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Sobolev spaces over the Wiener space based
on an Ornstein-Uhlenbeck operator

By

Ichiro SHIGEKAWA*

1. Introduction

Sobolev spaces over the Wiener space, or more generally over an abstract Wiener
space, play a fundamental role in the Malliavin calculus. They are based on an
Ornstein-Uhlenbeck operator, denoted by L, on the Wiener space. In this paper, we
consider a different kind of Ornstein-Uhlenbeck operator L,.

To be precise, let (B, H, p) be an abstract Wiener space, i.e. B is a real separable
Banach space and g is a Gaussian measure with a reproducing kernel Hilbert space H.
Let A be a strictly positive definite self-adjoint operator in H. We consider the fol-
lowing semigroup (called an Ornstein-Uhlenbeck semigroup)

Tofo=| flextvi—e " Tpudy). (1.1)

The generator of {T,} is an operator in our consideration. We denote it by L,.
Moreover the associated Dirichlet form is given by

&(f, 9={ (VATDS(x), ¥ AFDg(x)mepedx) (1.2)

where D is the H-derivative. If A=1, then L, is the usual Ornstein-Uhlenbeck
operator L.

Its origin is in the quantum field theory. In physical literature, the Ornstein-
Uhlenbeck operator in the Malliavin calculus is called the Number operator and our
Ornstein-Uhlenbeck operator is the free Hamiltonian. So this operator is important in
physics.

To construct Sobolev spaces in the Malliavin calculus, the Meyer equivalence
which insists the equivalence of two kinds of norms defined by L and D, is essential.
Such a problem was first discussed by P.A. Meyer [12] and then M. Krée, P. Krée
[97 and H. Sugita [22] proved it in the higher degree case. In this paper, we will
obtain an analogous equivalence. This problem was proposed by J. Potthoff [16].
The equivalence in our case is a little bit different from that in the Malliavin calculus
because A is not bounded in general.

The organization of this paper is as follows. In the section 2, we give a precise
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definition of an Ornstein-Uhlenbeck operator and discuss the commutation relation of
L, and ~/A*D which is used later to show the equivalence of norms. We also pre-
pare the Littlewood-Paley-Stein inequality. In the section 3, we give a proof of the
equivalence of norms. In Meyer’s proof, the Littlewood-Paley-Stein inequality was
crucial. We also use the Littlewood-Paley-Stein inequality which is extended to Hilbert
space valued functions in [19].

2. Ornstein-Uhlenbeck operator

Let (B, H, p) be an abstract Wiener space: B is a separable real Banach space,
H is a separable real Hilbert space which is embedded densely and continuously in B
and g is a Gaussian measure with

Al) 1= SBeXp (V=1 pe<l, x5} p(dx)=exp {—% g}, 1B HY,

Let us define an Ornstein-Uhlenbeck process. To do this, we give a Dirichlet
form. Let A be a strictly positive definite self-adjoint operator in H and define 4 to
be a set of all functions of the form

f(x):p(3*<lly x)By Ty B*<lny x>B)J (2‘1)

where n€N, p is a polynomial on R™ and [, -, [, C(A*)NB*, A*: H*—>H* being
the dual operator of A and C*(A*)=Ng., Dom (A**). The Dirichlet form in our con-
sideration is given by

&(f. 9=\ (VATDf(x), VAFDGDmepdx) . g, (2.2)

Here Df(x) is an H-derivative of f at x;

f(x+1th)—f(x)

; for heH. (2.3)

Df(x)Ch]= lim

We assume that C<(A*)N\B* is dense in Dom (A**) under the graph norm of A** for
any keZ, and moreover there exists a symmetric diffusion process associated with
the Dirichlet form (2.2) (see, e.g. [10, 1, 18] for the construction).

The Ornstein-Uhlenbeck semigroup is given as follows;

T,f(x):SBf(e"Ax+\/’l—e‘”‘y)p(dy) for fed. (2.4)

The above expression is well-defined if the semigroup {e*4} generated by A can be
extended to a strongly continuous contraction semigroup in B such that, for {>0

le 4l remr<l.

where ||:|rs denotes the operator norm. In this case, {P,} is a Feller semigroup.
But in our situation, (2.4) is well-defined ror f&_ 4. We denote vA*D by D, and the
generator by L, to specify A. We call L, an Ornstein-Uhlenbeck operator. The
generator L, is given as follows, for f(x)=p(g<ls, x>5, ==, 5lln, X>B)
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Here <(A*l;, x) is the Wiener integral of A*/;eH*, so it is defined almost surely.
By H-differentiating both hands in (2.4), we have,

