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On Beauville’s conjecture and related topics
By

Nguyen Khac VIET*

The main purpose of this paper is to discuss a fifteen years old conjecture
proposed by A. Beauville on the number of singular fibres of a semi-stable
fibration over P! ([B1]). The departure point is the so-called function field
analog of second Shafarevich’s conjecture. Precisely, let f: X —>C be a
non-isotrivial fibration over a complex algebraic curve C whose generic fibre is
a smooth projective irreducible curve F of genus g > 1. Put

s = the number of S, S = {teC: X, = f~!(t) is singular}.

Shafarevich’s conjecture (the function field case). s> 0 if C ~ P!,

I. Shafarevich proved this statement in [Sh]. By using the action of
automorphism group on P! A. Parshin ([Par1]) has established that s > 3 (see also
[B1]). Note that in any characteristic (but with a semi-stability condition) the
same result was obtained by L. Szpiro ([Sz]). In fact in the semi-stable case
over C a more precise bound was given by A. Beauville ([B1]). Let g(X,) denote
the genus of the normalization of X,, p, “the number of transcendental cycles”
of X. Let r be the defect relating the Picard number p of X and numbers of
components of singular fibres (see A.2.2, Appendix A). There is a necessary and
sufficient condition for s to be 4 ([B1], cf. also Appendix A).

Theorem (A. Beauville). Let f: X - P! be a semi-stable non-isotrivial
fibration. Assume that g > 1 then s > 4.

Moreover s =4 if and only if the folowing conditions hold

) pa=0,

2) g(X,) =g, VteS, where g, = dim of the fixed part of Pic®(X/P'),

3) r=0,

4) go,=0.

Furthermore A. Beauville (loc. cit) constructed some examples with s = 4:
all those fibrations are elliptic (see also [B2], where he has given a complete
classification of all such elliptic fibrations - six cases). In fact A. Beauville was
tending to conjecture the following

Beauville’s conjecture ([B1]). s> 5 if g > 1.
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As communicated to the author by A. Beauville ([B3]) G. Xiao made an
important step towards the understanding of the conjecture. He remarked that
under the condition s =4 the canonical class inequality together with the
inequality of Xiao for the slope of f (see §§1-2 below) implies

w?=4(g —1). (*)

Recall that w usually denotes the relative canonical class of f. Equivalently
one has (Ky + F)? =0, where F is the fibre class on X. Therefore the linear
system |Ky + F| is composed with a pencil so that Ky + F = (g — 1)P, where P
is a rational curve with (P, F) = 2. In particular the generic fibre is a hyperelliptic
curve. The pencils |F| and |P| define a 2-to-1 map from X to P! x P!. The
idea of A. Beauville and G. Xiao is to study singularities of the branch locus of
this mapping.

After an interruption of time this line of ideas was continued by S.-L. Tan
in the recent preprint [Tn]. First in the situation due to the arguments above
S.-L. Tan gave a quite satisfactory analysis of singularities of the branch
locus. Further according to the general theory of double coverings of Horikawa
and others S.-L. Tan considered a new branch locus by adding to the original one
four singular fibres. The Sakai-Miyaoka inequality applied to the corresponding
double covering implies g <S5. In other words Beauville’s conjecture has been
proved for g > 5.

It should be emphasized that there are two different approaches using the
equality (x) in direction of the conjecture.

1) Tan’s approach (well as g > 5) consists of applying the Sakai-Miyaoka
inequality again to obtained double coverings after a geometric study.

2) Our idea which is the major gist of this paper is to use higher covers
of the base as in the way of getting (x). This means that the equality (x) actually
is sufficient to obtain a complete proof of Beauville’s conjecture by taking into
account the negligible part in the Sakai-Miyaoka inequality (see below and §2
for details). Moreover this important remark enables us to get an improvement
of the canonical class inequality.

Theorem (Theorem 2.5.1). Let f: X > C be a non-isotrivial semi-stable
fibration with g > 1. Denote by w the relative canonical class Ky,c. Then

1) w?2<(2q—2+s)(29—2).

2) Moreover there exists a universal constant A = A(s,q)<2q—2+s
depending on s and q = genus (C) such that

w? < A(2g - 2).

Let us explain the idea of the proof. Take a cyclic covering of degree
n: C,— C (totally) branched over S and let X, be the relatively minimal resolution
of X x oC, (herein to be more precise in the case with arbitrary s one considers,
for example, coverings C, — C of odd degrees). Then applying the Sakai-Miyaoka
inequality to X, and Xiao’s inequality for the slope of f one finds the desired
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constant. In case C ~ P' we should actually put n =7. A computation in this
case shows that one can take, e.g., A(S, 0) = 2.84, A(6, 0) = 3.85.

Thus essentially to obtain a complete proof of Beauville’s conjecture it suffices
to apply the Sakai-Miyaoka inequality once to higher coverings of the
base. However it should be noted that Tan’s method ([Tn]) in fact is applicable
for a more general situation as will be shown in what follows. From the proof
of Beauville’s theorem using the explicit formula for p, (cf. Appendix A) one has
seen that the first three conditions imply the fourth one. So the situation in
Beauville’s theorem can be generalized in several ways related to the number s,
where

so = the number of {teP': g(X,)) = g,).

The following theorem shows the applicability of Tan’s method for a larger
class of fibrations.

