge UUC(X,).

Proof of Theorem 2. Set i, = [[d; — d;_,)/(6,M)] v 1, where M =1 chosen
later big enough and [x] means the integral part of x. Then there exists a
sequence "' =T,_, = ’I}‘,1 < T, £T,=¢ such that d,;,=ar, =di

+(@i—-1)oM,i=1,2,.
For k=2 let rk—max{p>0 Toor —de—1 >2(T,—d)},=—1if { } =¢ and
t,,=0,t,=T,—-4d,if1,20,¢,=0ift, = — 1 (k = 2). Easily we can check
that

(4.1) Tyoy—dey — by 2 (hoy —d_y)/2 (k=1,2,...) and
4.2) by S tey i k<K

Set ju =0Ty —diy — e )/GMIV L =t +0(— D&M, j=12,..,
Jo o Bijx = {Wlty; + d.) — Wit ) > i x}, where x,=g(T,) and B,
= U U B, Then in order to show ge ULC(X,), it is enough to prove
thaltSlfi)"; 1:rjléyjk.s > 0, there exists M > 0 such that
43) P(B,io)z1—e

Now we start proving (4.3) appling Lemma 2.

Step 1. For any ¢ > 0 there exist k, and M = M, such that
4.4) PB)z(1 - 3)2 P(Bi,j.k)
L,J
2 c((by-1/6) v D(((dy — dic—1)/6) v Dye ' exp(— x7).

holds for all k = k,.

Proof.
(4'5) Bk 2 Z l.j.k) - Z P(Bi.j.k n Bi’,j’,k)-
i,j

(0,J) # (i',J")

Set Xiju = (W(tk.j +dy) — W(tk,j))/\/ dy; and r= E[Xi.j,kXi',j’.k] = “i,j,knli’,j’.hl/
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Vi, where I, ={t;t, St <t,;+d,;} and |I| means the length of an
interval I.

Case 1. If [I;;,n1; ;4| =0, then

(4.6) P(B; jxNB; ;i) = P(B; ;i) P(By ;1)

Case 2. If 4 ;<1t,; and |I,;,NI; ;| >0, then

@7  0<Zj —j<i¥=[d/(6,M)]+1, and

=1 = (dgider — (6 + dii — t) v O) A dyo)//desdrs

=ty — tej — i + Vil A Sddy v (Vdadir — di )/ i s

2 1A (g = teg = /i (g — dei/ (i + Vdo) Vv S ep(dis — di ),
+ JdT,i')}/\/dk.idk,.-r

Therefore

(4.8) L=r2 LA {((' =) — (G —1) v (i—i)}6M/Q2d)).

Case 3. If ¢, <t,; and |I;;nI; ;| > 0, then

49) 0<j—j <i* and

1= r=(Vdesder — (g + diesr — 1) v O) A di)//dyidl e
(4.10) 21 A{((j—J)— @ —i)v (' —i)}6M/2dy.
If follows from Lemma 1, Lemma 3, (iii), and (4.6)-(4.10) that for fixed (i, j, k)
P(B, ;N By jra) = > + > =1+1I,

(i) # 3, j") 13, j,0n i, jo 1] =0 i, jkenlir, jo 5| >0

I = P(B; ;)i ji®(xi)

b,_ d,—d, _
< P(Bi,j,k)<ﬁ \Y 1)(% Vv 1>¢(xk)
k k

< ¢P(B;;,)/2 for k = k, (independent of M > 1 by Lemma I, (ii)) and

S cP(Bu0 3 3 exp{— {1 A (U = 1) v DSM/d0) )

0

S
< cP(B, ) 2 Y e (= (U~ 1) v M3
X 4n

—nM/32 § gP(B,'J_k)/z

ljh

(here we have chosen a sufficently large M = M, such that the last inequality
holds). Taking account of Lemma 1, (4.1) and (4.5) we have obtained (4.4).
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Step 2. If ty = T, then obviously |I;;01; j .| =0 and
@.11) P(B,nB,) = P(B,)P(B,.).

Step 3. Ifty; <T,, T, k' — 3 and k + 4log k < k', then there exists c, such that

4.12) P(B,nB,) < c,(1 — &)~ 2P(B,)P(By,) holds, where limc, = 1.
el0

Proof. Set r' = E[X,;;,X; ;] Then we have

(413) r/ = |Ii.j,k n Il".j’,k’l/\/ dk,idk’.l" é \/dk/dk’ -1
By definition, t,, £ k' — 3 implies that

T2 2 Tyor — sy 2 (Tooy — dyo_y)/2 and
4.14) dp 2T — 2T _,=(1—-2"YHT, ;.
By Lemma 1, (4.13) and (4.14), we have
FxXe <9 dy/dp - yE < ce” ¥ 2 log k!
(f(x) = e *log x is decreasing at the neighborhood of + o0)
<clogke ' — 0 as k — + 0.
This means that by Lemma 3, (ii) and (4.4) there exists k, such that for all k = k,,

tyq1 <Tw T <k —3 and k' 2 k + 4 log k, we have.