D(Tzf)(x)=SBe“‘*Df(e‘“x+x/l_—"—e‘“‘y);t(dy)

=e T, Df(x).
Hence we have the following commutation relation on A;
DT ,=et4T.D,. (2.6)
By differentiating in f, we have
DyLy=(Ls—A¥)D,. 2.7)

This commutation relation plays an important role in this paper. It is convenient to
use 1— L, to define Sobolev spaces. So we consider 1—L, and let {P,} be a semi-
group generated by L,—1: P,=e™'T,.

We need a bigger Hilbert space. Let H*®" be a Hilbert space of an n-fold tensor
product of H*: H*®"=@-~®H*. Then A* can be extended to H*®" with the

derivation property. In fact, let dI"(A*), be an operator in H*®"* defined by :
dI'(A*),h*R - (X)hi'{:él R - QAR - Qh¥%, h*, -, h¥tesH*. (2.8)

We consider the operator 1— L, +dI'(A*), in LA (p@)QH*®"= L% ; H*®"). To be more
precise, we should write 1—L ®1ywon+1120@dI(A*), in place of 1—L,+dI(A*),.
But there is no fear of confusion, we simply write 1— L, +dI'(A*),. Let {P{®},., be
a semigroup in L*p; H*®*) generated by L,—1—dI'(A*),. Of course, for n=0,
P®=P,. Then, P{™ can be represented as

PPu(x)=E[e 04T 0u(X,)] (2.9)

where E. stands for the integration under P.. Further it is easy to see that {P{™},,,
defines a strongly continuous contraction semigroup in LP(u; H*®"), for p=1. Now,
we can extend the commutation relation (2.6) as follows. By noting e-t¢/4%a—

—tA*H ... —tAx
TR o Qe

n

D4P{ =D, Pie™ 4@ -+ @e~t4*

=P ® - @e D,
n+1

=P{oD, . (2.10)

By differentiating in ¢ we have
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Dy(1—=La+dI(A*))=(1—L4+dI(A*)p))Dy  on A(H*®") (2.11)

where A(H*®")=AQC*(A*)RQ -+ QC=(A*) (algebraic tensor product).

We can introduce the LP?-Sobolev space by using L, and D,. We discuss the
relation between them. It is well-known that they define equivalent norms in Malliavin
calculus, i.e. in the case of A=1.

We need a Littlewood-Paley-Stein inequality. Let us review it quickly. Let g,
t=0 be a probability measure on [0, o) such that

[Termutasy=erae tor a>o.
Let {Q{™} be a Cauchy semigroup defined by
Q=|"Pmu(as). 2.12)

We simply denote Q{® by (,. Further, we denote the generator of {Q{®} by
—~1=L,+dI'(A*%), as usual. Now we define Littlewood-Paley’s G-functions by

G?,,m(x):{S:tla% {")u(x)};wndl}m , 2.13)

= 12
Glou()={[ 11D, UC ot} . @.14)

Then the following Littlewood-Paley-Stein inequality is fundamental (see [19] for the
proof). For any p&(l, o), it holds that

lull, SNGoulp<lully,  wsAH*E™), (2.15)
1Gulla<llul,,  usA(H*"). (2.16)

Here ||-|, stands for the L?-norm and we denote |u|,<[vl, if there exists a positive
constant ¢, depending only on p such that [ull,<c,llvll,. We use this convention
throughout this paper.

3. Equivalence of norms

In this section we discuss the equivalence of norms defined by D, and L,. Let p
be any number in (1, ) and ¢ be a conjugate exponent of p:1/p+1/9g=1. We denote
the inner product in L2-space by (-, -), and we use it as a natural pairing of L? and
L. First we have the following:

Theorem 3.1. [t holds that
1D aullp SIVT—Laully<IDaullp+llull, for ue A. 3.1

Proof. By using the commutation relation (2.10), we easily have

D,Q.=QD,.
Hence
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DA\/I—LA =\/1_LA+A*DA .
Then, for ued,

2 QD =VIT LA AP D

ZDAQL'\/I_LAU .
Therefore

GtyDu=GinvV1=L,u.
Now by using the Littlewood-Paley-Stein inequalities (2.15) and (2.16), we have
IDaullp <G Daull,=1G oy vVI—=Laulp<IvVI—Laul, .
The reversed inequality is obtained by the duality. In fact, we note the equality

(VT1—=Lu, V1= La)e=(Dsu, D)+ (u, v)..
Then for u, vEU,

| (VI=Lqu, v)o| S[(Dau, DavI—=L )l 4+ 1(u, VI—=Ls "0}l
SIDaullg DavI=La wlp+llullglvVI=La 'vll,

SUDaullglvllp+llullglvlip
Thus we have

V1= Laullg<IIDaullg+lul,
as desired. 0
Remark 3.1. By replacing 1—L, with —L, in the above proof, we easily show
1D aulp IV —Laullp<IIDsull for ues 4.

