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Isogenous tori and the class number formulae

By

Shin-ichi KATAYAMA

Introduction

T. Ono and J. - M . Shyr generalized Dedekind's class number formulae to a
class number formula of an algebraic torus T defined over Q (cf. [7 ] , [1 0 ]) . From
this generalized class number formula, they obtained a relation between the relative
class number of two isogenous tori and their Tamagawa numbers and q-symbols
of several maps induced by an isogeny of them (cf. Lemma 1). Here q-symbols
o f  a  is defined a s  follows. Let A , B  b e  commutative groups a n d  a  b e  a
homomorphism A —* B .  If Ker a and Cok a are both finite, that is, a is admissible,
we define the q-symbol of a by putting

[Cok oc]
q (a) —

[Ker a]

where [X ] denotes the order of a finite group X.
Let F  be an algebraic number field of finite degree over Q  and T  be an

algebraic torus defined over F .  h (T )  denotes the class number of T  Consider
the following exact sequence of algebraic tori defined over F

0 (Gm) R 1 (G ) 0,

where K  is a finite extension of F  and R i g ,. is the Weil functor of restricting the
field of definition from K  to F .  As a generalization of the formula of Gauss on
the genera of binary quadratic forms, T. Ono defined a new arithmetical invariant
E (K IF ) by putting

E (KIF)=  h(R w (G,n))1(h(R K IF
( 1 ) (Gm))•h( Q ) .

In [9 ] , he obtained a formula of E (K IF ) expressed in  terms of cohomological
invariants for K I F .  He also defined another invariant E '(K IF ), and in [5 ], we
briefly announced similar formula for E l(K IF ) when K IF  is finite normal. In
[6 ] ,  using I. T . Adamson's non-normal cohomology, we announced that one
could generalize these formulae of E (K IF ) and E(K I F) for any finite extension
KIF.

In this paper, we shall prove these announced results of [5 ]  and [6 ]  in
§ 1 .  In  § 2 , w e shall show another class number form ula for a biquadratic
extension K I F .  In §3 , we shall show this formula implies some class number
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formula of Dirichlet for biquadratic extensions Q(\ / , —  1)/Q (q  is  a prime
num ber). Hence, the formula may be viewed as  a  generalization of this formula
of Dirichlet.

§ 1 .  Following [9 ] , w e shall start by recalling th e  definition o f  th e  class
number o f a  to r u s .  Let F  be an  algebraic number field of finite degree and Fp

b e  th e  completion o f  F  a t  a  p lace  p  o f F .  W hen p  i s  non-archimedean, we
denote the ring of p-adic integers by O .
Then UF = 11 Pr:x 11 o; is the unit group of the idele group

p:archimedeanp :  n o n  —  a r c h i m e d e a n

F .  H ere, for a  ring  A , Ax denotes the multiplicative group consisting o f all
the invertible elements of A .  Let T be an  algebraic torus defined over F .  T(F)
denotes th e  group o f  F-rational po in ts  o f T  and T ( F )  denotes the  g roup  of
F r -rational points of T  We denote the character module of T by H o r n  (T, Gm ),
where Gm  i s  the multiplicative group o f the  universal dom ain. L et T 0 b e  the
integral dual o f  T  Then, for the case when p  is  non-archimedean, T(O p )  the
unique maximal compact subgroup of T ( F )  is  isom orph ic  to  To  O .  T h e
adelization o f T over F  shall be written T(FA ). Then the  unit group o f  T(F A )

is defined by T(U F ) = fl T(op), where p runs all the places of F and T(O p ) =  T (F )

when p  is archimedean. We define the class group o f  T  over F  by putting

C ( T )  T (FA )/(T (uF)•(T (F)).

W e call th e  o rder [C (T )]  th e  class number o f  th e  to ru s  T  a n d  denote it by
h ( T ) .  Let K  be a  finite extension of F  and & IF  be the W eil functor restricting
the field of definition from K  to  F .  Then, from the definition of the class group
of tori, w e have C(G,,,)'L,' FVU F F x  a n d  C(R K I F (G,,,)) K V U K K x .  Hence the
class numbers h(G m ) and h(R K T (G .)) are usual class numbers of algebraic number
fields hF  and hK , respectively. Let T, T* be the tori defined over F and A : T -+  T*

be an isogeny defined over F .  A induces the following natural homomorphisms

A (F ):I* (F ) — ) i ( F ) ,

2(0 p ): T(O p )  - - ) T * ( 0 p ),

2(0 ,): T (O F ) — )T * (0 F ).

H ere 7'(F) denotes the submodule o f 7' consisting of a ll the  rational characters
of T defined over F .  In  this situation, we have the following key lemma.

Lemma 1 (cf. [7 ]  o r  [ 1 0 ] ) .  With the notations as above, we have

h(T)
T(T)F1 q (2 (0 ))

h(T*) T(T*)q(A(OF))q(A(F)),
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where T(T), T(T*) are  the  Tamagawa nombers o f  T, T*.

Let y : T -÷ T be a F-isogeny of T  Then, from this lemma, the following corollary
is obvious.