Theorem (Theorem 3.1). Let f: X — P! be a relatively minimal fibration with
g>1 and

) 0®=4(g-1),

2) x(O0x)=3—g.
Then

1) X is a ruled surface in the sense of [B4], ie., one has a surjective
morphism n: X —» E, g(E)=g, whose generic fibre is a nonsingular rational
curve. Families f and n define a 2-to-1 map from X to Y = E x P! with branch
locus, say B and a divisor y such that 2y = B. In particular g, =0 implies that
X is rational and that f is hyperelliptic. Moreover X is the canonical resolution
of double covering X (Y, y, B) with data (Y, vy, B) having at most rational double
points as its singularities ( for the definition of X (Y, y, B) see §1),

2) if f is regular, ie., s >0 then g, <1,
Assume in addition that f is semi-stable then

3) the last statement in 1) is also true, i.e., X is the canonical resolution of
X (Y, y, B) with rational double singularities. The second projection of Y induces
f and B has numerical type (2a,2) on Y, where a=g + 1 — 2g,.

4) If we denote by F, the fibre of type (0,1) on Y then for any point
peBNF, the intersection number (B, Fy), < 2.

5) We have the following estimates for the case g, < | (in particular if f is
regular)

i) 5,<8 (for g>4if g, =0),

il) for each value so =5, g < gy +

So — 4~
i) if r<1 then s, <4. Moreover case so =4, r =0 is not realized,
case so =4, r =1 implies g <10, if g, =0 and g < 16, if g, = 1.

It is interesting to note that the equality g = g + holds for the series

0
of examples constructed in [B1]. Elliptic examples with s=5s,=35, r=1 are
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relatively easy to be constructed (cf. [Vt1], Appendix C). In fact if g > 1 the
number r can be arbitrarily large as shown by an explicit calculation in those
examples of [B1].

The paper is organized as follows. In §1 we summarise some preliminary
well-known facts, e.g., Xiao’s inequality, Horikawa’s canonical resolutions of
double coverings. In particular using Matsusaka’s inequalities ([Ma]) one obtains
a nice explanation of Persson’s well-known result on hyperelliptic fibrations with
lowest slope. In §2 we give a refinement of the canonical class inequality
combining inequalities of Xiao and Sakai-Miyaoka. This leads us to a complete
proof of Beauville’s conjecture. §3 is devoted to the proof of Theorem 3.1
formulated above. Since the proof is essentially using the idea of A. Beauville
and G. Xiao mentioned at the beginning and Tan’s method ([Tn]) we shall
describe it briefly. The fact that we are really dealing with a larger class of
fibrations can be illustrated by Beauville’s series of examples in [B1]. We shall
make a detailed calculation for this series after proving Theorem 3.1. At this
point a new interesting example of genus two fibration with 5 singular fibres
constructed by M.-H. Saito can serve also for the illustration purpose. Originally
the motivation of constructing that example grew out of an attempt to find a
counterexample to Beauville’s conjecture. In fact our discussions with M.-H.
Saito on the topic here played a role for understanding the essence of Beauville’s
conjecture and the importance of using the Sakai-Miyaoka inequality in our
context expounded above (df. also [B3],[Vt0]). With M.-H. Saito’s kind
permission we reproduce his example in closing §3.

For the sake of completeness we conclude the paper with several
appendices. Appendix A gives a summary of general well-known facts in the
semi-stable case from which we shall make a free use in the paper, in particular
Arakelov’s estimate for the degree of f,wy,c, the formula for “the number of
transcendental cycles” p, of X and Beauville’s theorem. As a consequence in
the case C ~ P! we should infer from the condition s = 4 that w — F is numerically
effective which implies the inequality w? > 4(g — 1) (cf. also §2). We shall give
a detailed exposition of these facts. In view of the case s =4 in Beauville’s
theorem and its generalization (Theorem 3.1) the case of hyperelliptic fibrations
with at most two components in each fibre remaining after a contraction of all
(— 2)-curves in fibres represents some interest. Appendix B describes degenerate
configurations in this case following the ideas of [Par2]. The elliptic case with
s = 3 is more or less well-known. There is a beautiful description using results
of D. Cox ([C]), D. Cox and S. Zucker ([C-Z]). In general these arguments
can serve as a supplement to various numerical criteria for the problem of
classifying all possible Kodaira’s configurations on rational elliptic surfaces
completely solved by U. Persson ([Per2], cf. also [Mir]). It will appear
somewhere else (cf. [Vt1], Appendix C).
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§1. Preliminaries

1.1. Let f: X - C a non-isotrivial relatively minimal fibration having the
following invariants:

g = genus (X,) > 1, where the generic fibre X, is a smooth irreducible
projective curve F,

q = genus (C), the base C is a connected nonsingular projective curve,

s = the number of S, S = {teC: X, = f~!(z) is singular}.

Recall that the ground field k is the field of complex numbers C.

Let wy, be the relative dualizing sheaf and by w we denote the relative
canonical class Ky,c. Define

d:= deg (f,wx,c) = — deg (le*(ox)'
Then since f is non-isotrivial one has d > 0 and so we define the slope 4, of f

* [Tn’] Tan, S.-L., The minimal number of singular fibers of a semi-stable curve over P', Preprint
of MPI/94-45.
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([X]) as the following ratio

1.1.1. Xiao’s inequality ([X]). With the above notation we have
4

Ar>4 — — 1
g p (1)

Furthermore G. Xiao (loc. cit) has conjectured the following

1.1.2. Xiao’s conjecture. Fibrations with the lowest slope are hyperelliptic,
i.e., the generic fibre is hyperlliptic.

This conjecture has been proved in the semi-stable case by M. Cornalba and
J. Harris ([C-H]). Very recently K. Konno ([K]) has obtained a complete proof
of Xiao’s conjecture.

