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Isogenous tori and the class number formulae
By

Shin-ichi KATAYAMA

Introduction

T. Ono and J.-M. Shyr generalized Dedekind’s class number formulae to a
class number formula of an algebraic torus T defined over Q (cf. [7], [10]). From
this generalized class number formula, they obtained a relation between the relative
class number of two isogenous tori and their Tamagawa numbers and g-symbols
of several maps induced by an isogeny of them (cf. Lemma 1). Here g-symbols
of a is defined as follows. Let A, B be commutative groups and o be a
homomorphism 4 — B. If Ker « and Cok « are both finite, that is, a is admissible,
we define the g-symbol of o by putting

_ [Cok o

q(x) [Ker o]’

where [X] denotes the order of a finite group X.

Let F be an algebraic number field of finite degree over Q and T be an
algebraic torus defined over F. h(T) denotes the class number of T. Consider
the following exact sequence of algebraic tori defined over F

0— RK/F(I)(Gm) - RK/F(Gm) — G, —0,

where K is a finite extension of F and Ry is the Weil functor of restricting the
field of definition from K to F. As a generalization of the formula of Gauss on
the genera of binary quadratic forms, T. Ono defined a new arithmetical invariant
E(K/F) by putting

E(K/F) = h(Rgp(G)/(h(Ry;r™” (G) - h(G,)).-

In [9], he obtained a formula of E(K/F) expressed in terms of cohomological
invariants for K/F. He also defined another invariant E'(K/F), and in [5], we
briefly announced similar formula for E'(K/F) when K/F is finite normal. In
[6], using I. T. Adamson’s non-normal cohomology, we announced that one
could generalize these formulae of E(K/F) and E'(K/F) for any finite extension
K/F.

In this paper, we shall prove these announced results of [5] and [6] in
§1. In §2, we shall show another class number formula for a biquadratic
extension K/F. In §3, we shall show this formula implies some class number
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formula of Dirichlet for biquadratic extensions Q(\/&, v —1/Q (g is a prime
number). Hence, the formula may be viewed as a generalization of this formula
of Dirichlet.

§1. Following [9], we shall start by recalling the definition of the class
number of a torus. Let F be an algebraic number field of finite degree and F,
be the completion of F at a place p of F. When p is non-archimedean, we
denote the ring of p-adic integers by O,.

Then Uy = [T Frx Il Oy is the unit group of the idele group

p:archimedean p:non —archimedean
F%. Here, for a ring A, A* denotes the multiplicative group consisting of all
the invertible elements of A. Let T be an algebraic torus defined over F. T(F)
denotes the group of F-rational points of T and T(F,) denotes the group of
F ,-rational points of . We denote the character module of T by T= Hom (T, G,,),
where G,, is the multiplicative group of the universal domain. Let f"o be the
integral dual of T Then, for the case when p is non-archimede?.n, T(0,) the
unique maximal compact subgroup of T(F,) is isomorphic to T, ® Oy. The
adelization of T over F shall be written T(F,). Then the unit group of T(F,)

is defined by T(Uy) = [| T(O,), where p runs all the places of F and T(0,) = T(F,)
P

when p is archimedean. We define the class group of T over F by putting

C(T) = T(F )/(T(Ug) (T(F)).

We call the order [C(T)] the class number of the torus T and denote it by
h(T). Let K be a finite extension of F and Ry, be the Weil functor restricting
the field of definition from K to F. Then, from the definition of the class group
of tori, we have C(G,) = F;/UpF* and C(Rg;(G,)) = K5/UgxK*. Hence the
class numbers h(G,,) and h(Rg(G,,)) are usual class numbers of algebraic number
fields hp and hy, respectively. Let T, T* be the tori defined over F and A: T—» T*
be an isogeny defined over F. 1 induces the following natural homomorphisms

A(F): T*(F) — T(F),

A0,): T(0,) — T*(0,),

MOp): T(Op) —> T*(Op).
Here f’(F ) denotes the submodule of T consisting of all the rational characters
of T defined over F. In this situation, we have the following key lemma.

Lemma 1 (cf. [7] or [10]). With the notations as above, we have

WT) o(T) l:l q(4(0y))

h(T*)  ©(T*)q(L(0F)) q(A(F)),
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where ©(T), ©(T*) are the Tamagawa nombers of T, T*.

Let y: T— T be a F-isogeny of T. Then, from this lemma, the following corollary
is obvious.