Corollary 1. For any  F-isogeny y : T-4 T, we have

-  
 ri q (2(0 p ))

1 
q(A(OF )) q ((F )) •

Consider the following exact sequence of algebraic tori defined over F

(1) 0 — * T ' ----` , T  ''. ) T "  —> 0,

where ot and i t  are defined over F .  Maschke's theorem states that every rational
representation o f a  finite group is completely reducible. Hence, one can take a
homomorphism 13: T - * T ' defined over F such that A = )3 x  it: T - 4 T ' x  T " and
y = )3 • cx : T' - > T' are F-isogenies. From Lemma 1, we have the equality

(2)
ri q(2(0 p ))

h(T) T (T) P = X  _
h(T') h(T") T(T') T(T") q(A(F)) q(2(0 F )).

Let L be a common finite normal splitting field of T, T ',  T " . We denote Gal (L/ F)
by G .  First, we provide following elementary lemma.

Lemma 2. L e t  W= X x  Y  b e  an  abelian group an d  A  b e  a  subgroup of
f inite in d e x . Then we have the equality

[ W: A ] = [X : AY /Y] [Y : A n Y],

where W I Y and P I  x  Y  are identified with X  and Y

Consider the following short exact sequence of G - modules induced from (1)

0 — ■ T '(0 , ) - - -T (O L ) - - T " ( O L ) — >0.

From the long exact sequence derived from this sequence, we have

cc(0 F . )

0  - -  T'(O F ) - -  T(O F ) ''.6 . )> T"(0 F ) — > 111 (G, T'(O L )) --  I-11 (G, T(O L ))

The map fl(OF ) x tt(0 F ):T (0 F ) T ' (0  F ) x  T"(0 F )  shall be written 2 (0 ) .  T h e n ,
from Lemma 2 and the above long exact sequence, the cokernel of the map ,1(0F )
satisfies

[Cok 2(0 F )] =  [T"(0F): fi(OF)(T (OF))] x [r (OF): ii(OF)(T(OF)n Ker ti(OF))]

= [Ker (1-11 (G, T'(O L )) —> 11 1 (G, T(0 a n  x ET' (OF): T(OF)(T' (OA)]
= [Ker (H 1 (G, T'(O L ) ) - -+  H 1 (G, T(0 L)))] [Cok Y(OF)]•

O n the  other hand, the kernel of the map satisfies
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[Ker (O F ) ]  =  EKer fi(oF )n Ker !IWO]
= [Ker ,8090 n oc(OF ) (r  (OF))] = EKer Y(0 Fn •

Hence we have

g(2(0))= 9(y 4 6 'F)) EKer (H i  (G, T' (0 L )) --■  11 1 (G, T(0 L)))] •

In  the  same way a s  above, the following equality holds for a ll p

g(2(0)) = g(y (0)) [Ker (I-11 (G 13 , 7"(0 i3 )) f il (G$ , T (0 $ )))],

where $  is  an extension of p t o  L  a n d  GI,  i s  th e  decomposition group o f $.
Therefore, from the formula (2), we have

h(T) T(T)
h(T') h(T") -c (T )  r(T ") g(A(F)) g(y(0 F))

X

n [Ker (111 (G$ , T ' (0 $ ) )  - -  11 1 (G$ , T (0 $ )))]
p

[Ker (11 1 (G, T (O L )) - - -  H l (G, T(OL)))]

1[1 q(Y WO)
Finally, by virtue of the fact  ' = g(Y (F)), we have the following theorem.

g(y (0 F ))

Theorem 1. W ith the notations as above, we have the following class number
formula

h(T) T(T)
 x

 g(Y (F))
...

h(T') h(T") T(T') T(T") g(2(F))

[Ker (11 1 (G, T'(LI L )) — > 11 1 (G, T(U 1.)))]x
[Ker (H 1 (G, T' (0 I ) )  - -  H 1 (G, T(0 L)))]

T (T )g(Y (F))n[T "(0 p ): p(O p )(T(O p ))]
P=

-r(T )  T(T") g(2(F))[T "(0 F ): 11 (9  e)(T(0 v))]

H ere UL denotes the unit group of  the idele group  L .

Let K  be a  finite extension of F  and RK1F is the Weil functor restricting the field
o f  definition from K  t o  F .  Consider th e  following special exact sequence of
algebraic tori defined over F

0  - -  R W F (G,,,)--  R K I F (G„,) G,.„ — > 0,

n q (y (op))
P

X

T' T T"
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where N  is the norm map for K I F and RWF (G„,)= Ker N .  The invariant E(K I F)
is defined by putting

h(T) hic
h(T') h(T") h F

where kg , denotes the class number h ( T ') .  For this case, F-morphism T  T '
is defined by f3(x) = 'en (N  x ) ' (m  = [K: F ] ) .  From the fact that T' = RV1F (G m )
is an anisotropic torus, the elements g(i)(F)) and g(3 (F)) in Theorem 1 are both
equal to 1. The Tamagawa numbers T(T) = T(T") = 1 and
T(T') = [K o : F]l[Fx  N ICIFK Â  N KIF Kx] ,  where K0  i s  the m axim al abelian
extension of F  contained in K .  Furthermore, we get

[7 ' " (0  : N  (0  F) (7 ' (0 [ 0 : Œl<C],

[T" (Or ): N (0 p ) (7' (0))] = :  11 N K ., F . (4]
431p

= [U F: N KIFU K] •
Combining these, we get

E(K I F) — 
[F .  n N KIF K :  KIF Kx][U  F: N K IF U  

[K 0 : F] [0 );c : N KIF Ok]

L denotes the Galois closure of K IF and G, H denote the Galois groups Gal (L/ F),
Gal (L / K ) . Then L is a common Galois splitting field of T, T ', T " . We denote
I. T. Adamson's non-normal cohomology group H

°
( [ G: H ], OD by H

°
(K  F, O).