1.2. On Matsusaka’s inequalities for hyperelliptic fibrations. We recall some
well-known facts from the canonical resolution theory of double conerings
([H], [Per1], [Ma]). Let X be a normal surface and Y -a smooth surface. By
a double covering n: X - Y we mean a finite surjective morphism of degree 2,
an involution on X with no isolated fixed points. This covering has the following
data: an even branch curve B and a line bundle L on Y such that
1?2 ~ (y(B). We denote this covering by X(Y, L, B), or sometimes by X (Y, y, B),
where y is a divisor such that L~ O(y).

1.2.1. Horikawa’s canonical resolution. Put Y, =Y, L, =L, B, = B and let

Xer=X,— X,y — - — X, — X=X

Yp=Y, =Y, 73— Y, Y=Y

be the tower of Horikawa’s canonical resolution ([H], cf. also [Perl], [Ma]),
i.e., such that
1) X,=X(Y, L;, B, is the double covering with data (Y;, L;, B,),
2) o;: Y,> Y,_, is a blowing-up at a singular point p; of B;_,,
m

3) B;=o¥Bi_,) — 2[7] E,,

Li=o*L,_, ® wyi_,<—[%]a>,

where m; = mult,, (B;_,) and E; is the exceptional curve of a; over p;,

4) B, is nonsingular.

The conditions 1)-4) imply that X, is smooth and it is called the canonical
resolution of X = X(Y, L, B) over Y having the universality property, i.e., if
a': Y - Y is a proper surjective birational morphism between smooth surfaces
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such that divisor By =d*B — 22[%] E; is nonsingular, where E; are

exceptional curves of ¢’ (cf. 1)-4) above), then there exists a unique morphism
6": Y — Yo such that the following diaram

, o

o \ lam

Y

is commutative, i.e., 6' = g¢cg o 0.

Note that the canonical resolution is not necessarily the minimal resolution.
Further to each relatively minimal hyperelliptic fibration f: X — C one can
associate a triple (Y, L, B) such that X(Y, L, B) is birationally equivalent to X.

1.2.2. Lemma ([Ma]). With the same notation as in 1.2.1 the natural
morphism h: Xcg — X is a contraction of all (— 1)-curves on Xci and for every
i(1 <i<n) we have

2<m;<g+ 1

1.2.3. Local canonical degrees d,(X). Let f: X > C be a hyperelliptic
fibration with triple (Y, L, B) as above and p: Y— C the structure morphism.
Then there exists an open subset C° = C such that

) pTHCOH=P!xCO,

ii) f~'(C°) can be identified with the closure of the set {(x, t, y)e C x C x C:
y*=o(x, 1)}, where x is an inhomogeneous coordinate of P! and ¢ is a
polynomial of degree 2g + 1 (or 2g + 2) in x with coefficients in the rational
function field of C°.

We put

D:= A((P)g<d—x A AxITE fiﬁ>®4(29+1)
y y

where A(p) is the discriminant of ¢ as a polynomial in x. In fact D can be
naturally extended to a rational section of (A?f, wy,)®*?** " and is independent
in the choice of (Y, L, B), C°, x, y and ¢ (cf. [U]). We can now define a local
degree d,(X) at each point te C by setting

d(X):= m ord, D (2)

1.2.4. Matsusaka’s inequalities ([Ma]). In the above notation we have

d(X) > e(X)

9
429 + 1)

for every point teC, where e,(X) = x(X,) — (2 — 2g) is the local Euler number
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over [.

4
1.25. Corollary. For hyperelliptic fibrations we have ,>4 — —. Moreover
g

4
the condition A; =4 — — is equivalent to the equality in all Matsusaka’s
inequalities. g

Proof. From the definition (2) it is easy to see that

Y d(X)=d.

teC

On the other hand one has

12d = 0* + Y e,(X).
teC

This formula is an easy consequence of the following formulae

c2(X) =} e(X)+4(g — Dig - 1),

teC
d(X)=w®+8(g—1)(g - 1),
20x) =d+(@—1g—1)
and Noether’s classical formula (cf. Appendix A).
Now the assertion follows immediately from 1.2.4.

Furthermore one can get another explanation of the following well-known
fact.

1.2.6. Corollary ([Perl], Prop. 2.12, cf. also [X]). For hyperelliptic
4

fibrations one has A, =4 — — if and only if X is the canonical resolution of a
g

double covering of a geometrically ruled surface over C with only rational double
points as its singularities.

Proof. With the notation of 1.2.1 let EY denote the proper transform of
the exceptional curve of g; to Y; for i <j. Then from Lemma 4.3.1 ([Ma]) it
follows that

42g + d,(X) —g-e(Xce) = =2 ) ([ﬁ] a 1><[ﬁ] - g>
Per(EM)=1 2 2

where pcg: Ycg — C is the structure morphism.

Hence by virtue of Lemma 1.2.2 and Corollary 1.2.5 one sees that X = X4
and all m; are less than 4. Consequently we infer (cf. [H], Lemma 5) that the
double covering X (Y, L, B) has at most rational double points as its singularities.

§2. A refinement of the canonical class inequality

2.1. The Sakai-Miyaoka inequality ([Sa], [Miy]). Let X be a minimal
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nonsingular surface of general type. Assume that &,,...,&, are disjoint
configurations of (— 2)-curves which should be contracted to the rational double
points p,,...,p,. Then we have the so-called Sakai-Miyaoka inequality for the
Chern classes of X

}(X) < 3c5(X) — ¥ u(8). 3)

Here the correction terms u(&;) are defined as

1
&) =3 e&)— — |,
W(&) [e( ) IG;IJ

where e(&;) is the Euler number of &; and p; is a quotient singularity with a
finite group, say G;. Thus one has the following possibilities for ADE-types of
singularities

e(A)=r+1, |G, l=r+1,

e(D,)=r+1, |Gp|=4(r—2), for r>4,

e(Eg) =7, |Gg,| =24,

e(E;) =8, |Gg,| =48,

e(Eg) =9, |Gg,| = 120.

