
J . Math. Kyoto Univ. (JMKYAZ)
35-2 (1995) 275-298

On Beauville's conjecture and related topics

By

Nguyen Khac VIET *

The m ain purpose of this paper is to discuss a  fifteen years old conjecture
proposed by A . B eau v ille  o n  th e  num ber o f  singular fibres of a semi-stable
fibration over F " ( [B 1 ] ) .  T h e  departure po in t i s  th e  so-called function field
a n a lo g  o f second  S hafa rev ich 's  con jec tu re . Precisely, l e t  f : X  — > C b e  a
non-isotrivial fibration over a  complex algebraic curve C  whose generic fibre is
a  smooth projective irreducible curve F  of genus g  > 1. P u t

s =  the  number of S , S  = It e C: X , =  f  - 1 (0 is singular}.

Shafarevich's conjecture (the function field c a se ) . s > 0  if  C
I. Shafarevich proved this statem ent i n  [ S h ] .  B y  u s in g  th e  a c tio n  o f

automorphism group on Fd A. Parshin ([Pari])  has established that s >  3 (see also
[B 1 ] ) .  N ote th a t in  any characteristic (but with a  semi-stability condition) the
sam e result w as obtained by L . Szpiro ([Sz]). I n  fact in the semi-stable case
over C a more precise bound was given by A. Beauville ([B1]). Let g(1 1) denote
the  genus of the normalization of X „ p , "the  number o f transcendental cycles"
of X .  Let r b e  the  defect relating the P icard number p  of X  and  numbers of
components of singular fibres (see A.2.2, Appendix A ) .  There is a  necessary and
sufficient condition for s  to  be  4  ([B 1], cf. also Appendix A).

Theorem (A. Beauville). L e t  f: X  --+  13 ' b e  a sem i-stable non-isotrivial
fibration. Assum e tha t g  > 1 then s > 4.

Moreover s = 4  if and  only if the folowing conditions hold
P2 =

2) g( ) = g, V te S, where g ,  = dim  of the fixed part of Pic
°
 (X/P 1 ),

3) r = 0,
4 )  go = O.

Furthermore A. Beauville (boe. c i t . )  constructed some examples with s = 4:
all those fibrations a re  elliptic (see also [B2], w here he has given a  complete
classification of all such elliptic fibrations - s ix  cases). In  fact A. Beauville was
tending to conjecture the following

Beauville's conjecture ( [B 1 ] ) .  s > 5 if g  > 1.
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As communicated to the au thor by  A. Beauville ([B3]) G . X iao made an
important step towards the understanding of the conjecture. He remarked that
u n d e r the condition s =  4  the canonical c lass inequality  together w ith  the
inequality of Xiao for the slope of f  (see §§1-2 below) implies

co2 = 4(g — 1). (* )

Recall that co usually denotes the relative canonical class of f . Equivalently
one has (K , + F) 2  = 0, where F  is  the fibre class on X .  Therefore the linear
system I K x  + FI is composed with a pencil so that K x +  F  ( g  — 1)P, where P
is a rational curve with (P, F) = 2. In particular the generic fibre is a hyperelliptic
c u rv e . The pencils I F i and I PI define a 2-to-1 m ap from  X  t o  P1 x  P ' .  The
idea of A. Beauville and G. Xiao is to study singularities of the branch locus of
this mapping.

After an interruption of tim e this line of ideas was continued by S.-L. Tan
in the recen t p reprin t [T n]. F irst in the situation due to  the arguments above
S .-L . Tan  gave a  quite satisfactory analysis o f  singularities o f th e  branch
locus. Further according to the general theory of double coverings of Horikawa
and others S.-L. Tan considered a new branch locus by adding to the original one
four singular fibres. T h e  Sakai-Miyaoka inequality applied to the corresponding
double covering implies g 5. In other words Beauville's conjecture has been
proved for g >  5.

It should be em phasized that there are two different approaches using the
equality (*) in direction of the conjecture.

1) Tan's approach (well as g >  5) consists of applying the Sakai-Miyaoka
inequality again to obtained double coverings after a geometric study.