From [1 ] ,  Theorem 4.5, we have H
°
(K I F, L z - (41N  K I F O k .  Finally, using

these non-normal cohomology groups, we get the following interpretation of
E(K I F)

E(K I F) — 
[Ker (H

°
(K I F, H°(K I F , K )) ]  [ I I ° (K  F ,  UK)] 

[K 0 : F] [H ° (K I F, OD]

Theorem 2. For any finite extension K I F , we have

E(K  F) —  
[Ker (H

°
(K  F, H°(K I F , K )) ]  [ 1 1 ° (K I F , UK)]

[K 0 : F] [W (K  F,

[F .  n NK1F K,x4 N KIF K x ] [ U F :  N  KIF K ]  

[Ko: F] [0; : 11 K F 19in

When K I F  is normal, I. T. Adamson's non-normal cohomology group coincides
with usual Tate cohomology group. Hence we have the following class number
formula ([9 ], Theorem).

Corollary 2. For a normal extension K I F, we have

E(K I F) — 
[Ker (H

°
(G, Kx) H°(G, /CA))] [H (G , U K)] 

[K 0 : F] [11 ° (G, OD]

E(K I F) =
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where G = Gal(K/F) and  [H ° (G, UK )] = el° is the  ramification exponent

o f  the  m axim al abelian subextension over F is contained in K  ( 1 3  is  an
ex tension of  p  to  K).

Now, consider the following exact sequence of algebraic tori

0 Gn, G–L4 R K 1 F (G„,) RK/F(GX Gm0 ,

T "

where K  is a  finite extension of F of degree m and p'(x) = x mod G,„(x e RK / F (G,,,)).
Let r  be the  norm map from T  to  T'. Then there exist F-isogenies
A' = x  u': T –■  T ' x T" an d  y ' = ,6' • a ': T' –>T ',  where y '  i s  t h e  m ap y'(x)
= xm(x e T  = G . ) .  L  denotes the  G alo is closure o f  K  over F .  Then L  is  a
common splitting field of T, T ', T " . We denote the Galois group Gal(L/F) by

G and Gal(L/K) by H .  Let G = U  i 1H be the right-coset decomposition of G
i= 1

with respect to H .  Then the  character modules of T, T ', T " are T  Z [G / H ]
= Z<o - ,1111 n >  Ind?, Z , i" Z  and I[G/H] = Z  <o-H – G> ,
respectively. We denote the integral dual of I[G/ H] by J[G /H ]. h 'K / F  denotes
the class number of the torus RK / F (G„,)/G.. Then the invariant E'(K IF) is defined

hkby E'(K /F) = . From Theorem 1, we have
hF  h:K / F

E'(K / F) – 
-c(T) q ( V ) )  [Ker(H 1 (G, UL ) — 0.11 1 (H, L ) ) ]  

T(T') T(T") q('(F)) [Ker (I/ 1 (G, 0 ) 111(11, On)]'

where UL  is the unit group of the idele group /2:4 a n d  01" = n UL  is the global
unit group of L. We shall calculate the Tamagawa numbers, q-symbols,

(Ker (111 (G , U  — ' 1 1 1 (G, U L ) ) ]  a n d  [Ker (H i  (G, Ofl — + H 1 (11, OD)] •

First, one sees the Tamagawa numbers r(T) = T(T') = 1 and

[H 1 (G,T(T")– (cf. [ 8 ]).
[Ker (111 (G, T"(L)) - -  1 1 1 (G, T" (L A )]

Consider the  following exact sequences of G - modules

0 I [G / H] Z[G/ H] Z 0,

0 Z Z [G/F1] — +J[G /H ] 0,

0 T'(L) T(L) T"(L) —+ 0,

0 T' (L A ) T(LA) —+ T" (L A ) 0.
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From th e  fact that I [G I H ],  w e h av e  [H 1 (G , i' '")] = [11 1 (G, I [O I H] )]
= [Cok (H ° (H, Z )  H ° (G, Z))] = [G : H ] = [K : F] = m .  Since T'(L) I! ' and
T'(L A ) L 'A  a n d  1-12 (G, 12') -+ H 2  (G , PA ) is injective, w e  h a v e  H 2 (G, T'(L))

H 2  (G  T '(L A )) is in jective. Since T ( L )  Z [ G  H ]  I , ' a n d  T(LA)
Z [GIH] C)LxA ,  we have H 1 (G, T(L)).' H 1 (G, Z[G I H] 0 Lx)L-' 11 1 (H, L><)= {O}

and 111 (G, T(L A )) H 1 (G, Z [GI H ]  Li n  H l (H, LA') = {0} . Therefore we have
the following commutative diagram with exact rows and  colums

0 0

111 (G, T"(L)) H1 (G, T"(L A ))

0 (G, T'(L)) 112(G, T' (L A )).