It is expected that similar results hold in higher degree cases. In fact, it is true
in the case of the Malliavin calculus. On the contrary, the similar results do not hold
in our case since A is not bounded in general. We need a slight modification.

Proposition 3.2. For ue A(H*®"), it holds that

1Dull, SI(A— La+d T (A%)a)*2ull, , k=1,2, . (3.2)

Proof. We prove this by induction on k. For k=1, by the same argument as in
the proof of Theorem 3.1,

1D 4u < ||G?n+1)DAu||p

:”G(Tn)\/l—LA‘i‘dr(A*)nu”p

SIVI=Ly+dT(A*)ul, .
Next, assume (3.2) for £. Then by using (2.11)
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D% ul p=IDaDkul

SIVI=La+dI(A¥)nsaDiull,

=1 DAvVI=L+dT (A% ull,

SNA—La+dT (A%, VI= Lok dT (A%l
=[|A—La+d(A*),) ¥+,

which completes the proof. 0O

The reversed inequality does not hold in general. But the following slightly
modified inequality holds.

Proposition 3.3. For ueA(H*®*), it holds that
(1= La+d Il (A*))*ull,

L2 Dullp+IvVI—Latdl (A%)nrsoy (A+d T (AN per ) Dl
+IA+a I (A*)ns - D ullp
HIVI=Lat-dT (Ansa-s \(A+d T (A¥)nen-s) D ull,

A+ (A¥)nsa-)* D ullp+ -
I(1+d T (A*)a)*2ullp] for k: even
{ [vVI=La+dTl (A%, \A+d T (A*),)**2u|,]  for k: odd

Proof. We prove this by induction on k.. For k=1,

[(VI=L,+dI'(A*)au, v),]
=[(1—La+dI" (A%))u, V1—L+d T (A*), 'v),|

S|(Dgu, DyVI—L+dI (A%, ), |

+ I(VI=La+d (A%, (A+d T (A%)a)u, v),|
SIDaull I DavVI=L,+d T (A%), vl
+IVI=Ls4d I (A%), " (14+-d T (A*))ul vl

SIDaullpllVI=Lat+dI (A¥)avV1—La+d I (A%, 0],

+IVI=La+dI (A%, A4+d T (A*))ullplvl,

= {1 Darllp+vVI=Latd T (A, (L+d T (A¥))ullo} vl

which proves (3.3) for k=1.
Assume that (3.3) holds up to k. We first prove in the case that % is odd.
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(1= La+d I (A¥)) 2 ull,
=|(1— La+d I (A9 V1= L+ dT (A%)aully
<2 DAVI—=La+dT (A)aul,

+“ \4 1_LA+dr(A*)n+k-1_x(l+d11(A*)n+k~l)D’j4-l

XA 1T=L,+dl(A%)ull,

HIA+d T (A% -) D5 V1= Ly+d I (A*)pull,

HIVI=La+dT (A% paros  A+d T (A*)pew_o)* DY
XNVI=Ly+dI (A*)aul,

+ o FIVI= L+ d T (A% (L d T (A%),) e
XVI=La+dI (A%l 5]

=2*[|VI= L +dT (A%)n e Diull o+ 1A4-d T (A*) s r-0) D Mull

HIVI=La+dT (A*)pip-2(1+d T (A*)ns i) Diullp
FNA+dT (A% r-)* Dl ullp+ -+ +IA+d I (A*)a) 0] 5]

L2 DuD4ullp+ | VI=La+d T (A% (14 d T (A%)ns ) Diull
1A+ d (AN k- )i ullp+ 1D s(14+d T (A*) s -2) D ull