Corollary 1. For any F-isogeny y: T— T, we have

__Maco)
4(A(05)) a((F))

Consider the following exact sequence of algebraic tori defined over F
1) 0—T SH5T-EHT"—0,

where o and p are defined over F. Maschke’s theorem states that every rational
representation of a finite group is completely reducible. Hence, one can take a
homomorphism f: T— T’ defined over F such that A =8 x u: T—» T’ x T” and
y=B-a: T'—> T are F-isogenies. From Lemma 1, we have the equality

WTY (T [14((0.)

WT) AT o(T) «(T) - 4G(F)) q(A(07).

Let L be a common finite normal splitting field of T, T’, T”. We denote Gal(L/F)
by G. First, we provide following elementary lemma.

@

Lemma 2. Let W= X x Y be an abelian group and A be a subgroup of
finite index. Then we have the equality

[W:A]=[X: AY/Y][Y: AnY],
where W/Y and {1} x Y are identified with X and Y.
Consider the following short exact sequence of G-modules induced from (1)
0—T'(0) — T(0) — T"(0) — 0.
From the long exact sequence derived from this sequence, we have

a(OF) wOF)

0 — T'(0p) — T(05) — T"(0)) — H'(G, T'(0L)) — H'(G, T(0y)) — --.

The map B(Op) x u(Og):T(0g) > T'(Of) x T"(Of) shall be written A(Of). Then,
from Lemma 2 and the above long exact sequence, the cokernel of the map A(Oy)
satisfies

[Cok A(0p)]=LT"(0F): n(Op)(T(0p)] x [T'(0p): BOR)(T(Op)NKer u(0F))]
= [Ker (H(G, T'(0,)) — H'(G, T(OL))] x [T'(OF): y(Op)(T'(0p)]
= [Ker (H'(G, T'(0)) — H'(G, T(01)))] [Cok y(0p)].

On the other hand, the kernel of the map satisfies
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[Ker 4(Of)] = [Ker B(OF)nKer u(0p)]
= [Ker B(Op) Na(OF)(T"(0F))] = [Ker y(Op)].
Hence we have
4((0f)) = q(y(0F)) [Ker (H'(G, T'(0y)) — H'(G, T(0y)))].
In the same way as above, the following equality holds for all p
4(A4(0,)) = q(y(0,)) [Ker (H'(Gg, T'(Og)) — H'(Gg, T(Og)))],
where B is an extension of p to L and Gy is the decomposition group of .
Therefore, from the formula (2), we have
q(v(0,))
M) «(T) 141,
h(T) h(T")  «(T") ©«(T")  q(A(F)) q(y(OF))

[1[Ker (H'(Gy, T'(Og)) — H'(Gy, T(Oy)))]

)

[Ker (H'(G, T'(0y) — H'(G, T(01))]

[Ta(r(0,)

Finally, by virtue of the fact = = g((F)), we have the following theorem.
q4(y(Op))

Theorem 1. With the notations as above, we have the following class number
Sformula

WT) () 4G(F)
WT) W(T) ~ «(T) «(T") " a(R(F)
 [Ker (H!(G, T'(Uy) — H'(G, T(W)]
[Ker (H'(G, T'(0)) — H'(G. T(0))]

(T q((F)[ILT"(0,): u(0,)(T(0,))]

P

(T (1) g(iF)) [T"(05): w(0R) (T’

Here U denotes the unit group of the idele group L.

Let K be a finite extension of F and Ry is the Weil functor restricting the field
of definition from K to F. Consider the following special exact sequence of
algebraic tori defined over F

0— R(Kl/)r (G,) — RK/F(Gm) e G, —0,

l\ H
T T T
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where N is the norm map for K/F and R¥r(G,) = Ker N. The invariant E(K/F)
is defined by putting
nT) kg

ERIE) = Ty n(T) ™ hy hgye”

where hgr denotes the class number h(T’). For this case, F-morphism B:T->T
is defined by B(x) = x™(N x)”'(m = [K: F]). From the fact that T" = R} (G,)
is an anisotropic torus, the elements g(y(F)) and q(i(F )) in Theorem 1 are both
equal to 1. The Tamagawa numbers 7(T) = t(T") = | and

t(T') = [Ko: F1/[F*NNgpK}%: Ngp K*], where K, is the maximal abelian
extension of F contained in K. Furthermore, we get

[T"(0F): N(O)(T(0p)] = [OF: Ngr O],

[1LT"(0,): N(O,)(T(0)] = [][0;: gl‘;[ Nyyir, 03]

P P
= [Ug: Ngir Ugl.
Combining these, we get

[F*NNyrKi: Ngp K*] [Up: NgjpUg]

ER/F)= [Ko: F1[0%: Ny OX]