2.2. Now let f: X - C be a non-isotrivial semi-stable fibration with g > 1
and g = g(C) > 1, then in this case we have only the type A4, for all &,. Thus by

. 1 . .
neglecting the non-positive part — 32(1 - T) from the right-hand side of
(3) and using formulae (A3), (A4) of Appendix A one gets ([Par3])

w? <38 + (29 —2)(29 — 2), 4)

where ¢’ is the number of double points after contracting all (— 2)-curves in fibres.

2.3. Furthermore if we take a cyclic covering C, — C of degree n (totally)
branched only over S (to be more precise n odd if s odd) so that
29, —2=n(2q—2)+ (n — 1)s by the Riemann-Hurwitz formula, where g, =
genus (C,). Let X, be the relatively minimal resolution of X x -C, then applying
(4) to X, one obtains

w? <38 +n2g—2)2q —2 +s), (5)

where w, denotes the relative canonical class of X, —» C,. Since it is well-known
([A1, [Sz]) that w? = nw? and an n — co we infer from (5) the so-called canonical
class inequality ([Va], [E-V])

0w? <29 —2)(2q — 2 + ). (6)

A key point further is to use the above negligible part as will be shown in
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the following theorem.

24. Theorem (Beauville’s conjecture). Let f: X - P! be a non-isotrivial
semi-stable fibration with g > 1. Then s> 5.

Proof. First note that X, is minimal of general type as well as n > 2. Now
taking into account the negligible part from 2.2 we rewrite the Sakai-Miyaoka
inequality for X,

nw®> <n2g—2)(s—2) —sg—2)+ Y - (7)
i r,' + l
where p; has the type A4;, on X,. Since F;+ 1 = n(r; + 1) > n so that
3 36
< —.
z,-"r’i +1  n
Therefore we infer from (7) that
36’ 5
S(2g—2)—7Sn[(29—2)(5—2)—w] 8)

Further by virtue of Beauville’s Theorem (cf. Appendix A) one can assume
that s =4. From (8) (or (6)) as n— oo it is clear that

w? <4(g—1) ©)

On the other hand from Beauville’s Theorem it follows that d =¢g. Then
using Xiao’s inequality (1) we have

w?>4(g—1) (10)

(see also Corollary A.4.4)

Combining (9), (10) one gets w? = 4(g — 1). As emphasized in the Introduc-
tion this is a key point essentially due to G. Xiao ([B3], cf. also [Tn]). Taking
into account this equality it is easy to see that (8) can be rewritten as

36
8(g—1)—— <0
n

The latter inequality is impossible as g > 1 and n>» 1. This completes the

proof of the theorem.

2.5. In closing this section we give an improvement of the canonical class
inequality using the trick above and inequality (1).

25.1. Theorem. Ler f: X — C be a non-isotrivial semi-stable fibration with
g > 1. Then there exists a constant A = A(s, q) < 2q — 2 + s depending on s and
q such that

w? < AQ2g — 2).
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Proof. First we note that 2g — 2 + s > 0 because f is non-isotrivial. Now
we rewrite (8) for this general case as

’

s(2g—2)—%Sn[(2g—2)(2q—2+s)—wz] (11)

From (6) and (11) it is easy to see that w? < (29 —2)(2g —2+s) as g>1. So
if we write w? = a(2g — 2) then (11) is equivalent to

’

c(a, nw? < —,
n

—n(2q -2
s —n(2q +3) i
a
Obviously ¢’ < § = the number of double points in fibres of X. Now the
standard formula § = 12d — w? (cf. Appendix A) together with inequality (1)

enables us to deduce
1 3 9
<1——>|:c(a,n)+—i|£A (12)
g n n

The idea here is to choose an optimal value n and a(n) < 2g — 2 + s such

where c(a, n) =

6
that c(a, n) > — for all a > a(n), since in this case the inequality (12) holds only
n

for finitely many values of g. Thus we can find the desired constant as will be
shown below.

. . . 6 . .
One firstly sees easily that the inequality c(a, n) > — is equivalent to the
n
inequality a > a(n), where

_n[n(2g —2+s) —s]
B n?—=6

a(n) (13)

Thus we need to choose n = n; such that a(n;) <2q — 2 +s. A computation

. 12(g — 1
using (13) shows that it suffices to choose n; > 6 + _(q ).

Now putting
s

a, = a(n;) + ¢ for a sufficiently small ¢ we see that (12) holds only for g <g,,
where

_nye(ag, ) +3
1 ”1C(a1,n1)_6.

Consequently the desired constant should be chosen as follows

A=max{al,2¢1—2+s— } .
2g—2 g<g1

2.5.2. Remark. In case the C ~ P! the optimal value for nis n, =7. A
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computation in this case shows that A(5, 0) = 2.84 and A(6, 0) = 3.85.

§3. On a class of semi-stable fibrations

3.1. This paragraph is devoted to the proof of Theorem 3.1 formulated in
the Introduction. For convenience it will be given in a series of several claims
below. We keep the same notation as before. Recall that we have defined the
number s, for a fibration f: X — C such that

so = the number of Sy, So = {teC: g(X)) = go}.