HIVI=La+dT (A e A+dT (A¥)ni ko)’ D ull,
HIA+d T (A*) s - Diull o+ -+ +IA+d T (A%)n)* 0 2ulp]
<2*[| D& ullp+ |V I—= Lot d I (A¥)pss ' A4+d T (A%)nr i) Dliull,
HI(A+dT (A*) s r-0 D ull p+ 1 A+d T (A¥)nr -0 D5 Mulp
+IVI=La+dT (A ks AHd T (A%)nes-2)* D ulp
HINA+d T (AN -0 D ullpt -+ +A+d T (A%)a) 0], ]

<2 DY ullp+ | VI=La+d T (A%)pew (A +d T (A%)g. ) Dyl
HI(A+d T (A*)asr-)Di ullp
HIVI= L+ dT (A ie \(A+d T (A¥)ns ) D ull
A+ (A*)nse-s)* D ullp+ -+ +I(A+d I (AF))* 0] ,]
Here we used that for ve A(H*®™), leN
| D414+d T (A*)m)v(%)| grocm+= 1+ 12,Qd T (A*)n)' D 40(x) | grocms1>

S |A+dIlN (A*)ma)' D av(x)| jucmen » (3.4)
To see this, we note that
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m+1 4
lm®<m+|)‘|‘111nr®d['(1‘1*)m:11;*®<m+1)+j?2 1@ - QA*Q - @lux
J

m+1 <
§13*®(m+1)+j§ 15+@ - QA*Q -+ @lux

=1H'®(m+l)+dr(A*)m+l

since A* is positive definite. Now (3.4) easily follows.
Similarly, we can prove in the case that % is even. This completes the proof. [

By noting that ~1—L,+dI (A*),”" is bounded, we have
(1= La+d T (A*)a)* 2ull , <2* é N1+ d T (A*)py g )P E+DBDY ), (3.5)

where [-] stands for Gauss’ symbol.
Now we proceed to estimate (14+dI"(A*),.)'D%. We need the following lemma.

Lemma 3.4. For a>e>0, 1+dI"(A*),)* (1 — L,+dI" (A*),)"® is a bounded operator
in LP(p)QH*®™ with

1A4+dI(A*))* (1= La+d I (A*)) "l c L wonren
<L2a-e- D L -1 (@) " (2a—2e 4+ 1)1 ()
where ||+|| r?qoenreny denotes the operator norm in LP(p)QH*®".
Proof. We use the spectral decomposition of 1+4+dI" (A*),;
1+dI (4%, =|TdE;
Further, (1— L, +dI"(A*),)"¢ is expressed as follows;
(A LatdT (A9 u=T (| dt] et B T

Hence we have
((14+d I (A*%) ) (1— La+d I (A%))ull,

=“ l S:dtrl“"I’(a)“e'“f"“dEth“

H*®nllp

:"S:dﬂ"(a)"t""

Swl“‘ge‘“dE;Ttu
1

H*®n P'

On the other hand,

‘STZ"‘"e‘“dE;T,uI

2
H*®n

=§T22“'2‘e‘“‘d(ExTLu, T
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=Z“"“e'2“l°,°——ST{(2a—25)12""“"——222""“1‘}e"“(EaT,u, Tu)da
g8722“’“"(2t2—(2a——25))e‘“‘(E;TLu, Tu)d2

gSTZP“‘“te‘“‘ | T ou|tandA

<t|T.u 13,*@,.5:2(”1)“-2%'2“ Y

<e=|Tul 3,@"8:2~22"‘2“‘(22“‘“+12"‘2‘)e'“‘d2

]
0

§e'2‘t|T[u |%’*®ns {(22)211—25_*_2201-25} e'“‘dl

IIA

IA

| T fpron {2711 (2a—2¢ +1)t2e2a 4200271}

A

02| Tt | ron {27121 Qar—2e + 1)1 12t -a 207D} 2
Thus we have,

[A4d I (A*)) (1= La+d " (A¥)n)ull,
éHS:dll"(a)"t“"e"thuIm@n{te‘“Z“”F(Za—Ze+1)"2+2"‘"“”2)}”p
:||quF(a)“{Z“/ZF(Za—Ze-i-l)"zs:e“t"‘dt+2“'5“‘)’2’S:e"t“"dt}
=|u|p {272 (@) " (2a—2e+ 1) /1" (e)+247* </}

which completes the proof. O
Now we have the following proposition.