L denotes the Galois closure of K/F and G, H denote the Galois groups Gal(L/F),
Gal(L/K). Then L is a common Galois splitting field of T, T', T". We denote
I. T. Adamson’s non-normal cohomology group H°([G: H], Of) by H°(K/F, 0%).
From [1], Theorem 4.5, we have H°(K/F, OF) = Of/Ny,O%. Finally, using
these non-normal cohomology groups, we get the following interpretation of
E(K/F)

[Ker (H(K/F, K*) — H°(K/F, K}))] [H°(K/F, Uy)]

E(K/F) = [Ko: F1[H°(K/F, 0¥)]

Theorem 2. For any finite extension K/F, we have
[Ker (H°(K/F, K*) — H°(K/F, K}))] [H°(K/F, Uy)]
[Ko: F]1[H°(K/F, 0%)]
_ [F*nNNyrK5: Ngp K] [Up: Ngjp Ux].
[Ko: F] [OF: NK/FO}((]

E(K/F) =

When K/F is normal, I. T. Adamson’s non-normal cohomology group coincides
with usual Tate cohomology group. Hence we have the following class number
formula ([9], Theorem).

Corollary 2. For a normal extension K/F, we have

[Ker (H°(G, K*) — H°(G, K)))1 [H°(G, Uy)]
[Ko: F]1[H°(G, 09)] ’

E(K/F) =
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P

where G = Gal(K/F) and [H°(G, Ug)] =[]ed. €2 is the ramification exponent
P

of the maximal abelian subextension over F, which is contained in Kg (B is an
extension of p to K).

Now, consider the following exact sequence of algebraic tori

0—G, ~ RK/F(Gm) £ RK/F(Gm)/Gm —0,

T
T T T

where K is a finite extension of F of degree m and p'(x) = x mod G, (x € Rg/r(G,)).
Let f' be the norm map from T to T'. Then there exist F-isogenies

A=pfxpy:T->T xT" and y=fo: T'> T, where y is the map 7'(x)
=x"(xeT' = G,). L denotes the Galois closure of K over F. Then L is a
common splitting field of T, T', T”. We denote the Galois group Gal(L/F) by

G and Gal(L/K) by H. Let G = |J o;H be the right-coset decomposition of G
i=1

with respect to H. Then the character modules of T, T, T" are T= Z[G/H]

=Z{oH|1 <i<n)~Ind$Z, T'=~Z and T" ~I[G/H] = Z{cH — H|oeG),

respectively. We denote the integral dual of I[G/H] by J[G/H]. hg, denotes

the class number of the torus Rgz(G,)/G,. Then the invariant E'(K/F) is defined

by E'(K/F) = e . From Theorem 1, we have
he hir
o(T) ‘1(5"(1‘:)) [Ker(H'(G, U)) — H'(H, U}))]
o(T') ©(T") q(X(F)) [Ker (H'(G, 0}) — H'(H, 0)))]’

E'(K/F) =

where U, is the unit group of the idele group L and Of = L*nU, is the global
unit group of L. We shall calculate the Tamagawa numbers, g-symbols,

(Ker (H'(G, Uy) — H'(G, U;))] and [Ker(H'(G, OF) — H'(H, 07))].
First, one sees the Tamagawa numbers t(T) = t(T") = 1 and

[H'(G, T")]

= f. [8]).
[Ker (H'(G, T"(L)) — H'(G, T"(L )] et 18]

(T")

Consider the following exact sequences of G-modules

0 — I[G/Hl — Z[G/H] — Z — 0,
0—Z7Z—Z[G/Hl — J[G/H] —0,
00— T/ (L)— T(L)— T"(L) —0,

0—T(L)—T(L,)—T"(Ly)—0.
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From the fact that T =~ I[G/H], we have [H!(G, T")] = [H(G, I[G/H])]
= [Cok (H°(H, Z) - H°(G, Z))] =[G: H] = [K: F]=m. Since T'(L) =~ L* and
T'(L,) =LY and H*(G, L*)— H?*(G, L%) is injective, we have H?(G, T'(L))
— H%(G, T'(L,)) is injective. Since T(L)=~ Z[G/H]® L* and T(L))

~ Z[G/H]® L%, we have H'(G, T(L))~H'(G, Z[G/H]® L*)~H'(H, L*)={0}
and H'(G, T(L,) =~ H'(G, Z[G/H]® LY)~H'(H, L;) = {0}. Therefore we have
the following commutative diagram with exact rows and colums

0 0

l l

HY(G, T"(L)) — HY(G, T" (L))

0 — H(G, T'(L)) — H2(G, T'(L,,)).

By diagram chasing, we have H'(G, T"(L)) > H'(G, T"(L,)) is injective. Hence
the Tamagawa number t(T") equals to m. Since T” is an anisotropic torus, we
have q(A(F)) =[Z: Z] =1 and q(3(F)) = [Z: mZ] = m. Now, we shall recall the
following lemma on non-normal cohomology groups.