2) Our idea which is the major gist of th is  paper is  to  use higher covers
of the base as in the way of getting (*). This means that the equality (*) actually
is sufficient to obtain a complete proof of Beauville's conjecture by taking into
account the negligible part in the Sakai-Miyaoka inequality (see below and §2
for details). M o reo v e r th is  important remark enables us to  get an improvement
of the canonical class inequality.

Theorem (Theorem  2.5 .1). L et f : X  — >C  b e  a non-isotriv ial sem i-stable
f ibration with g> 1. Denote by co the relative canonical class Kw . Then

1) co2  < (2q — 2 + s)(2g —  2).
2) Moreover there exists a  universal c o n stan t A  A (s ,q )<2 q  —  2 + s

depending on s and g = genus (C) such that

co2  A (2 g  —  2).

Let us explain the idea  of the p ro o f . T a k e  a  cyclic covering o f degree
n: C„ —>C (totally) branched over S and let X „ be the relatively minimal resolution
of X  x ,C „ (herein to be more precise in the case with arbitrary s  one considers,
for example, coverings C„ C  of odd degrees). Then applying the Sakai-Miyaoka
inequality to X „ and Xiao's inequality for the slope of f  one finds the desired
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constan t. In  case  C  P 1 we should actually put n  = 7 .  A  computation in  this
case shows tha t one can take, e.g., A(5, 0) = 2.84, A(6, 0) = 3.85.

Thus essentially to obtain a  complete proof of Beauville's conjecture it suffices
t o  a p p ly  t h e  Sakai-M iyaoka inequality  o n c e  to  h ig h e r  c o v e r in g s  o f  th e
b a s e . However it should be noted that Tan's method ([Tn]) in fact is applicable
for a m ore general situation as will be shown in  w hat follow s. From  the proof
of Beauville's theorem using the explicit formula for p ,  (cf. Appendix A) one has
seen that th e  first three conditions im ply th e  fourth o n e .  S o  the situation in
Beauville's theorem can be generalized in  several ways related to the number so ,
where

so = the number o f {t E : 0'0}.

The following theorem shows the applicability of Tan's m ethod fo r a  larger
class of fibrations.

Theorem (Theorem 3.1). L et f : X  P 1 b e  a relatively minimal .fibration with
g > 1  and

1) co' = 4(g —  1),
2) x((9x ) 3 — g.

Then
1) X  is  a ru le d  surf ace  in  the  sense o f  [B 4 ], i.e ., one  h as  a surjective

m orphism  7r: X  — > E, g(E)= go w h o se  g e n e ric  f ib re  is  a  nonsingular rational
curv e. Fam ilies f  and  n  define a 2-to-1 m ap f rom  X  to Y  = E x P 1 w ith branch
locus, say  B  an d  a div isor y  such that 2y B . I n  particular g o = 0  implies that
X  is rational and that f  is hy perelliptic. M oreov er X  is the canonical resolution
of  double covering X  (Y , y, B ) w ith data (Y , y, B) hav ing at m ost rational double
points as its singularities (for the definition of X  (Y , y, B ) see § 1),

2) i f  f  is regular, i.e., s 0 > 0  then g o <1 ,
A ssume in addition th at f  is  semi-stable then

3) the last statem ent in 1) is also true, i.e ., X  is  the canonical resolution of
X (Y , y, B ) w ith rational double singularities. The second projection o f  Y  induces
f  and B  has num erical type (2a, 2) on Y , where a = g + 1 —  2g0 .

4) I f  w e denote by  F o  t h e  f ib re  o f  ty pe (0, 1) o n  Y  then f o r any  point
p c  B n F, the intersection number (B, F0 )p < 2.

5) W e have the following estimates for the case go 1  (in particular i f  f  is
regular)

i) so8  (for g > 4  if go = 0),

ii) f o r each value s o 5 ,  g go +  
s o  —  4

,

iii) i f  r  < 1  then s, < 4. M oreover case so = 4 , r = 0  is not realized,
case so = 4, r = 1 im plies g  < 10, if  go = 0  and g 16, if  g, = 1.

It is interesting to note that the equality g = go +  r h o l d s  for the series
so —4

o f examples constructed in  [B 1 ] .  Elliptic examples with s = so — 5, r = 1 are
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relatively easy to be constructed (cf. [Vt1], A ppend ix  C ). In  fact if  g  > 1 the
number r  can be arbitrarily large as show n by a n  explicit calculation in  those
examples of [B1].