Proposition 3.5. For any I, mEN, it holds that for ue A(H*®"),
I+ d T (A¥) i)' D ulp <2 (1= Latd L (A%)p) ™02 . (3.6)
Proof. By Lemma 3.4, we have
[(L+d T (A¥)) (L — La+d T (A*),) ™ ul p <2t ullp
Hence by using Proposition 3.2,
[A4+d T (A*)2) D% ull
=l|(1+dr(z4*)n)’(1—LA+dF(A*)n)""”2’(1.—L4+dF(A*)n+m)’+“’2’D'A‘ ullp
L2Y D% (1= La+d " (A*)a) < Pullp
L2 (1= La4-d I (A%) )™+ Dy,
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which completes the proof. O
We summarize in a theorem.

Theorem 3.6. For pe(l, o), (1 —Ls+dl (Aa)*""ul, k=0,1,2, -, and
NA4+dI (A*)pen) D% ul,, {, m=0, 1, 2, ---, are equivalent systems of seminorms.

If p=2, we can give an equivalent norms. In fact note that in this case, we can
take ¢=0 in Lemma 3.4, i.e. V14+dI'(A*¥),~1—L,+dI'(A*%)," is a bounded operator
with operator norm 1. So we have the following;

Theorem 3.7. Suppose that p=2. Then for any |, m& N such that l+m=kFk, it holds
that for us A(H*®™),

I(A+d I (A*)nsm)' DR ullo <N — La+d I (A*)a)* *ulls . 3.7

Conversely, it holds that for us A(H*®"),

1A= Latd (AN ul, <2 5 1A+d T (A%)nem) D ulle - (3.8

4. Sobolev spaces over an abstract Wiener space

We are now in position to define Sobolev space over an abstract Wiener space.
Let notations be as before. For s€R, p>1, neZ,, we define a norm ||, , by

lulle,p:= 1= La+dl"(A*)a)'*ull,  for ucA(H*®™). 4.1

We remark that the above definition is well-defined. First, let us recall that for
20, (1—Ls+dI"(A*),)™" is a contraction operator in LP(y; H*®"). In fact, we can
express (1— L +dI'(A*),)"° by using the semigroup {P{™} as follows;

(=Lt dD (AN =g [T Pevat.

By noting [|P{™|| rcLPcu:n*enyy<e~*, we can see that (1—L,+dI"(A*),)"" is a contraction
operator in LP?(p; H*®"). Hence, for s<0, (4.1) is well-defined for not only ue A(H*®")
but also all ue LP(u; H*®").

For s=2k, k€ Z,, Q—L,+dIl (A*),)*u is well-defined by noting the explicit form
(2.5). For general s=0 by choosing a k=Z,, so that 2k=s, and define

(L= Latd (AN, Pu=(1= Lo+ dT (A) (1= Ly+dl (A%),)'u .

In another way, by using the spectral decomposition of 1—L,+dI (A*),, we can
define (1—L,+dIl"(A%),)*/* as a self-adjoint operator in L*g; H*®"). In this case,
noticing that

AH*")S A\ Dom (1 La+dl"(A%).)4),
k=1

(4.1) is well-defined for us A(H*®?).
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Now the Sobolev spaces can be defined as follows;

Definition 4.1. For each seR, 1<p< oo, the Sobolev space W*P(H*®") is a com-
pletion of _4(H*®") with respect to the norm |||, 5.

The following proposition is fundamental.

Proposition 4.1. (i) For p’=p and s’=s, it holds that
”u“l,p§“u”:',p’ for uEJ(H*Q").

i) |llsp 1<p<oo, sER satisfy the consistency condition, i.e., for any (s, p),
(s', p) and u,sAH*®™), kN, such that |u.ls ,—0 and |ur—uillsr, »—0 as k, I—oo,
it holds that |uslls. p»—0 as k—oo.

Proof. To prove (i), it suffices to show that

lulls, p<llulls.» 4.2)

since |lulls, p<llul, ,-, for p<p’. But, by noticing that (1—L,+dI"(A*),)"* ~* is con-
tractive, (4.2) follows easily.

We shall show (ii). To do this, we may assume that p<p’ and s<s’ by (i). Set
ve=(1—L4+dI(A*%),)*" *u,. Then |jvy—wv,||,»—0 as k, [->o. Hence, there exists a
ve L? (p; H*®") such that |v,—v|,»—0. It is enough to show »=0. Now we notice

(1= La+dl (AN p=llusllp.s —> 0 as k—oo
and
(I—LA+dI"'(A*),,)<”">/2wepf‘\l LP(p; H*®m) for we A(H*em),
2

Thus, for weA(H*®"),

[0, () pranpdx)
= tim [ wa(2), W) grane(d)

= lim S (1= La+dl(A%),)e-s00r
koo JE

Xvp(x), (1= La+d " (A*)n)* 0w (x)) yronp(d )
=0

which implies v=0. O

By the above proposition, we may regard W* ?'(H*®")cW* P(H*®") for p<p’ and
s<s’. In particular, by noticing W®P(H*®")=L?(yu; H*®"), W* ?(H*®") is realized as
a subspace of LP(u; H*®"). In the sequel, we use this realization.