Lemma 3 (cf. [1]). Let G be a finite group and A be a G-module and H
be a subgroup of G. Then the following sequence is exact

0— HY([G: H], A)— H'(G, A) —> H'(H, A),
where H'([G: H], A) is 1. T. Adamson’s non-normal cohomology group.

We denote H'([G: H], U,) and H'([G: H], OF) by H'(K/F, Uy) and
HY(K/F, 0%), respectively. Then, from Lemma 3, we have Ker (H'(G, U))
 H'(H, U,)) ~ H'(K/F, Uy) and Ker (H'(G, 0%) > H'(H, 0%)) =~ H'(K/F, 0%).
Hence we have the formula

_[H'(K/F, Uy]

E(K/F)=———_——.
(&5 [H'(K/F, 09)]

In the following, we shall calculate the number [H'(K/F, Ug)]. Let B be an
extension of p to L. Then we have

H'(K/F, Ug) = Ker (H*(G, U)) — H'(H, U}))

~ Y Ker (H'(G, Indg, 05) —> H'(H, Ind$, 0%)),
LU

where Gg is the decomposition group of . Let G= ) Ht;Gy be a double
j=1

coset decomposition of G. We denote the extensions of p to K by p,(K),

p2(K),...,p,(K), where p;(K) = p,(K)¥. The ramification exponents of B/p and

p;(K)/p shall be written e(B|p) and e(p;(K)|p), respectively. If p is archimedean,

B/p ramifies if and only if Ly = C and F, =R and the ramification exponent
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e(B/p)=[C:R]=2. Let P’ be an extension of p;(K) to L. Then P is
conjugate to P and we obtain the equality e('|p) = e(B'|p;(K)) e(p;(K)|p). Since
L/F is normal, we have e(*p'|p) = e(PB|p). Hence, we may write e(P'|p;(K)) by
e(PB|p;(K)). There exists a commutative diagram for every place P

H'(G, Ind§,03) —  H'(H, Indg, 0)
le l

Hl(GcB, Og) — Z Hl(‘z:j_lH‘cjnG‘B, 03)
j=1

12 J 12

Z/e(Blp)Z — ) Z/e(Blp;(K))Z.
i=1
From induction, one can easily show the following elementary lemma.

Lemma 4. Let e, ay, a,,...,a,, by, b,,...,b, be the natural numbers such that
a,'by=a,°b,=--=a,-b,=e. We denote the greatest common divisor of
a,, a,...,a, by d and the least common multiple of b,, b,,...,b, by g. Then we
have d-g = e.

Using this lemma, we have

Ker (Z/e(P|p) Z —> '_il Z/e(B|p;(K))Z)

J

~gZ/e(Blp)Z
~Z/e,(K)Z.

Here g denotes the L.C.M. of e(B|p;(K)) and e,(K) denotes the G.C.D. of
e(B;(K)lp). Hence, we have obtained an isomorphism

HY(K/F, U) =Y Z/e,(K)Z,

where p runs all the ramified places of K/F. Hence we have [H!(K/F, Uy)]
=IIe,(K). Combining these, we have the following theorem.

Theorem 3. With the notations as above, we have

' [Tex(k)
) p) < HEE U
[H'(K/F. 0] [H'(K/F, 091

When K/F is normal, we have the following corollary.

Corollary 3. When K/F is a finite normal extension, we have
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G U] L

E'(K/F) == - ,
[H'(G, 01  [H'(G. 0p)]

where p runs all the places of F and e, is the ramification exponent of B over
p(*B is an extension of p to K).

Remark. We want to take this opportunity to make the following corrections
to our paper ([6], Remark 2). In Remark 2, we have written “[H*(K/k, Ug)]

=[][H'(Kg/k,, 03)]1 =]]e,, where e, is the ramification index of P.” The
P P

correct form of this remark is above Theorem 3. Hence, for “e,” read “e,(K)”
and for “the ramification index of B” read “the G.C.D. of the ramification

indices of e(p;(K)|p)” and suppress “ITCH Y(Kg/k,, 03)”
P

§2. First, we shall provide elementary tools on Galois modules and Galois
cohomology groups. Let G be a finite group and H be a subgroup of index
m. Let G= CJ o;H be the right-coset decomposition of G with respect to
H. J[G/H] lt_hle integral dual of I[G/H] is the left G-module Z[G/H]/Z
~7{oH |6eG and il o.H =0). As usual, J[G/{1}] and I[G/{1}] shall be

written J[G] and I[G], respectively. For any G-module A, we have the following
lemma.