The paper is organized a s  fo llow s. In  § 1  we summarise some preliminary
well-known facts, e.g., X iao's inequality, Horikawa's canonical resolutions of
double coverings. In particular using Matsusaka's inequalities ([Ma]) one obtains
a  nice explanation of Persson's well-known result on hyperelliptic fibrations with
low est s lope . I n  § 2  w e  g ive  a  refinement o f  th e  canonical class inequality
combining inequalities of Xiao and Sakai-M iyaoka. This leads us to  a  complete
proof of Beauville 's conjecture. §3 is  d e v o te d  to  th e  p roof o f  Theorem 3.1
form ulated above. Since the  proof is essentially using th e  idea of A. Beauville
a n d  G . X iao  m entioned  a t th e  beginning a n d  Tan 's m ethod ([Tn]) w e shall
describe it briefly . T he  fac t tha t w e  a re  really dealing w ith a  larger class of
fibrations can be illustrated by Beauville's series of examples in  [M ]. W e  sh a ll
m ake a  detailed calculation for this series after proving Theorem  3.1. A t this
p o in t a  new interesting example o f genus tw o fibration w ith 5 singular fibres
constructed by M.-H. Saito can serve also for the illustration purpose. Originally
the m otivation of constructing that example grew o u t o f  a n  attem pt to  find a
counterexample to Beauville's con jec tu re . In  fa c t o u r  discussions with M.-H.
Saito on the topic here played a  role for understanding the essence of Beauville's
conjecture and the im portance of using the Sakai-M iyaoka inequality in  our
con tex t expounded  above  (d f. a lso  [B 3], [V t0 ]). W ith  M .-H . S a ito 's  k ind
permission we reproduce his example in  closing §3.

F o r  t h e  s a k e  o f  com pleteness w e conclude t h e  paper w ith  severa l
appendices. Appendix A  gives a  summary o f  general well-known facts in the
semi-stable case from which we shall make a free use in the paper, in particular
Arakelov's estimate fo r  th e  degree of f o c - o x i c ,  th e  fo rm u la  fo r  " th e  num ber of
transcendental cycles" la ,  o f X  and Beauville's th e o re m . A s  a  consequence in
the case C  P 1 we should infer from the condition s = 4 that co — F is numerically
effective which implies the  inequality co' 4(g — 1) (cf. also §2). W e shall give
a  detailed exposition of these  fac ts . I n  view o f th e  ca se  s = 4 in Beauville's
theorem and  its generalization (Theorem 3.1) the case of hyperelliptic fibrations
with at most two components in  each fibre remaining after a contraction of all
(— 2)-curves in fibres represents some interest. Appendix B  describes degenerate
configurations in this case following the ideas o f  [P a r2 ] . T h e  elliptic case with
s = 3 is m ore or less well-known. There is a  beautiful description using results
o f D . C ox  ([C ]), D . C ox  and  S . Z ucker ([C -Z ]). In  general these arguments
c a n  se rv e  a s  a  supplem ent to various num erical criteria fo r  th e  problem  of
classifying all possib le  K odaira 's configurations on ra tiona l e llip tic  surfaces
com ple te ly  so lved  by  U . P e rsson  ([P e r2 ], cf. a ls o  [M id ) . I t  w ill  a p p e a r
somewhere else (cf. [Vt1], Appendix C).
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§1 . Preliminaries

1.1. Let f : X  --+C  a  non-isotrivial relatively minimal fibration having the
following invariants :

g = genus (X n) 1 , w here th e  generic fib re  X u i s  a  smooth irreducible
projective curve F,

g  = genus (C), the base C is  a  connected nonsingular projective curve,
s = the  number of S, S = ( te  C: X i = f 1 (t) is singular} .
Recall that the ground field k  is  the field of complex numbers C.
L et wx 1 ,  b e  the relative dualizing sheaf and by co we denote the relative

canonical class K w .. D efine

d := deg (f (ox ic) = —  deg (R 1 f* e x ).