By diagram chasing, we have H l (G, T"(L))-> 11 1 (G, T"(I, A )) is injective. Hence
the Tamagawa number -c(T") equals to m .  Since T " is an  anisotropic torus, we
have q(;i(F)) = [Z: Z] = 1 and q(y-  (F)) = [Z: mZ] = m . N o w , we shall recall the
following lemma on non-normal cohomology groups.

Lemma 3 (cf. [1 ] ) .  L et G  be a finite group and  A  be a G-m odule and H
be a subgroup o f  G. T hen the following sequence is exact

0 I-11( [G : H], A) H1 (G, A) (H, A ),

where H i  ([G: H ], A ) is I. T  Adamson's non-normal cohomology group.

We denote 111 ([G: H ], U L )  and 111 ([G : H ], OD by H l (K IF, UK ) and
111 (K I F, O ) ,  respectively. T hen , from Lemma 3 , w e h a v e  Ker (H 1 (G, U

H l (H, U H l(K  F, U K ) a n d  Ker (H 1 (G, OD -> 11 1 (H, O'L( )) H l (K I F, O).
Hence we have the formula

E'(K I F) = 
[H 1 (K IF,U K )]
[11 1 (K I F, OD]

In  th e  following, we shall calculate the  number [11' (K IF, UK )]. L et 13 be an
extension of p to L .  Then we have

H l (K IF, UK ) Ker (H 1 (G,UL) - - +1 1 1 (H,UL))

E Ker (11 1 (G, Indg. 0)43̀) Indg.

where G$  i s  th e  decomposition group o f  13. L et G =  U  I I T i G i 3  
be a double

= 1
coset decomposition o f  G . We denote the  extensions of p  to  K  b y p i (K),
p 2 (K ),..., p,.(K), where pi (K) = 4) 1 (K)',  . The ramification exponents of 13/p and
pi (K)/p shall be written e(131p) and e(pi (K)1p), respectively. If p is archimedean,
13/p ramifies if and only if 1,43 = C a n d  F, = R  and the ram ification exponent
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e($/p) = [C: R ] =  2 . L e t  $ ' b e  an  ex ten sio n  o f  O K ) to  L . T h en  $ ' is
conjugate to $ and we obtain the equality e ($ ' p) = e($' OK)) e(pi (K)I p). Since
L IF is normal, we have e($' 1p) = e($ 1p). Hence, we may write e ( $ '  pi (K )) by
e($ p i (K ) ) .  There exists a commutative diagram for every place $

H i (G, Indg„ 0 ; ) 111(H, Indg, 0 ; )

-1? 1•

H 1 (Gq3 ,  0 ) E

•  H

1 (Ti 1 H t i  n G ,, o;)

Z/e(13 P) Z E Z/e(13 1Pi(K)) Z.

From induction, one can easily show the following elementary lemma.

Lemma 4. L e t  e ,a,,a 2 ,...,a„ b 1 ,b 2 ,...,b ,. be the natural numbers such that
a1 b 1 = a 2 .b 2 = ••• = e .  We denote t h e  greatest common divisor of
al , a2 ,..., a,. by d and the least common m ultiple of  b 1 , b2 ,...,b ,. by g. Then we
have d g  = e.

Using this lemma, we have

Ker (Z/e($1p) Z E Z/e($1 pi  (K)) Z)
j=1

▪ 9Z/e(31P)Z
• Z /e i,(K)Z.

Here g  denotes th e  L.C. M . o f  e ($ 1 0 K )) and e ( K )  denotes th e  G.C.D. of
e(13;(1010. Hence, we have obtained a n  isomorphism

H l (K IF,U K )- E  Z le,(K )Z ,

where p runs all th e  ramified places of K I F .  Hence we have [H i (K IF,U K )]
= n er (K ) .  Combining these, we have the following theorem.

Theorem 3. With the notations as above, we have

11 ep[H 1 (K IF,UK )]
[11 1 (K I F, O ) ]  [11 1 (K I F, OD]

When K IF is normal, we have the following corollary.

Corollary 3. When K IF  is a finite normal extension, we have

EJK IF)—
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f le w
[11 1 (G, U K )] E'(K IF) —
[11 1 (G, O ) ] [11 1 (G, O )] '

where p runs all the places of  F and e p  is  the ramification exponent o f  13 over
p(13 is an ex tension of  p to K).

Remark. We want to take this opportunity to make the following corrections
to our paper ([6 ], Remark 2). In Remark 2, we have written "[11 1 (K lk, UK )]

= H [H 1 (K 13 1 k , 0 )
1;)] = fle w, where ep  i s  the ramification index of 13." The

correct form of this remark is above Theorem 3. Hence, for "eu "  read "e p (K)"
and for "the ramification index of 13" read "the G.C.D. of the ramification
indices of e(pi (K)i p)" and suppress " f l [11 1 (K v Ilip , 0'4 )"

§ 2 .  First, we shall provide elementary tools on Galois modules and Galois
cohomology groups. Let G  be a  finite group and H  be a  subgroup of index

m . L e t G  = u aH  b e  the right-coset decomposition o f G  with respect to
i =

H .  J[G I H ] the integral dual of I [G IH ] i s  the left G-module Z [G/H]/Z
171

Z < a
-
H  aE G and E = 0 > . As usual, J[G/{1}] and 4G/{1}] shall be

i =
written J[G ] and I [G], respectively. For any G-module A , we have the following
lemma.