Proposition 4.2. (i) For 1<p<co and s=0
W P(H*®")=(1— L4+ d " (A*),) % (L?(u; H*®™)).
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In other words, A(H*®") is dense in (1—L+d I (A*),)"**(L"(u; H*®")) under the norm

I-lls. 5.

(ii) For s=0, the dual space of W*P(H*®") is isomorphic to W~-%UH*®") where
1/p+1/9=1. Further for FEW*P(H*®") and Ge LP(p; H*®")SW-*9H*®"), it holds
that

wincron(F, Oyt perom=| (F5), G)ypionsi(d).

Proof. We first show (i). Set
E=(1—La+dI'(A¥)a)"*(LP(g; H*®™)).
Then E is a Banach space with the norm |||, ,. In fact,
(L= La+dl"(A%)a)* 2 (LP(p; H*), |- llp) —> (B, - ]ls.0)

gives rise to an isometric isomorphism. By this isomorphism, it is enough to prove
that (1— L +d " (A%),) *(A(H*®")) is dense in (LP(u; H*®"), |- |lp).

We first show this in the case that s/2 is a non-negative integer, say k. We use
Nelson’s technique. To do so, we introduce another class J(H*®"). Recall that A is
the set of all functions of the form (2.1). In the expression (2.1), we assumed that
L, -, 1,eC(A*)N\B*. By relaxing this condition as [,, -+, [,&€C>(A*) we can define
a wider class J. Similarly, we define A(H*®")=JAQC=(A*)Q -+ QC=(A*) (algebraic
tensor product). The advantage to introduce this class J(H*®") is that it is stable
under actions of 1—L,+dI"(A*), and P{™, which can be seen from the explicit forms
(2.4) and (2.5).

Take ve LYy ; H*®") so that <u, v)=0 for uc(l—Ls+dI (A*),)*(A(H*®")). Here

<u, v>=§8(u(x), (%)) pronpt(dx). For ue A(H*®™), set
e)=<, P{™uy  for t=0.

o()—0 as t—oo since |P{™| P ureny<e™t. By the assumption, we have
k
d%TSD(t):(v, (AI=L4+dI" (A% P™u)y
=0.

Here we used the fact that P{®ue J(H*®") since JA(H*®") is stable under the action
of P{®. Thus ¢ is a polynomial of degree less than k.. Now it is easy to see that
¢()=0 and in particular,

v, ud=0 for ues J(H*®"),

Therefore we have v=0 since A(H*®") is dense in L?(¢; H*®"). By the Hahn-Banach
theorem we have that (1—L,+d[l (A%),)*(A(H*®") is dense in LP(y; H*®"). From
this, it is easy to see that (1— L ,+dI" (A*),)*(A(H*®")) is dense. In fact, an element
of (1—Ls+dI"(A*),)*(A(H*®")) can be approximated by elements of (1—L,+
dI (A*),)E(A(H*®™)) in LP(p; H*®") by noticing the explicit form of 1—L,+dI"(A*),
and the assumption that C*(A*)N\B* is dense in Dom (A*') under the graph norm of
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A*! for any leZ,.

Next we show that for general s=0, (1— L, 4dI(A*),)** A(H*®") is dense in

(L®(u; H*®™), |-|,). Take an integer k so that 0=2k—s<2. By the above result, we
have

(= Lot dl (AN, A=)

A= Lt dT (AN, -1 Lt dl (AN (AEHD)

S (1= Lt dT (AR~ * =92 (I— Lot dT (A% (A=) 7)
(1= Lo d 7 (A%),)C*=903(LP(p; H¥%m))

21— Ly+dIl(A%)) ' (LP(p; H*®™)

—Dom (1— Ls+d I (A*%),)

D A(H*em) |

Here —"'» denotes the closure in L?(p; H*®"). Since A(H*®")is dense in LP(p; H*®"),
we have

(= Latdl (AR PAHm) 7 SAH™™ P = LP(y; H¥e)
as desired.