3.1.1. Definition. A fibration f is called regular iff there is at least a fibre
X, such that g(X,) = gy, i.e., 5o > 0. Otherwise we say that f is irregular.
The following lemma is essentially due to [B3].

3.1.2. Lemma. Let f: X —P! be a relatively minimal fibration with g > 1 and

) o*=4(g—1,

2) 10x)23—g.

Then

1) X is a ruled surface (in the sense of [B4]), defined as a family n: X — E,
g(E) = go. Families f and n define a 2-to-1 map from X to Y=E x P! with
branch locus, say B.

2) In particular if go=0 then X is a vrational surface and f is
hyperelliptic.  Moreover X is the canonical resolution of X(Y,y, B), 2y = B with
double rational singularities. The second projection of Y induces f and B is of
numerical type (2a, 2), where a =g + 1 — 2g,.

3) If f is regular then g, < 1.

Proof. 1) The Riemann-Roch inequality applied to Ky + F gives us
h(Kx + F) > x(Ox) + g — 1.

On the other hand the first condition implies that (Ky + F)? = 0. Therefore
the linear system |Ky + F| is composed with a pencil without base points. So
writing the general member of this pencil as the sum of irreducible components
D, =Y ,P,; we infer from the theorem of Bertini that they mutually do not
intersect and by the same token

(P Pi)=0 Vi, j (14)

Now we shall use the familiar construction expounded in the proof of theorem
of Castelnuovo-de Franchis ([G-H], Chap. IV, §5). Namely let E = {P, ;},; be
the set of connected components of curves in the pencil {D,;} which is a (ramified)
covering of P'. Thus one obtains the fibering 7: X — E by sending each point
p to the pair (4, i) such that pe P, ;. Since it is easy to see from the adjunction
formula and (14) that (K, P, ;) are even integers > — 2 and Y (Kx,Pp)=2—2g

<0. On the other hand all P,; are homologically equivalent, so that
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(Kx, P,.) = —2Vi. Thus one gets P, ; ~ P! (F. P, ;) = 2 and the first assertion.

2) Evidently then g, = g(E) = 0 implies the rationality of X and that f is
hyperelliptic. In particular, y(0y) = 1, so that d = g by standard formulae using
the Leray spectral sequence (cf. the proof of 1.2.5 or Appendix A). Hence
Api= w?/d =4 —4/g. So the assertion follows direcly from 1.2.6 and standard
calculations for double coverings with rational singularities (cf. [H], [Per1]).

3) If there is a singular fibre say X, such that g(X,) = g, and if g, > 2 then
the Riemann-Hurwitz formula shows that X, is the union of a section and several
fibres of = (cf. [B1], C). This contradicts the fact that (X,, P, ;) = 2.

3.1.3. From now on we assume the semi-stability condition for f. We
always assume that conditions 1)-2) in Lemma 3.1.2 hold. It is easy to see that
in this case X(Y,y, B) is the stable model of X, i.e., can be obtained from X
by a contraction of all (— 2)-curves in fibres. The analysis of singularities of
branch locus B in the above situation is almost the same as in [Tn]. If we
denote by F,(~ E) the fibre of type (0, 1) on Y then

For any point pe BNF, the intersection number (B, F,), < 2.

Further as in [Tn] we denote by F, the images of singular fibres X, in
Y. Let a, (resp. b,, ¢,) be the number of points p of type A4 (resp. B, C) on F,,

A: (B, Fy), =1,
B: (B, Fy), =2, (B, p) is smooth,
C: (B, Fy), =2, (B, p) is singular.

By virtue of Lemma 3.1.2 one has the following

3.14. Claim. a, + 2b, + 2¢c, =2g + 2 — 4g,.
Let us consider the case of g, < | (in particular if f is regular)

3.1.,5. Claim. We have

i) s,<8 (well as g>4if g,=0),

i) for each value s, > 5 one has g < g, +

i) if r <1 then sy, < 4.

For the proof it suffices to use the formula for p, (cf. Appendix A) and the
fact that the number of double points in fibres 6 is 8g + 4 — 12g, (since for
ruled surfaces one has p, =0 and then it remains to use the first condition in
Lemma 3.1.2 together with formulae (A7), (A8) Appendix A). Note that obviously
so = 8 implies s = s, and, as will be shown below (3.2.1) the case go =1, n=3
gives an example with s = s, = 8.

]

80_4

3.1.6. Case s, =4,r=0. Since in this case again by the formula for p,
one sees that g()?,) =g Vt¢S,. The Riemann-Hurwitz formula shows that the
image of X, in the stable model X (Y, y, B) is irreducible and therefore, smooth,
except for the degeneracies at the cross of two elliptic curves (g =2, g, =1). But
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in this case each elliptic curve is isomorphically mapped onto E that contradicts
Persson’s result (cf. Corollary 1.2.6 of §1). Thus one obtains that all X, are
smooth Vt¢ S, so that s = s, =4 and by virtue of Theorem 2.4 this case is not
realized.

3.17. Case s, =4, r=1, g, <1. Following [Tn] we take a new branch
curve B=B + Y. Fo. Then B has the following types of double points on F,,

teSo

aA;+bAs+ Y D, ..

up=1,peFo,

where p, is the Milnor number at (B, p), i.e., the length of corresponding chain
of (— 2)-curves.

3.1.8. Claim. Let X be the canonical resolution of X (Y, 7, E), where
29=B. Then X is of general type with the following invariants

2(X)=4(@g - 1),
x(O%) =29 + 1 — 3g,.

The proof is a direct calculation on double coverings with rational
singularities.