P(B,nBy) =73, z P(B ;N By jo )

i,ji',j
< ng Z P(Bi.j,k)P(Bi’,j’.k’)
iLjinJ

< ¢,(1 — &) *P(BYP(By).

Step 4. Ifty <T, 7w k=3 and k+5<k <k + 4logk, then
(4.15) ; P(B,n By) < cp(By).

Proof. By (4.13) and (4.14)

@15) 1—r 21— Jdfde 21— JT/To, (1 —e ) 2 =1—e (1

—e H) 2> 0.

(4.16) ji < (T~ y/dye—1)7i, < clogk and
417 i, < cyt <clog k.

It follows from Lemma 3(iii), (4.4) and (4.15)-(4.17) that
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(4.18) SPBNB)SY, Y P(BiyunBrpp)

i,ji'j' k'
S(1—¢7'P(B)Y (log k)*e™clos*
&

= (1 — )" '(log k)’e ™"t P(B,).

Step 5. If ty,y < Ty, T = k' — 2( by definition t,, S k' —2) and k + 4log k < k',
then there exists c, such that

(4.19) P(B,nB,) < ¢,(1 — &)~ 2P(B,)P(B,.) holds, where leilrg c, = 1.
Proof. By the assumption, t,., =T, , —d,, = T,._, — d._, < T, means
(4.20) 1—e Y _y<dp_, =4, _,.
From Lemma 1, (4.13) and (4.20), we have
r'xXe S 9/ T/dy -1 y8 < ce™® 92 Jog k' < c(log k)/k -0 as k > + .
Therefore by just the same way as Step 3, we can obtain (4.19).

Step 6. Ifty, <Th, o =k' =2 and k+ 4 < k' £k + 2log k, then
4.21) Y. P(B,nB,) < cP(B,).
&

Proof. By (4.13) and (4.20)

42 1-r2l-/dfde 21— /T[T (1 e )
=1l—-e 'l —-e YY) M2 2c>0.
4.23) Je £ (T _ 1 /dy—)y% < clog k and
(4.24) i < ey < clog k.
It follows from Lemma 3(iii), (4.4) and (4.22)—(4.24) that

4.25) ; P(B,nB,) = Z Zk P(B;;xN By j 1)
! ijijk,
< (1= &) 'P(By) Y (log k)2e <l
]
< (1 — &) (log ke ~“"=* P(B,).

Now we have arrived at the final step for the proof of Theorem 2.

Step 7. Assume that I (g) = + oco. Then one of

e

I, (9(Tss)) for i=0,1,2,3,4
k
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is divergent. Taking account of all steps from 1 to 6 and appling Lemma 2 for the
divergent sub-sequence, we can obtain (4.3).

The proofs of Theorem 3 and 4 are just the same line as those of Theorem 1 and 2
using lemmas corresponding to Lemma 3 and 4. Lemma 3 for d-dimensional case
is well known ([6] Lemma 2.8-2.10), so we only mension the following lemma
corresponding to Lemma 4.

Let Z = (X, Y) be a two dimensional centered Gaussian random variable with
E[X*]=E[Y*]=1 and E[XY]=r Set e =E[(X-Y)?]=2-2r. %,
=X5.or Xa), Va=(Yy,..., Y), where (X; Y) are independent copies of
Z. Denote by | || the usual d-dimensinal Euclidean norm. Set ¢,(x) = P(| X, |
2 x) and I(x, y; &) = P(|X4]l 2 x + &y, D4l = x).

Lemma 7. There exist positive absolute constants A, and B, only depending on
d such that

I(x, y;¢) = Ade_y2/4 $4(x)
holds for all 0 ¢ < l/\/i, y 2 B, and x > 0.
Using Lemma 7 we can obtain the following lemma.

Lemma 8. Let {X(t); te T} be a centered separable Gaussian process with the
pseudo-metric d.(s, t) = (E[(X(s) — X(2))*1)'/? satisfying the following conditions;
(i) (T, d,) is a compact space,

(i) 0<ag <(E[X*(t)'* <6< + o for "teT.
Set X,(t) = (X,(t), ..., X4(t)), where {X(t)} i=1,...,d are independent copies of
{X(1)}. Then for 0 <e;<1//2,0< 44, j=0,1,2,... and 0 <x,

P(SUP [ X4(0) | Z €jj+1) S (NA(T, ggo) + Ay Zl Nx(T; ggje _112'/4)¢d(x)
i=0 j
where Ny(T, ¢) is the minimal number of balls B(t, €) = {seT; dx(s, t) < ¢} whose
union covers T.
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