Then since f  is non-isotrivial one has d > 0 and  so we define the  slope 1.f. of f

* [Tn'] Tan, S.-L., The minimal number of singular fibers of a semi-stable curve over P ', Preprint
of MPI/94-45.
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( [X ] )  as the  following ratio

CO
2

A f : =   .
" d

1.1.1. X ia o 's  inequality ( [ X ] ) .  W ith the above notation we have

4 — —
4

(1)

Furthermore G. Xiao (/oc. cit.) has conjectured the following

1.1.2. X ia o 's  conjecture. Fibrations with the  lowest slope are  hyperelliptic,
i.e ., the generic fibre is hyperlliptic.

This conjecture has been proved in the semi-stable case by M . Cornalba and
J. Harris ( [C -H ]) . Very recently K. Konno ([K]) has obtained a  complete proof
of Xiao's conjecture.

1.2. On Matsusaka's inequalities for hyperelliptic fibrations. We recall some
w ell-know n facts from  t h e  canonical resolution theory o f  d o u b le  conerings
([H], [P e n ] ,  [ M a ] ) .  Let X  be a normal surface and Y  -a smooth su rface . By
a double  covering in: X  Y we m ean a  finite surjective morphism of degree 2,
an involution on X  with no isolated fixed po in ts. T h is covering has the following
d a t a :  a n  e v e n  b ra n c h  c u rv e  B  a n d  a  l in e  b u n d le  L  o n  Y  such  tha t
L® 2  C y (B). We denote this covering by X(Y, L, B), or sometimes by X(Y, y, B),
where y  is a  divisor such that L  C y (y).

1.2.1. Horikawa's canonical resolution. Put Yo  =  Y, L, = L, B , = B and let

X c R  — Xn
— ■ Xn _1 — ■ X1 X0 — X

I rC R  1 i r n j , r n  - il
YCR = Yn-

i t i j ,

C l

7 ° 1

Y1 - p Yo =  Y

b e  th e  tower o f  Horikawa's canonical resolution ( [H ] , cf. also [Peril], [Ma]),
i.e., such that

1) X i =  X (Y i , L i , B i )  is  the double covering with data (Yi , L i , B i ),
2) cri : Y— is a  blowing-up at a  singular point pi o f  B1 _ 1 ,

3) Bi  =  0 - r(B i _ l ) — 2 [ m i E i ,
2

L i = ol` L i _ i  0 C y ,_, [ m i E
( 2 1  i) '

where mi = mult p , (B i _ 1 )  and E. i s  the exceptional curve of cri ove r p i ,
4) B„ is nonsingular.
The conditions 1)-4) im ply that X c R  is smooth and it is called the canonical

resolution o f  X  = X( Y, L, B) o v e r  Y  having th e  universality property, i.e., if
o-' :  Y' —> Y is  a  proper surjective binational morphism between smooth surfaces
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irt
s u c h  th a t  d iv is o r  B y , = o-'* B — 2 [1 E l  is n o n s in g u la r , w h e re  E l  are

2
exceptional curves o f a ' (c f . 1)-4) above), then there exists a  un ique  morphism
a" : Y' —> 17

c ,  such that the following diaram

is  commutative, i.e., = acR o Cr"

N ote that the canonical resolution is not necessarily the minimal resolution.
F urther to  each  re la tive ly  m inim al hyperelliptic fibration f : X  —> C  o n e  can
associate a triple (Y, L, B ) such that X(Y, L, B ) is  birationally equivalent to X.

1.2.2. Lemma ( [ M a ] ) .  W ith th e  sam e n o tatio n  as  in  1.2.1 th e  natural
morphism h: X  c ,— > X  is a contraction of  all (—  1)-curves on  X "  and f or every
i(1 < i < n) we have

2 < rn < g + 1.

1.2.3. L ocal canonical degrees dr (X ) .  L e t f : X  — > C b e  a  hyperelliptic
fibration w ith  triple (Y, L, B ) a s  above a n d  p: Y —* C the  structure  morphism.
Then there exists an  open  subset C°  C  such that

p
i
(C

o
) P 1  x  C c%

ii) f - '(C ° ) can be identified with the closure of the set 1(x, t, y)e C x C x  C :
3)2 = go(x, t)}  , w here x  i s  a n  inhomogeneous coordinate o f  P 1 a n d  g o  is  a
polynomial of degree 2g + 1 (o r 2g + 2) in  x  w ith  coefficients in the rational
function field of C° .