Lemma 5. With the notations as above, we have
(I[G/H]® A)° = Ng(0)n A" and
H°(G, ITG/H]® A) = Ng (0)n A"/ Ny(Dg A),
where A" = (ae A|a(a) = a for every ceH} and DgA = {c(a) — aloeG, ac A).
Proof. Consider the following exact sequence of G-modules
0—A®I[G/Hl — A®Z[G/H] — A — 0.
From this exact sequence, we have

0—(4® I(G/H])® —» (A ® Z[G/H])® —» A% — ... Since (4 ® Z[G/H])
= ‘2 0:(A" ® H) ~ A", we obtain (4 @ I[G/H])® = Ker (Ng : A¥ - A9
i=1

= NG',}, (0)n A#. On the other hand, from A®I[G/H]=<{a®(cH — H)|acA, 6eG),
we have

(Nga® (cH — H))) =< ) (@@ oH) — 1(a ® H)))

€G
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=< Y67 = )a®H))

G
= (3 ai(Nu(le™" — 1)a® H)) = Ny(DgA) < A"
i=1

Therefore we have

H°(G, A®I[G/H]) = (A® I[G/H])°/Ns(A ® I[G/H])
~ NG, (0)n A%/ Ny(Dg A).

In the following, we shall restrict ourselves to the case when G is isomorphic
to (Z/2Z)*. Let F be an algebraic number field and K be a biquadratic extension
of F. We denote the Galois group Gal (K/F)=G by <{6) x {(t). Here
62=12=1 and ot =10. Let K(0), K(r) and K(o7) be the intermediate fields
of K/F corresponding to the subgroups (), {t) and {6t). Then the character
modules of R (G,) and R{),.,r(G,) are isomorphic to J[G] and J[G/{a1)].
There exist isomorphisms

J[G1=Z(o,7, ot, 1T+ 0+ 7+ o1 =0),
J[G/<ot)] = Z{{ ot Yooty + {at ) =0
>Z{+ o1)cJ[G].

We shall construct the following exact sequence of G-modules

3) 0 — J[G/{a>]® J[G/<tD]— J[G]—2 J[G/{o1)] — 0.

Here i(<{o))=T1+0, i({ty)=1+7 and a(p) = p{oty (peG). The exactness
of (3) follows if Ker & = Im 1 and u is injective, because of the fact that & is a
natural surjective homomorphism of G-modules. From the definition of o,
Ker a=Z{ag+bi+cot|c=a+bd=2{G+ ot, i+ otd=2Z{1+45, 1+7).
On the other hand, we have

p:J[G/Ko)]®I[G/{tD]=Z{T+a5,T1+7). Hence (3) is an exact sequence
of G-modules. From the integral dual of (3), we have another exact sequence

0 — I[G/{o1>] — I[G] - I[G/<o)]1® I[G/<{)] —> O,

where  dg(0{ot) —(ot))=0+1—1—01 and [fio(p — 1) = (p<o) — (o),
p<{ty — (1)) for every peG. Dualizing (3), we obtain the following exact
sequence of algebraic tori defined over F

@) 0 — Rigyeyr (G) = RKJr (Gr) = R{yr (Go) X Ry (Gr) — 0,

where p(x) = (Ngk@ X, NgkeX) for every xeR¥):(G,). Appling Theorem 1 to
(4), we have
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hK/F _ ©(K/F)
hK(a)/F hK(r)/F hK(at)/F ©(K(0)/F) ©(K(1)/F) ©(K(a71)/F)
y q(y(F)) 9 [Ker (H'(G, I[G/<o1)]® Ug) > H'(G, I[G]1 ® Uy))]
q(A(F)) ~ [Ker (H'(G, I[G/{ot)1® 0}) - H'(G, I[G]1® 0%)]’

where t(K/F) is the Tamagawa number t(R{):(G,)) and y = f-a: R{)(G,)
— R{)(G,) and 1 = pu x B. Here B and y are the morphisms = N K/K(ey and p(x)
=x? for every x€RY)(G,). First we have q(y(F)) = q(A(F)) = 1 because of the
fact that all the tori of (4) are anisotropic. The Tamagawa numbers t(K(c)/F)
= 1(K(1)/F) = ©1(K(07)/F) = 2, because Hasse’s norm theorem holds for the
quadratic extension, and ©(K/F) = 4/[F*NNgpK}: N, K*] from [8]. Let Ay
be either Uy or O%. Then, using Lemma 5 and the exact sequence (4), we have
Ker (H'(G, I[G/<0)]1® Ax) — H'(G, I[G] ® Ay))

= Cok (I[G1® 4x)® — (I[G/<a>T® I{G/{1>]) ® Ax)°)