Lemma 5. With the notations as above, we have

(I[G1H] 0 A ) N G - 111(o) n A " and

H
°
(G, I [ G  H ]  A )  N  G

-
11, (0) n I N H (DG A),

where A" = (a e A lar(a) = a f o r every o- EH} and D G A  = <o- (a) — a aE G, a E A>.

Proof. Consider the following exact sequence of G- modules

0 — * A 0 I[G 1 H ] — *A 0 Z [G 1 H ] - 4 — + 0.

From this exact sequence, we have

0 (A 0  I (G I H ]) ' (A  0 Z [G I H]) G  A G  —> • .  Since (A  0 Z [G I H]) G

= E 0-,(AH ® H )  A H ,  we obtain (A 0 1 [G I H]) G  K e r  (N G /H : A H  —> AG )
i =

= N G
-

ik (o) n AH . On the other hand, from AO I[G IH ]= <a0(o -H — H)laeA, o-eG>,
we have

<N G (a ( o -H — = < E wa 0 0 -11) — 0  H ) ) >
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= < t ((a -  -  1 )  a H)>

= < - 1) a  H ))>  N  H (D G A) c AH .

i=
Therefore we have

H
°
 (G, A  i [ G / H ] )  (A i[G/H]) G /N G(A  i[G /H ])

/VJ/L (0) n AH/NH (DG A).

In the following, we shall restrict ourselves to the case when G  is isomorphic
to (Z/2Z) 2 . Let F be an algebraic number field and K be a  biquadratic extension
o f  F .  W e  d e n o te  th e  G a lo is  g roup  G al (K/F) =  G  b y  <a> X <T>. Here

=  =  and  07 = TO% L et K(o-), K(r) and  K (a t )  b e  the  intermediate fields
of K / F corresponding to the subgroups <a>, <T> and <at>. Then the character
modules of RW,(G„,) and R „ )/ F (Gm )  are  isomorphic to J [G] and  J [ G g o -t>].
There exist isomorphisms

J [G] = Z <o
-
, T, Crt , I 1 -I- 0" ± ±  at = 0>

J[G <07>] Z<< >la< > < >  =  0>

Z <1 + > J[G].

We shall construct the following exact sequence of G-modules

(3) 0 J [G go
-
>] J[G / <T>] J[G]-±` J [G / <o

-
t>] —> 0.

Here A( <a> ) = T + <r> ) = 1 + 7c  and 6 ()  = p<at> (p G ). The exactness
of (3) follows if K e r  =  Im  /I and y  is  injective, because of the fact that c't is  a
na tu ra l surjective homomorphism of G -m odules. F ro m  th e  definition o f  a,
K e r ôt = Z<aa-

 + bti + c I C = a + b> = Z<er + , + > = Z +  d , 1 + t>.
O n the  other hand, we have

J [G go- > ]  J[Gi<o] + + t > .  Hence (3) is an exact sequence
of G -m odules. From  the integral dual of (3), we have another exact sequence

0 — > I[Ggar>] I[G ] I [Ggo-
>] i[Ggt>] 0,

where eto (o
- <at> –  <0- 0 ) = a + t — 1 — a t and it o (p – 1) = (p <o

-
> – <a>,

p<T> — <T>) f o r  every  p e G . Dualizing (3), w e  o b ta in  th e  following exact
sequence of algebraic tori defined over F

(4) 0 kartv,(Gm) RV/F(Gm) Rav,(Gm) x RW,)/F (Gm) 0,

where it(x) = (N, / , ( ) x, N K / K ( ,) x) for every X E R'1 (Gm ). A p p lin g  Theorem 1 to
(4), we have
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hK /F T(K/F)

  

hK(a)IF hK(T)IF hK(o.-r)IF T(K O)/ F ) T (K  ( t )  F ) T (K (0 7 )/  F )

x
q(i,

x
(F)) [Ker (H i  (G, I [G I (a t> ] 0  U K ) 1 1 1 (G, I [G] 0  U K ))] 

q()(F )) [Ker (111 (G, I[G I <o--0] 0 OD .11 1 (G , I [G ] 0  O ))]'

where T(K/F) i s  the Tam agawa number T(RWF (G„,)) and  y = flcr R ( G m )
RWAG„,) and .1 = x  13. Here 13 and y are the morphisms 13 = N K IK („ ) and y(x)

=x 2 for every x E RWF (G . ) .  First we have q(y-  (F)) = (F ) )  =  1  because of the
fact that all the to ri of (4) are anisotropic. The Tamagawa numbers T(K(o-)/F)
=  T(K('r)/F) =  T(K(o-T)/F) =  2 ,  because Hasse's norm theorem holds for the
quadratic extension, and T(K/F) = 4/[Fx n A,/,,F icA< : N K ,F K 1  from [ 8 ] .  Let AK
be either UK or O .  Then, using Lemma 5 and the exact sequence (4), we have

Ker (111 (G, I [GI (o->] O  AD —> 11 1 (G, I[G] 0 A K ))

Cok ((I [G] 0 A K )G ( ( I  [ G  I  ( o - >] 0 I {G I <OD 0 A g )')

[(N K (
1,0 1 F  (1) n AK ( ) ) x (N K (

1,-)1F (1) n (NK/K(,) x NK f i c ( c ) )(N K /F (1) n AK )]

Cok (H ° (G, l[G ]  0  AK ) H°(G, (I [G I <o- >] C) I [G I <TA) 0 A K ))

Cok ((N  (1 ) n AK)/ DG AK - 1 .  ( ( N K ( 1 )/F(1) n A K ( ) )/N K / K ( ,) (DG  AK ) )

x  ((NK (I) ,F  (I) n AK ( ) )/NK ,K ( r ) (DG  AK ))).