3.19. Claim. g <6g, + 3r+ 7.

Proof. 1t suffices to remark that

Z<&+b,+c,>=4g+4—8go,

teSo

1
Yu,>49g —8go—r+ -3 a,.
teS teSo

Further applying the Sakai-Miyaoka inequality to X as in [Tn] we are done.

3.2. Examples

3.2.1. Explicit calculations for the series in [B1]. First recall the construc-
tion in [B1]. Consider a morphism ¢: E — P! of degree n and an automorphism
u of P' such that

(i) all ramification points of ¢ have index 2,

(i) the set R = P! of branch points of ¢ is stable under the action of u
and contains no fixed points of u.

Put Y=ExP', B=Tr,ul,,, y="T,, where I',, I',,, are graphs of ¢ and
uo ¢ respectively. Then the double covering X(Y, y, B) has singularities of type
A, at the intersection points of I',nrI,.,. Let X be its canonical resolution then
f: X - P! induced by the second projection of Y is semi-stable. Under hypothesis
(i), (i) above we have

1) S = Ru{two fixed points of u}.

2) g(F)=n—1+4 2g,, where g, = g(E).
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3) B=2nP!' +2E,y=nP! + E, where P! and E denote fibres of type (1, 0)
and (0, 1) respectively (an abuse of notation).

4 KZ=2Ky+7y)P?=—4@gF)—1), p=b,=4n+2.

So we have the situation in Theorem 3.1. Now for simplicity we assume
that the number of R is smallest as n and g, are given.

4(gy — 1
6 + 0= pren |4(go — 1)
5) s= 4 "
6 + gol n — 1 even |4g,
n_

6) (The case of n even and g, = 0 will be considered separately in 3.3.2
below)

5 -1 2g, — 1 either n even, or n
={2:' Dy io e —o 9E)= odd and te S\ R
4 04 9o = 246 nodd, teR

In particular f is regular in the sense of Definition 3.1.1 iff go < 1. In fact
such fibrations with s = 6 further are constructed explicitly in [B1].

3.2.2. Example of genus 3 fibration with s =5 ([B1]). As one has seen in
3.3.1 case n even and g, = 0 is possible iff n =2, 4. The first one (n=2,s=4)
gives an elliptic example with configuration (21,, 21,) (cf. [B1]). Another one
(n =4, s = 5) can be defined, e.g., by the folowing equation

yr=(* — x4+ D+ 2)x* = 2(t — 6)x* + (t +2)]

with 5 singular fibres over {£2./—3, £2, 0}. So that s=5,=15, go =0,
r=3. In fact it is namely the example obtained from the above construction
2t + 12

2—t

1
by putting ¢(x) = x> + —, E =P, u()
x

3.2.3. Example of genus 2 fibration with s = 5. M.-H. Saito has constructed
the following interesting example which I reproduce below with his kind
permission.

Take the Hirzebruch surface F, = P(0 @ 0(3)) > P! and let # and Z be
homogeneous coordinates of fibres so that S, ={# =0}, S, ={Z =0} are
sections such that S2 =3, S2=—3 and (Sy,S,)=0. In fact we have
So =S, + 3F,, where F, is the fibre of type (0, 1). Consider the pencil in |2S|
defined by the following two elements

Co:¥{¥W+ x(x—1)Z} =0,
Co: Z{[x* — (x — 1% — (x — 1)’xZ)} =0,

where x is an inhomogeneous coordinate of the base P!.
Write Cy = SqUD,, C, = S,UD,. Then the base points of the pencil are
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the set of points
po = {x =0} {# =0},
pi={x=1}n{# =0}

Moreover the intersection multiplicities of D, with S, and D, are given as
follows

mult, (D, Sp) = mult, (D, Do) =1,
mu]tm (Doo’ So) = mu]tpo (Dco? DO) = 5.

So blowing up F; 6 times each at p,, p, and their infinitely near points one
obtains a genus 2 fibration which can be written in the following equation

C,:y*=P(x, t),
where
P(x,t) = 4t(x — 1)°x + {x(x — 1) + t[x* — (x — 1)*]}2.

The discriminant of P(x, t) as a polynomial in x can be calculated by a
computer program as

A(t) = const. t**(4t + 1)2(8t + 1)%(t — 1).

Thus the pencil has the following configuration of singular fibres (in the
notation of [N-UJ): (Is—¢—1>I1-0-0>11-0-0>I1-1-0, I1-1-,) resp. over {0, 1,
—1/4, —1/8, o0}. So that s, =3, r=0, go=0. The fact that we have types
I¢_¢-, and I, _,_, over 0 and oo respectively is clear from the geometric
construction above. Further since the leading coefficient and that in x> of

P(x, t) are t(4t + 1) we have the type I, _,_, (over t = — % and t = 1) and the
type I, -, _, over t = — § according to [N-U]. Thus the correction terms coming
d ®10 )
from <d_x A x—x> are given as follows (cf. [U], and 1.2.3 and 1.2.5).
y y
1 overt =0 l
ord <dx/\xdx>®‘°_ 74
t y y 2 overt = 0
0 otherwise

3.24. Remarks. 1) As noted in the Introduction this example is enough
close to a “counterexample” to Beauville’s conjecture in the sense that we were
able to obtain it if two fibres of the type I, _,_, (over 1 and — 1/4) could be
deformed to a fibre of the type I,_, _,.