Secondly, we show (ii). By (i), we obtained the isometric isomorphism A and C
as follows;

A= — L 4+d I (A%),) 1 W P(H*®n) —> LP(py; H*®n),
C=(1—L,+dI(A*),) %2 W-59(H*®") — LUu; H*®),

As is well-known, LP(x; H*®™)* and L%u; H*®") are isometrically isomorphic and
hence W-*9%(H*®*) and W* ?(H*®")* are isometrically isomorphic under the isomorphism
A*C. Moreover for FEW® ?(H*®") and G& LYy ; H*®")SW-*4(H*®"), we have

Ws.p(H*@‘n)(Fy GOw-s.qc*®n)
=ws, p(H*M)(F, A*CGdw-s,qc*eny

=rpeu;arenySAF, CG)rocu;aven,

={,(F @), 6N ronptax)
=[ A= Lat T (A9 (), (1= Lot dT (A0) 4G () pranpi(d)

={,(Fe), G ronsrtan)
which completes the proof. O

We set
W 1+(H*®n) = g W p(H*®n) 4.3

p>1
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Ww.w-(H*@n) = n Wx. p(H*@n) . (4.4)
8

ER
»>1

W==-(H*®") is a Fréchet space and W-=1*(H*®") is its dual space.

Theorem 4.3. For any s€R, p>1, n€Z, and t>0 the following operators are
continuous.

D W P(H*en) —> W= P(Hecn+0) 4.5)
DY : W P(H*® D) —s W=t P(*en) (4.6)
Ly: WhP(H*®") —> W= P(H*em) .7
P s W P(H*®n) 5 W= P([*8m) (4.8)

where W P(H*®") {s a Fréchet space defined by
Woo. p(H*@n) = (-\ W" p(H*@n) .

seRr
Moreover We==-=W==-(R) forms an algebra.
Proof. By using the commutation relation (2.12) and Proposition 3.2, we have
IDaulls=s, p=N(1—Latdl (A*)nar) 272D 4ullp
=[Da(l— Ly+dI" (A*)n) "D ull,
SIVI=La+dI (A%)a(1— La+d I (A¥)a)C 70 ul,
=lluls.»

which proves D, in (4.5) is continuous. By the duality, we can prove that D% in (4.6)
is continuous. So L, in (4.7) is continuous since L,=—D%D,.

To prove that P{® is continuous, we follow Sugita [23]. By noting (2.11), we
have for us A(H*®"),

D(PPUR)IAI= et s D fe-thx+ v T=e y) e 4h]pu(d).

Hence

D (Pi™u)(x)[h]
=SBe"“""“""n)Df(e"‘x+ /l—e’“iy)[\/Ze‘“h],a(dy)

:SBe-t(udF(At),,)Dv {f(e—le+ /l—e‘““y)} [(\/Ze"/ N /l—e"")h]p(dy)

= ertasareom fg-tax 4V I=e Ay DH(V A 4/ T ) p(d)

= emtavaranm fe-tax 4 VT=eTRy) (v Ao 4/ T=e ), 3> u(d)

where (v Aet4/v/1—e A, y> is a Wiener integral (so it is defined almost surely).
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On the other hand, for any g L?(y; H*®"), a linear mapping

h—s {800k, yu(dy) *.9)

is of Hilbert-Schmidt class operator from H to H*®". To see this, set

0,(h)={ )<k, y>u(d).

For a complete orthonormal system {h;}%, in H, {<h;, ->}7. forms a complete ortho-
normal system in the Wiener homogeneous chaos of order 1. Hence we have

102()| 2 epmem= 3 |04k hron= 5}

800k, »pid| | =Igls

where L, (H; H*®") denotes a set of all Hilbert-Schmidt class operators from H to
H*®" || £ ,yca:m*ony is its Hilbert-Schmidt norm and /, is a projection operator to the
space of H*®".valued Wiener homogeneous chaos of order 1, which we denote Z,(H*®").
Since LP-norm and L%norm are equivalent on the subspace Z,(H*®") and J, is a
bounded operator also on L?(u; H*®") (see Sugita [22] Lemma 1.1 and Theorem 2.3),
we have

IJ:gl<lglp-

Moreover, for a bounded operator K : H—H, the composite mapping @,-K is also of
Hilbert-Schmidt class and

|¢3°K | I(z)(H:H‘®")§ l@g |1(2)(1{:11*0’1)||K”.£(H:H)§”g||p“K”.f(H:H) .