Theorem 4. With the notations as above, we have

hK IF 1
hm a l i F  hi c o v F  h "„ )/ F 2 [ F x  n N K IF K  :  N K ,,K x ]

[Ker (111 (G, I [G I <o-t> ] 0  U K )1 1 1 ( G ,  I  [G ]  O U K ))] 
[Ker (111 (G, I [G I <0-0] O 0>K̀ ) 111- (G, I[G] O O))]'

where the last f actor equals to

K( 1a)IF (1) n U x (N ic(1 )IF (1) n UK ( ) ) :  N (N VF (i)n UK ) ]  

C(ATI(1 )/F (1) n okw )  x  (N )IF (1) n o ( ) ): N(ATI,I, (1) n
Here N is the map N = NKIK( a )  x  N K IK ().

§ 3. In this section, we shall obtain explicit form of Theorem 4 when F = Q
and K = Q(N/q, .\/—  1) (q is  a prim e). We define (7, T  by putting

(14 ) 6 = , = — 1 and ( )/ —  . N /q , ( N /—  1) = 1.

For the sake of simplicity, we shall restrict ourselves to the case when q 1
(mod 4). In  the following, we shall calculate the right factors of Theorem
4. First, we shall show

EKer (111 (G, I [G I <a>] 0 (Y) 111(G, I [G] 0 OD)] = 4.
There exist isomorphisms
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Ker (111(G, I [G go-r>] C) (G, I [G] C) O))
Cok (W (G, I [G] C) H°(G, (I [G go->] C) I [G / <O]) ® OD).

Let e be the fundamental unit of K(a) = Q(.,/q). Since q 1  (mod 4), N K(a)IQ

=  —  1  and  the  un it group O'K = <e> x — 1 >. O ,,  O ,  O 'c, ,̀ denote the unit
groups o f  Q(fq), ()(.\/— 1), Q(../—  q), respectively. Then O  = <—  1> x <s>
and O  =  <J— 1 > a n d  Cr,., = <— l>. F r o m  t h e  f a c t  NK /Q(0) = N K(a-r)1Q

K I K ( a t )
=  {1 } and  Lemma 5, one sees

W(G, / [G ] 0  OD ï iciti (1)/ D G = O / D G O .

From  the fact that ca‘ = — 1r = — 1, er = — — 1)T = —  1, we
see DG (n, =x  <— 1> . Hence we have

(G, I [G] C) <s> x <,J— I WO> x 1> (Z/2Z)2 .

Next, we have

H° (G, /[G/<Gr>i O D  (49 ),; n Ni(1)/4)(1))INK/K(a) (13 G ( 4)
=x  < 1> / (< 62 > X  < > )
=x  <—  l>/< > (Z / 2Z ) 2

Finally we have

H° (G, i[G/<TA ® (oet n Ni(1)/Q (1))/NK,K ( ) (DG  ok)

<.\/— <E2 > x <—
= 1> Z/4Z.

Since (N KIK(a)E1 N KIK(s)E) = (E6  + 1  e+ 1 )= (£2 , — 1) and (NK / ( .) (\ /— 1),
NK / K ( ,) (.\/ — 1)) = (1, — 1), we have the equality

[Cok (W (G, I[G] (i) H° (G, (I [G go->] C) 1[G / <T>]) C) OD)]
= 4 x 2 x 2/2 x 2 = 4.

Next, we shall calculate the  number

[Cok (H° (G, /[G] UK) —> H ° (G, (I [G <0] C) I (G <OD K ) ) ] .

F o r  a n y  prim e p, 13 denotes an  ex tension  o f p  t o  K . Qp  (N/q, —  1 )  the
completion of K  a t  13 sh a ll b e  w r it te n  K . Co; denotes the local unit group of
K .  W e deno te  the decomposition group Gal (K/(:),) by Go, which is considered
a s  a  subgroup of G . Then, as G-module,  U K  is isomorphic to I n d %  O . W e

denote  Indg,N , b y  U. f p  d e n o te s  t h e  num ber [Cok (11° (G, I[G] U)-4
(G, / (0->] C) 11G / <T>])C) U,,))]. F o r  t h e  archimedean place, we denote

this num ber by f eo . T hen th e  num ber [Cok (H° (G, l[G ] 0  U H°(G, (I [G/
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<c> ] i[G /< -0 ]) 0  U K ))] equals to  H f p x f cc . When K 43 /Qp  i s  unramified,
th at is, p )(2 g , Up i s  cohomologically trivial. F o r  any subgroup H
Z[G/ H] 0 Up i s  a l s o  cohomologically trivial. Hence I [G / H] 0 U,, is  a lso
cohomologically trivial. Therefore we have f p =  1 when p 0 2, p g ,  p a).
Hence we have n f p  x f , ,  

=f2 x fq x f o,.