2) It makes sense in another connection to generalize the construction in
3.2.3 for any F,(n > 2), e.g., the pencil

Coogp?+ {x(x — D)+ t[x* —(x — 1) ]}¥Z —t(x —1)°xZ?=0
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on F, gives us familiar configuration (Ig, I, I, I;) over {0, oo, 1/4, — 1/4}
respectively.
Appendix A: semi-stable fibrations and their integer invariants

This appendix is essentially the major part of [Vt0]. Our summary will be
based on [A], [B1], [Par2], [Sz], [Vg] and [Vt4].

A.l. For a semi-stable fibration f: X — C there exist two fundamental exact
sequences

0

l

0 — f*Qt — Q — Qyjc — 0 (A1)

l

Wy c

:
:
where N = (-B C(P;)-the skyscraper sheaf sitting at the double points of fibres.
The dua‘l to (A1) exact sequence is the following:
0 —Tye— Ty —f*T — N —0 (A2)
12
w;/lc

The following lemma is a direct consequence of (Al) and (A2).

All. Lemma. The following formulae are valid

) xX)=c,(X)=4(g—-Dg-1)+9 (A3)

where 8 =Y 8,, 8, is the number of double points in X,,
teC

2) ciX)=0*+8(q—-1g—1) (A4)

We denote by n, the number of components of X,.

A.1.2. Lemma ([B1]). The following formula holds
—n+1=g—gX) (AS)

where g(X,) denotes the genus of the normalization of X,.
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Proof. We give here an elementary proof of (AS). First one remarks that
double points of X, are divided into two types:

—the singular points of components each of these lowers the genus of
corresponding component onto one,

—the intersection points of components.

If we put X, =) C; then from X} =0 it follows that

i<j

By the adjunction formula we have

Y (2pa(C)—2—Ky-C)+2Y C;-C;=0.

i i<j

Since Y Ky-C; =Ky X, =2g —2 then

YpCY+ Y Ci-Ci—n+ 1=y
i<j
Now remark that the quantity of points of the first type is Y, p,(C) — g(X)
and the one of the second type is Y C;-C;. We obtain the assertion of the

i<j
lemma.

A.1.3. Corollary ([A]). On the stable model X the number of double points
in each fibre is not greater than 3g — 3.

Proof. Indeed, in view of the absence of rational (— 2)-curves it follows
that n, < 2g — 2. Applying the formula in Lemma A.1.2 one obtains: , < 3g — 3.

A.l4. Lemma. We have the following formulae

1) x(Ox)=d+(1—q)(1—g) (A6)
2) wr=12d—6 (A7)
3) p,=d+(g—9go)g—1)+9goq (A8)

where recall that g, = dim of the fixed part of Pic® (X /C).

The proof is standard by using the Leray spectral sequence for f, the
Riemann-Roch theorem on C and Noether’s classical formula.

A2. Let p denote the Picard number of X that is p =rky NS(X), where
NS(X) is the Néron-Severi group of X. In order to get Arakelov’s estimate for
d we shall need the following obvious lemma.

A.2.1. Lemma ([Par2], [B1]). One has the following inequality

p=2+) (n,—1) (A9)

teC
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Recall that n, denotes the number of components of X,.

A.2.2. Definition. The defect r is to be defined as in the following formula

p=2+Y (n—1)+r, (A10)

teC
(cf. [Tt]).

A23. Lemma. ¢(X,) >g,, VteC.

The proof can be found in [A] and [B1]. There are two ways to get it:
the first one ([A]) uses the Néron model of J, the second one ([B1]) uses
Albanese’s morphism of X. Here note a nice version of the proof by M.-H.
Saito and S. Ishii using Mixed Hodge Structures (personal communication). We
remark that there exist fibrations (so-called “irregular”) such that g(X) > go,
VteS (cf. [B1] or §3).

A.24. Proposition ([A]). In the same notation the following inequality is
valid

ds(g—go)<q—1+%>+goq (A11)

Proof. By definition we have
x(X)=2—4q(X)+ h"' + 2p,.

Further by (A3): x(X) = 4(1 — g)(1 — g) + 6 and using formula (A8) for p, one gets
1
d=(g—gola— D+~ ht1) + 1+ gog.

From the Lefschetz (1, 1)-theorem it follows that p < h''!. This fact, together
with (A9) and (AS), enables us to deduce

1 -
d<(g —go)<q -1 +%> + goq—EZ(g(X,) — 9o)-
teS

Now estimate (A11) already can be obtained if remark that g(X,) > g, (Lemma
A.23) VteC.

A.24. Corollary.

Y, <[5(9 —go) + 115+ 12[(g — go) (g — 1) + goq].

teS

Proof. Indeed by (AS) one gets

Yn<5—(g—go— s

teS

On the other hand it is known that w? >0 (see, e.g., [Parl], [A], [Sz]).
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This means that 6 < 12d. Now the corollary immediately follows from (A11).

A.2.6. Remark. In the elliptic case (i.e., g = 1) we have

Y n <6s+12(q—1) (A12)

teS

Essentially this inequality belongs to L. Szpiro. It is well known that a
number field analog of (A12) enables us to deduce Fermat’s last theorem due to
G. Frey. Concerning the connection with Frey’s result, see [Par3].

A3. Now let us denote “the number of transcendental cycles” of X (or the
number of independent 2-differentials of the second kind) by p,.

A.3.1. Proposition. [In the previous notation the following formula holds

p2=(g—go)dq— 4 +5)— Y (g(X) — go) — r + 4goq (A13)

teS
A3.2. Corollary. p, <(g — go)(4g — 4 + 5) + 4g09.
Proof. It is well known that (see, for example, [G-H], Chap. III, §5)
't =p+ p, —2p,.
By the definition of y(X) and from (A3) it is easy to see that
pr=41—-q(1 —9g)+ 6 —p)+ 44 +g0)—2
Now applying (AS) and (A10) we obtain the required result.