We can easily see that vAe 4/+/1—e¢ 4 is a bounded operator by using the
spectral decomposition. In fact, by noting that vAe ‘*/vT—e < 1/+/2t for 120, we
have |(v/Ae t4/v/1—e 4| ;i <1/+/2t. Thus we have

[ DA(P{™u)(%)| gracn+n>

S{SB|e"“*"r“"""’u(e""x-}-\/l—e'““y)If,ten}”pll(\/ze““/ /1__e—m)”£(H)
<{{, 1o+ VT= ) o} V(W A 4/ T=6 D) s
Thus we obtain
1/p .
1D Peul, < ], 1o+ VI=e™3) | pronpd )} /28

<llull,/~2t.

On the other hand,
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IA4+d I (A*))P™ul,

:{Sa \ SB(H'dF(A*)")e_m””"’"’u(e‘“x+ Vi—e 1y u(dy) ( m@n#(dX)}”p

- ’ /
é|I(1+dI’(A*)n)e"““’"‘*’n’llzcm‘{ssgg| u(e x4+ /1—e2ty)| H*@nmdy)ﬂ(dx)}l '
=llullp/et

since e '*<1/et for A=0. Set s=t/({+m). Then by the semigroup property of {P{®}
and (2.9) we have

IA+d T (A*)nen) D% PMul
=1+ dI7 (AR )PP o (L d T (A s ) PE
XDyP{+ "= e DyPully
<(1/es)'(1/~V2s)" lullp -

Now by using (3.5) we can show that P{ in (4.8) is continuous.

Lastly, we show that W>>- forms an algebra. Take any f, geW==", It is
enough to estimate the L? norm of (1+dI (A*),.x)'D%(fg). By the Leibniz rule, we
have

dl (A*DAS@)Thy, -, 1]

ko1 1 X .
. int - -
= ¢§o ]go ; zijdF(A*)tDAf®dF(A*)£—€Di ‘glhay, =+, hs))
where ¢ runs over all permutations of {1, ---, £}. Then, by using the Hélder in-
equality we can get a desired estimate. 0

Next we show the Rellich type theorem. If A=1and B is an infinite dimensional
space, then the inclusion W* P(H*®"),W* P(H*®") for s’<s is not compact. So we
impose the condition that A~! is compact. Then we have;

Theorem 4.4. Assume that A~'is compact. Then for s’<s the inclusion W*" P(H*®n)
WS P(H*®™) 4s compact.

Proof. By the definition of Sobolev spaces, it is enough to prove that for >0,
(A—=La+dI"'(A*),) 7 LP(u; H*®") — LP(p; H*®)

is compact. We set S=(1—L+dI" (A*),)".

First we prove in case of p=2. Since A~! is compact, A has only point spectra
which tend to oo, say 0<A,<4,<A; - —oo. Then, dI'(A*), has only point spectra.
In fact,

a(dl (A*))= {4+ A, + - FAiy 0 0y, Boy oo, 1,=1,2, -}

where a(dl"(A*),) denotes the spectrum of dI (A*),. Moreover, by noting that
a((d?/dx¥)—x(d/dx))=1{0, —1, —2, ---} we can easily see that
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o©)={(1+ E nidct et - +2i,)

0
(1, 1, )EZY, R n<oo, by, iy, o, in=1,2, -}

Hence S has only point spectra tending to 0. Now the compactness of S easily
follows.

For general »>1, we borrow the argument of [6] Theorem 1.6.1. We first notice
that S is a contraction operator. We can take a sequence of projection operators {m,}
of finite rank such that {r,} converges strongly to the identity operator on L?(y; H*®")
for each p>1 (e.g., take a conditional eqpectation under a finite ¢-field). Since S is
compact in L%(p; H*®")

}tim IS—7nS|l £cecpmreny;=0.
—+00

But, by the contraction property
I1S—mnSllrcPepmrony <2

for any p>1. For fixed p+2, take p, so that 2<p<p, or p,<p<2. Then there
exists #<(0, 1) so that 1/p=80/2+(1—8)/p,. By the Riesz-Thorin interpolation theo-
rem, we have

f -
||S—‘7fns||_r(L”(y;H'®n>) = ||S’—7fn5||.”f<L2<;z:H*®n))”S—ﬂn5||.£(},”1(p;n*®">>
—>0 (as n—o0).

Since z,S is of finite rank, S is compact in LP(u; H*®"). This completes the proof.
O
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