(i) Calculation of f p (p = g).

Since (
— 1

 =  1 ,  we see G;  = <T> and Up  = (OW x O .  H ence we have

H° (G, I[G] Ø  Up) H ' ( G ,  U p)

= l(x a Y)1(xY)
t

 =  1 and x, ye DGU p I I "  ( G 93, 0;)

Z/2Z. Here DGU p  = <(X 6 T y t - 1 ), (x 6 , y  e 0 ;> . Next, we have

H
°
(G, I [G / <0->] 0 U,,) N V o r ) (i) n u / N < o (DG U,,),

where IT > = ((x", x)I x e 01. On the other hand, we have

N 1 0> (1)n ti > = {(xa, x)lx e x 1 1 } and

N <, >(DG U ) = xt - 1 )Ix e 01. Hence we have

H
°
(G, I [G go

-
>] 0 U,,)( o n  OVD <t> 0; H  ( < T >  ,  0 ; )  Z/2Z.

Next, we have

H
°
(G, /[G/<T>] Up ) N V<t> (On u,o/N <,>(DG Up ),

where (4,0  = {(x y)lx, y E(0;)<T> = Z;). On the other hand, we have

N (on u> = {(xa, e Z ; } and

N  (D , U  p)  =  { (x " ', 1)1 x E N } .  Hence we have

H
°
(G , / [G /(0 ] 0  Up ) H

°
((r> , 0 ;) / ■ < 0  OZ / 2 Z .

Therefore we have f q =  [Cok (Z/2Z (Z/2Z Z/2Z))]. Hence f q = 2 or 4. It
is  e a sy  to  show (x', 1) mod D G N E H - 1 (G, Up ) fo r an y  x e 0 ;  such that
xT+ 1 =  1 . On the other hand, for any x(x e 0 ;  and x ' =  1 ),  we have N lc/K(0

x N Kficco(X6 , 1) = (x a , x) mod N <, >(DG Up) x (1, 1) mod N <,>(DG Un ). Hence

Cok (H° (G, I[G] 0 U,,) H°(G, (1[Ggo->] C) I[G/ < O ] ) ®  U,,))

H° (G, I [G / <TA  0  U )  H ° (<T> , 0;) Z/2Z. Therefore we have f q = 2.
(ii) Calculation of f2.

First, we treat the case when g 1 (mod 8). Then ( - )  =  1 ,  that is,
2

Q2 (14) = Q 2  and the decomposition group G;  equals to <a>. Therefore, in the
same way as above, we have

Cok (H° (G, I[G] U,,) H°(G, (I [G / <0->] [ G/<0]) U p ))]



692 Shin-ichi Katayama

H°
(G, I[G/<o)] ® U i,) H ° ('(o ), O )  Z / 2 Z .  H ence 12  =  2.

F o r  q  5 (mod 8), one sees
 ( )  =  

-  1 , tha t is , Q2(,,/) is the unramified

quadratic extension of Q 2 .  Since Q 2 ( J -  1)/Q 2  is a ramified quadratic extension,
the decom position group G  equals to <o) x <t>. Hence U,, =  O .  Therefore
we have

H°(G, I[G ]  Ø  U )  H ' ( G ,  U,,) =  H '(G ,  O )
=  {x e O  X t + t  =  l}/D G O .

Here D G O  =  <x 1 , y
1 ' x , ycO >.

Next we have

H°
(G, I[G/<a>] Ø U,,) =  H °

(G, I[G/<o>] ®  O )  N 1 > (l)n U / N <, ) (DG O )

{xeU ,jx =  l}/{y( ' ' IyEO }. H e r e  U  is the local unit group (0 )<>.

Since Q 2 ( . / ) / Q 2  i s  a n  unramified extension, U7 i s  a  cohomologically  trivial
G/<o) - m odule. H ence w e have  H 1(G/<o), U a ) =  I ,  t h a t  is ,  N 1 > (l)n  U
=  {x1 IxeU,}. Therefore w e can define the follow ing  surjective  homomor-
phism ô

ô: Z / 2 Z  H ° ( < o ) ,  O )  -  H ° (G, I[G/<o)] ®  0 ) ,  w here  ô  is defined  by
ô(x m od N < >  O )  =  x 1 m o d  N < ,J> (D G  O ) .  O ne can easily show  the kernel of
ô equals to  Z N < > O / N < > O .  H ence w e have

H ° (G, I{G/<o)] ®  O )  U , ,/ Z  N <> O .  Hence we have
[H ° (G, I[G/.(o>] ® O ) ]  ^  2. S in c e  H ° (G/<o), U,) =  1 , tha t is , Z

=  N<,,> O, we can define the following surjective homomorphism

ô': H ° (G, I [ G / < o ) ]  ®O
U , / Z , ,x N < 1 > O  — + Z / ( Z ) 2N G O .

H e r e  ô ' is  d e f in e d  b y  ô ' ( x  m od Z  N< > O )  =  x mod (Z ) 2 N G O .  Since
H° (G, O )  =  Z/NGO Z/2Z, we have N G O( Z ) 2 . T herefore  Z / ( Z )

2N G

OZ / N G O H ° (G, O )  Z / 2 Z .  T h e re fo re  [H °
(G , I[G/<o)] ® O ) ]  ^  2.