Ad4. Now let us consider semi-stable fibrations over the projective line
P!. Since g = 0 we rewrite the basic relations of previous parts in the following
form.

Ad4.1. Lemma. In the notation of previous parts the following relations are
valid

) x(Ox)=d—(g—1) - (A14)
2) p,=d—1(9—90) (A15)
3) pr=(—go)s—4)—Y (9(X) - go) — (A16)

teS

Recall that we consider the case with g > 1. As an immediate consequence one
gets the following

A4.2. Theorem ([B1]). Let f: X —>P' be a non-isotrivial semi-stable
fibration. Then s> 4. Moreover, s=4 is equivalent to the following three
conditions

) p,=0,
2) g(X) =g, Vtes,
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3) r=0.
Proof. It is obvious by virtue of (A16).

A4.3. Remarks. 1) It should be noted that the author learned from M.-H.
Saito recently a nice proof of Beauville’s estimate s > 4 using Variation of Hodge
Structure (unpublished).

2) Using the theory of algebraic surfaces A. Beauville (loc. cit) has proved
a stronger statement that g, =0 if s = 4.

Ad4.4. Corollary. The notation being as above, if s =4 then
1) f*wxun ~ @D Op(l),

g copies
2) w — F is numerically effective,

3) w?>4(g—1).

Proof. 1) By the second remark of A.4.3 one has: d =g and g, =0. On
the other hand, according to [A],

go = dim H°(P', R' £, 0).

Consequently it follows from applying Grothendieck’s theorem on vector bundles
over P! (see, e.g., [G-H], Chap. 1V, §3) that

R'f, Oy ~ (—D Opi(— 1).
g copies
So that by the duality we obtain the required assertion.
2) From Lemma 3 ([X]) we have known that o — u,(f,wyp) - F is nef. It
remains to use the definition of u, (cf. [X]) and the first assertion.
3) Evident by 2).

Appendix B. Degenerate configurations for a class of hyperelliptic semistable
fibrations

B.1. Assume that there are at most two components in each fibre on the
stable model and all the Weierstrass points P; of the generic fibre are rational
Recall in this case Arakelov’s formula ([A])

g(gz+ l)wE g(gz— I)ZFiJrZCjJrf*g
i j

where P; denote the Weierstrass sections corresponding to P;, C; (if any) are
components of fibres and d denotes the class of det ( fewx,c). It is not difficult
to show that the contribution of each chain {C,,...,C,} of type A, of (— 2)-curves
intersected with Weierstrass sections is given as follows (r odd)
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—1 +1
g(g2 )(Cl+2C2+“'+"TC(,.+1)/2+"‘+2C,._1+Cr>.

B.2. The following fact is well-known ([A], [Par2]): we have an exact
sequence

0 T~ G4 9% -, Pic® (X)) - Pic® (X)) » 0

where X, is the normalization of X,, G,, ~ C*. So Pic® (X . is an abelian variety
of dim g(X,). Below we give all possible configurations together with description
of Pic®(X,) respectively. As far as a general rule of computing Pic®(X,) is
concerned and for the local behavior of Weierstrass sections we refer to [Par2].

I, %, (analogous to types II, IIl of [Par2])

Here C is a hyperelliptic or rational curve of genus g(X,), {Ci};=, is a chain
of (— 2)-curves, r; odd, the number of such chains =g — g(X)),

- ) 9-9(X)
Pic? (X) > Pic’(C), T~ @ [(CHu ®(C*):1/4,
i=1

and ¢}, ¢, are intersection points of the chain {Ci} with C, 4 the diagonal
subgroup of a direct sum.

I, %) ¢,m.m (m=1,2) (analogous to types IV — VI of [Par2])

Here C, D are hyperelliptic or rational curves of genera g, g,, {Ci}i.,,
{Di}v-y, {Z}} are chains of (— 2)-curves, r;, r; odd. We denote by m,, m,, m the
number of chains {C}}, {Di}, {Zi} respectively and take a lexicographical order:
g, > g, (if g, = g, then my > m,). The curves C, D are joined by m chains {Z]}.
We have the following relations

g1 +9:=9X), mi+my=9g—gX)—m+1 (B1)
m+g;,<g—1(@{ m=2then m+g,<g—1) i=1,2

Pic® (X)) ~ Pic® (C) x Pic® (D).

T~ @ [(C*: ®(C*)]/4® D [(C*)yy @ (C*)y3]/4

i=1 ji=1

DL D [(CH)y, @ (C*).1/4]/4,
=1
where ¢}, ¢}, a; (resp. df, dj, b;) are intersection points of the chain {C}}, {Z]}
(resp. {D{}, {Z{}) with C (resp. D). We show why m is 1 or 2. In this case the
counting of Weierstrass sections implies m; + m, + g, + g, =g — 1. Comparing
with (B1) one obtains m < 2 as required.

IIT (analogous to the type VII of [Par2])
Here C,D are curves of genus 0 joined by g+ 1 chains {Ci}7_, of
(— 2)-curves, r; odd, i=1,...,9 + 1,
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g+1

Pic® (X)) ~ T~ [ @ [(C*), ®(C*),1/41/4

i=1

and c; (resp. d;) are intersection points of the chains {C;} with C (resp. D).

[A]

[B1]
[B2]
(B3]

[B4]
€]

[C-H]

[C-Z]
[E-V]
[G-H]
[H]
[K]
[Ma]
[Mir]
[Miy]
[N-U]
[Par1]
[Par2]

[Par3]

[Per1]
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