= [(Ng(ir)/F(l)nAK(o)) X (NE(i)/F(l)nAK(:)/F): (NK/K(o') X NK/K(a)) (NE/}?(I)HAK)]

= Cok (H°(G, I[G]1 ® Ax) — H°(G, (I[G/<o> 1@ I[G/<{t>]) ® Ay))

=~ Cok (N~ 1(1)0 Ag)/Dg Ay —> ((NE(}r)/F(l)n Ax(o))/NK/K(a) (Dg Ag))

X ((leé)/ﬁ (DN Agw)/Nijk (Dg Ag)))-

Theorem 4. With the notations as above, we have

hyr _ 1
hK(o‘)/F hK(r)/F hK(a't)/F Z[Fx n NK/FKE : NK/FKx]
o [Ker (H'(G, ITG/<o1>1® Ug) —> H'(G, I[G] ® Uy))]
[Ker (H'(G, I[G/<ot>]1® 0F) — H'(G, I[G]1 ® 0¥))]1

where the last factor equals to

[N x@r (DN Ux) X (Ngyr ()N Ug): N(Ngk (DN Ug)]
[(Nx@yr (DN 0% ) X (Ngayr(1)N 0% ) N(Ngr(1)n 0F)]

Here N is the map N = Ny, X Ngjk)-

§3. In this section, we shall obtain explicit form of Theorem 4 when F = Q
and K = Q(\/Z], v —1) (g is a prime). We define o, t© by putting

War =4 /=17 =~/ 1and (Joy = — Ja. /=D =/—1.

For the sake of simplicity, we shall restrict ourselves to the case when g =1
(mod 4). In the following, we shall calculate the right factors of Theorem
4. First, we shall show

[Ker (H'(G, I[G/<o)]1® 0F) — H'(G, I[G] ® 0)))] = 4.

There exist isomorphisms
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Ker (H'(G, I[G/<0ot)]1® 0F) — H'(G, I[G] ® 0%))
= Cok (H°(G, I[G1® 0%) — H(G, (I[G/{e»1® I[G/<1)]) ® O)).
Let ¢ be the fundamental unit of K(o) = Q(\/a). Since ¢ =1 (mod 4), Ng0é
= — 1 and the unit group Ox = (&) x (ﬁ}. 0, 0X, OF, denote the unit

groups of Q(\/a), QL/—1), Q(/— q), respectively. Then O ={—1) x (&)
and O =(/—1) and O, =<{—1). From the fact Ny;o(0%) = Nxi o
(Ng/k@yO0%) = {1} and Lemma 5, one sees

H®(G, I[G] ® 0F) = Nyq(1)/Dg OF = O%/Dg O%.

From the fact that e =¢, (/=1 = —/—1, &= —¢" L, (1) =/—1, we

see DgO% = {&*) x {—1)>. Hence we have

H(G, I[GI® 03) = <&y x (/= 1)/<e®> x (= 1> = (Z/2Z)".
Next, we have
H(G, I[G/<0>1® 0) = (05 N N ko (1))/Nk(e) (D OF)
= (&) x (= 1/(Ke?) x (= 1Hy*!
= (&) x {(— 1)/<e*) = (Z/22)*.
Finally we have
H®(G, I[G/<1>1® 0%) = (07 N Ny (1))/ Nk (Dg OF)
= /= D/ x (= DY
=/ 1) =Z/4L
Since (N & Nixed=E"""1, &) =(e%, —1) and (N0 (/—1),
N,(,K(,,(\/——l)) = (1, — 1), we have the equality
[Cok (H°(G, I[G1® 0%) —~ H® (G, (I[G/{a>1® I[G/<7)>]) ® 0F))]
=4x2x2/2x2=4.
Next, we shall calculate the number
[Cok (H°(G, I[G]1® Ux) —> H°(G, (I[G/<a>]1 @ I(G/<{z>]) ® Ux))].

For any prime p, B denotes an extension of p to K.. Qp(f,,/— 1) the
completion of K at ‘B shall be written Ky. Og denotes the local unit group of

Kg. We denote the decomposition group Gal (Ky/Q,) by Gg, which is considered

as a subgroup of G. Then, as G-module, Uy is isomorphic to ) Indg 03. We
p

denote Indg,.0f by U,. f, denotes the number [Cok (H°(G, I[G]® U,) -

H°G, (I[G/{ad]1®I[G/<{D]) ® U,))]. For the archimedean place, we denote
this number by f,,. Then the number [Cok (H°(G, I[G] ® Uy)— H°(G, (I[G/
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oY@ I[G/{t>])® Ug))] equals to II f, x f,. When Kg/Q, is unramified,
that is, pf2q, U, is cohomologically trivial. For any subgroup H <G,

Z[G/H]® U, is also cohomologically trivial. Hence I[G/H]® U, is also
cohomologically trivial. Therefore we have f,=1 when p#2, p#gq, p# .