Combining these, we have  H °
(G, I[G/'(a>] ® O )  Z / 2 Z .  F ina lly  w e have

H°
(G, I[G/<t>] ®  U,,) =  H °

(G, I[G/<r>] ®  O )  N 1 > (1)n UV/N ( > (DG O )

{xe U x ° =  1}/{y 11 ' y e O } .  H e r e  U  is t h e  lo c a l  u n i t  g r o u p
(0)Kt> . S in c e  H ° ( < r > ,  O )  =  1 ,  w e  h a v e  N < >  O =  U 7. Therefore we have
H° (G , I[G  /  < t > ] ® O )  { x e U j x '  =  1} /  {y1 IyeU7} =  H 1(G / <t>, U )

Z/2Z.
Let be  the  fo llow ing  m ap

Œ: {xeO  x +t+1 =  l } / D O  — ( { x e U j x '  =  l}/{y ( 1 1 t )  =  l y e O })

x ({ x E U7 x 0 = =  l y e O } ).

H ere  x is defined by x(x  mod DGO) =  (x' 1 m od  N < a > (D G  O ), mod N<7>
(DG  O ) ) .  From Lemma 2 and  H ° ( < t > ,  0 )  =  1, we have  [Cok  c ]  =  2/a. Here
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a  is  the order of the following group A

A = (x° ± 1 1 x E N  and x1+ 1 =  y tt -El)( 1 - o for some y e0y}/N <,,.> (D ,(4).

F o r  any  x  e  0 ; such  tha t x '  =  11 - " ,  w e have (x x +  _  1 .  Since
H - 1 ((r> , 0y) =  1, there  ex ists a n  element z e O y  s u c h  th a t  x x y 6 - 1  =
Hence x = y 1 Z 1 a

. Therefore x 1  = z eN 07> (DG  0 y ) .  Hence a =1.
Therefore f ,  is also equals to 2  for g 5 (mod 8).

(iii) Calculation of f cc,.
From U x  C x , we have H ° (G, I [G] C) U )  H - 1 (G, U )

1(x', y)lx, y e Cx, (xy)' =  11/< (xa , x - 1 ), (1, y l y  e  C x > .  In the same way
a s  th e  calculation o f  f q ,  w e  have  H ° ( G , / [G / ( o - >]0 U ) - 'N - {i}

(Hilbert's Theorem 9 0 ) . O n the  other hand

H
°
(G, I[G I < 0 ] 0  U . )  N 1 >  (1)n uV/N<r> (DG  U )

{(X a  x - 1 )IxeRx}/{(x"± a, x - 1 - t ) i x e C x }  H°(<T>, C x )  R x /R x+ Z / 2 Z .

Let ,6 be the map

H ° (G, I[G]C) U )  ---* H ° (G, I[G g -t->] C) U )

defined by putting

fi((x6 , Y) mod D  G  co) =  (xat+a, y ' )  mod N <0(D G

From  the definition, we h a v e  y '  = Hence we obtained f oo = [Cok /3]
=  2 .  Therefore, we have obtained f 2 = 4 = f, =  2  fo r g 1 (mod 4). Hence,
from Theorem 4, we have

hK /Q 2 x 2 x 2
hK ( „) / Q 8  x [Q x n N : N Kx]

1
•

[Qx n N  K )
A ,̀  : N  K x ]

It is known that Scholz's number knot group Qx n N  K'À I N  K x  is isomorphic
to  Ker (H 3(G, EH3(G435 z )), where Gy  is  the decomposition group for every

prim e p. F rom  L yndon 's formula, w e  h av e  113 (G, Z) Z / 2 Z  fo r  th is  case.
Hence we have

Qx n N Km ICA`  I N Km K x  Z/2Z (g --- 1 (m o d  8)),

Qx n ATKIQ 

Hence we have obtained the following formula

K :K :K /Q  Kx 5 (mod 8))._-= {1} (g - . 

1/2 (g —= 1 (mod 8))
h hK(a)/4) K()1Q h K ( e r t ) I Q ( 1 (g .- 5 (mod 8)) •

F rom  C oro lla ry  2 ,  w e  h a v e  E(K(o)/Q) = 1, E(K(T)/Q) = 2 ,  E(K(at)/Q) = 1.

(4)
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From th e  above calculation o n  th e  order o f Scholz's knot group, we have

E(K IQ) =
{ 2 (q- = 1 (mod 8))

1 (q 5 (mod 8)) .

L e t ha ,  itr ,  ha ,  be th e  class numbers o f  th e  quadratic fields Q(.1), Q(.\ /— 1),
Q(\ /— q), respectively. There exists a n  equation

hK E ( K  IQ)
ha  14 ha , E(K(o-)IQ) E(K(T)IQ) E(K(o-T)IQ) h K ( a ) m  h K ( ) 1 ,4  h K (0 .0 1 Q

Combining these a n d  th e  fact h, = 1, we have  h
K  —  

1

.

ha  ha , 2

Finally, we have obtained th e  following Dirichlet's class number formula.

Corollary 4. With the notations as above, we have

ha  a ,
hK  — h (q 1  (mod 4)).
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