Hence we have []f, X fo =f2 X f; X fo.
p
(i) Calculation of f,(p = q).

-1
Since (—) =1, we see Gy =ty and U, =(0g)° x Oy. Hence we have
p

H°G, I[G]1® U, = H (G, U,
={(x% »Ixy*t =1 and x, ye05}/Ds U, =~ H™'(Gg, 0F)
~Z/2Z. Here DgU,=<{(x" 7%,y 1), (x° x~1)|x, ye0§>. Next, we have
H(G, I[G/<o>T1® U,) = Ngitoy (NN U /N (55 (Dg U,),
where US> = {(x°, x)|x€0§}. On the other hand, we have
Ngitoy (NUS? = {(x°, x)|xe0F, x**' = 1} and
N(y(DgU,) = {(x™7%, x*"')|xe 05}. Hence we have
H°(G, I[G/{s)]1® U, = N{,; (1)n0gx/Dy, Of = H ™ '({z), 03) = Z/27.
Next, we have
H(G, I[G/<{1>1® U,) = NGty ()NUS? /N (5 (Dg U ),
where US” = {(x°, y)|x, ye(0F)” = ZX}. On the other hand, we have
NGty (MNUS? = {(x°, X ')[xeZ}} and
Ny(DgU,) = {(x**?, x " ")|xe0F}. Hence we have
HO(G, I[G/<t)]1® U,) = HO(t), OF) = ZX/N o, 05 = Z/2Z.

Therefore we have f, = [Cok (Z/2Z —(Z/2Z & Z/2Z))]. Hence f, =2 or 4. It
is easy to show (x° 1) mod Dg O3eH ' (G, U p) for any xeOg such that
x**1=1. On the other hand, for any x(xeO§ and x**' = 1), we have Ny,
X Ny (X% 1) = (x% x) mod N ,5(DgU,) x (1, 1) mod N,(DgU,). Hence

Cok (H°(G, I[G]1® U,) — H°(G, (I[G/<o>]1 ® I[G/<t)]) ® U,))
~ H(G, I[G/<t)1® U,) = H°({(z), 03) @ Z/2Z. Therefore we have f, = 2.
(ii) Calculation of f,.

First, we treat the case when g=1 (mod 8). Then (g>= 1, that is,

Qz(\/c}) = Q, and the decomposition group Gy equals to (o). Therefore, in the
same way as above, we have

Cok (H°(G, I[G]1® U,) — H°(G, (I[G/<a)1 @ I[G/<t)]) ® U}))]
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=~ H°(G, I[G/<6)1® U,) ~ H°({c), 03) =~ Z/2Z. Hence f, = 2.
For g =5 (mod 8), one sees (%) = — 1, that is, Qz(\/(;) is the unramified

quadratic extension of Q,. Since Q,(./— 1)/Q, is a ramified quadratic extension,
the decomposition group Gy equals to (o) x {t). Hence U » = Oy. Therefore
we have

HG, I[G]1® U,)~ H (G, U,) = H™ (G, 0)
— {x€0F|x" 7+ = 1}/D; 0%.
Here D; 035 = (x' 77, y' 7*|x, ye 0.
Next we have
H(G, I[G/<o)1® U,) = H%(G, I[G/{6)]1® 03) = Ngyo ()0 U, /N 4, (Dg OF)

> {xeU,|x**! = 1}/{y"*V""9|ye0}}. Here U, is the local unit group (03)‘".
Since QZ(\/a)/Q2 is an unramified extension, U, is a cohomologically trivial
G/{o)-module. Hence we have H '(G/{o), U,) =1, that is, Ngi,,(1)nU,
= {x'"*|xeU,}. Therefore we can define the following surjective homomor-
phism ¢

8:Z/2Z = H°(Ko), 0g) — H°(G, I[G/{o>]1® 03), where 6 is defined by
d(x mod N, 0%) = x' "*mod N,,(Ds03). One can easily show the kernel of
0 equals to Zy N, O3/N 5 Oy. Hence we have

H°(G, I[G/<e>]® 0§) = U,/Z; N, 0%. Hence we have

[H°(G, I[G/<o>]® 03)] £ 2. Since H°(G/{a), U,) =1, that is, ZX
= N,,0g, we can define the following surjective homomorphism

§': HO(G, I[G/<0)1® 0% = U,/ZX N 5y 0% —> L3 /(ZX)* N 0.
Here ¢ is defined by &'(x mod ZXN,,03) = x"*! mod (Z})* N;O}. Since
H°(G, 03) = Z;/N; 03 =~ Z/2Z, we have N; 03 > (Z3)*. Therefore Z%/(Z)* Ng
03 ~ ZX /N 03 = H(G, 03) ~ Z/2Z. Therefore [H(G, I[G/<c>]® 0%)] = 2.
Combining these, we have H%(G, I[G/{o>]® 03) = Z/2Z. Finally we have
HO(G, I[G/<1>1® U,) = H%(G, I[G/<t)]1 ® 03) = Nty (1)NU./N (5 (D OF)

> {xeU,|x""! = 1}/{)¢*V1"?9|ye03}. Here U, is the local unit group
(03)¢”. Since H°(<t),03)=1, we have N ,0% = U, Therefore we have
H°(G, I[G / <©)1® 03) = {xeU.Ix""' =1} / {y' ’IyeU,} =H (G / (1), U)
~7)2Z.

Let a be the following map

o {xeog‘(’lxar+o+t+l — 1}/D60$ —’({XEU,'XH—I — 1}/{y(a+1)(1—r) — llyeog})
x ({xeUx"! = 1}/{y" 077 = 1]ye Og}).

Here a is defined by a(x mod Dg0F) = (x°*' mod N, (Dg 0%), x**! mod N,
(D¢ Og)). From Lemma 2 and H°({1), Og) =1, we have [Cok a] = 2/a. Here
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a is the order of the following group A

A= (x""'|xe0} and x**!' = yt*V1I=2  for some yeOg}/N 4 (DgO0g).

(1—-a)(z+1)
s

For any xe O} such that x**! =y we have (x x y° }y*!' =1. Since
o—1 1-1

H™'({x), 0§) =1, there exists an element zeOg such that x x )" " =z
Hence x = y! 7% x z! 7% Therefore x**! =z*V1"9eN . (D O3). Hence a=1.
Therefore f, is also equals to 2 for ¢ =5 (mod 8).

(iii) Calculation of f.

From U_ ~ C* x C*, we have H°(G, I[G]® U,)~H (G, U,)
= {(x%, y)Ix, ye C*, (xy)*' = 1}/<(x% x7 1), (1, y* 7)|x, ye C*>. In the same way
as the calculation of f,, we have H°(G, I[G/<o>]1QU)=N"'({1), C*)={1}
(Hilbert’s Theorem 90). On the other hand

H%(G, I[G/<t)]1® Uy) = Ngj¢o, (NN US? /N, (D U )
> {(x% x N|xeR*}/{(x*%, x 177 |xeC*} = H°({1), C*) = R*/R% = Z/2Z.
Let f be the map
B: H°(G, I[G1® U,) — H°(G, I[G/<t)1® U,)
defined by putting
B((x°, y) mod DgU,) = (x”**°, y** ") mod N, (DgU,).

From the definition, we have y**! = x~'7*. Hence we obtained f, = [Cok B]
= 2. Therefore, we have obtained f, = f, = f, =2 for g=1 (mod 4). Hence,
from Theorem 4, we have
hxjo _ 2x2x2
hk@ya Pxave Preoe 8 X [Q*NNyjq K Nyjq K*]
_ 1
[Q*NNkoKj: Ngjo K*1°

It is known that Scholz’s number knot group Q*N Ny, K3/Ngq K* is isomorphic
to Ker (H*(G, Z) » ) H*(Gg, Z)), where Gg, is the decomposition group for every
) 4

prime p. From Lyndon’s formula, we have H3(G, Z)~ Z/2Z for this case.
Hence we have

Hence we have obtained the following formula

@) hxo _ {1/ 2 (g=1(mod 8))
1 (g = 5 (mod 8))

From Corollary 2, we have E(K(g)/Q)=1, E(K(1)/Q) =2, E(K(o7)/Q)=1.

hK(a)/Q hK(t)/Q hK(df)/Q
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From the above calculation on the order of Scholz’s knot group, we have

2 =1 (mod 8
E(K/Q):{ (g =1(mod 8))
1 (g = 5 (mod 8))
Let h,, h,, h,, be the class numbers of the quadratic fields Q(\/(;), QL/ -1,
Q(/ — 9), respectively. There exists an equation

hy _ E(K/Q) 9 hkio
ha ht hdt E(K(U)/Q) E(K(T)/Q) E(K(GT)/Q) hK(d)/Q hK(r)/Q hK(o':)/Q.

Combining these and the fact h, = 1, we have hx =1

h,h,, 2

Finally, we have obtained the following Dirichlet’s class number formula.

Corollary 4. With the notations as above, we have

h_h
hy = % (g=1 (mod 4)).
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