W e put

D := (cp) 9 ( dx  
g — 1 d x  ® 4 ( 2 q + 1 )

Y Y

where A  (9) is  the discrim inant of go as a polynom ial in x. In  fact D  can be
naturally extended to a  rational section of ( A gf,,cox ,c)®4 (2 a+ 1 )  a n d  is independent
in  the  choice of (Y, L, B), C ° , x , y  and go (cf. [ U ] ) .  W e can now define a local
degree d ( X )  at each point t E C  by setting

1
dt (X ):—  ord, D

4(2g + 1) (2)

1.2.4. Matsusaka's inequalities ( [M a ] ) .  In  the  above notation we have

d ( X )  et(X)
4(2g + 1)

for every po in t t e C ,  where ei (X )= x (X i) — (2 — 2g) is  the local E uler number
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over t.

1.2.5. Corollary. For hyperelliptic f ibrations we have A i • >4 — —
4

. Moreover
4

the condition A f  = 4 — — is e q u iv a le n t  to  t h e  equality  i n  all M atsusak a's
inequalities.

P ro o f .  From  the  definition (2) it is easy to see that

E dt (X ) = d.
teC

O n the  other hand one has

12d = w 2 +  E ei (X ).
teC

This formula is  a n  easy consequence of the following formulae

c2 (X ) =  E et (X) + 4(g — 1)(q — 1),
teC

C(X ) = (02  +  8(g — 1)(q — 1),

X((9 =  d  + —

and Noether's classical formula (cf. Appendix A).
N ow  the assertion follows immediately from 1.2.4.

Furthermore one can get another explanation o f the  following well-known
fact.

1.2.6. Corollary ( [P e r  1 ] , P ro p . 2 .1 2 , cf. a l s o  [ X ] ) .  For hyperelliptic

f ibrations one has A f  = 4 — —

4  

if  an d  only  i f  X  is  the canonical resolution o f  a

double covering o f  a geometrically ruled surface ov er C w ith only  rational double
points as its singularities.

P ro o f .  W ith the notation of 1.2.1 let E-i ) d e n o te  th e  proper transform of
the exceptional curve o f a i to  Y i  f o r  i j .  Then from Lemma 4.3.1 ([M a]) it
follows that

4(2g + 1)d1 (X) — g • e,(X ")= — 2 E ([1 - g )
PC R  ( E ) ) =  t 2

where nC R : Y C R  C  is  the structure morphism.
Hence by virtue of Lemma 1.2.2 and Corollary 1.2.5 one sees that X  = X  c ,

and  all m i a r e  less than 4. Consequently we infer (cf. [H], Lem m a 5) that the
double covering X(Y, L, B) has at most rational double points as its singularities.

§ 2 .  A  refinement of the canonical class inequality

2.1. T he Sakai-Miyaoka inequality ( [S a ] , [M iy ]) . L e t  X  b e  a minimal
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nonsingular s u r f a c e  o f  g en e ra l ty p e . A ssu m e  t h a t  s i ,...,ek a r e  d is jo in t
configurations of (— 2)-curves which should be contracted to the rational double
points p i ,...,p k . Then w e have the so-called Sakai-Miyaoka inequality for the
Chern classes of X

d (x )  3 2 ( x )  -  t i ( g d • (3)

Here the correction terms 1.1(C )  are defined as

P(ei) 3 [ e ( )
1

where e ( ')  is  the  E uler num ber o f X , and  p i i s  a  quo tien t singularity with a
finite group, sa y  G .. T h u s  one has the following possibilities for ADE-types of
singularities

e(21,.) = r + 1, 1 G A , .1 = r + 1,

e(Dr ) = r + 1, 1G 0 ,1 = 4(r —  2), f o r  r > 4,

e(E 6 ) = 7 , IG E 6 1= 24,

e(E 7 ) = 8, I GO = 48,

e(E 8 ) = 9, I  GE8 1 = 120.

2.2. N ow  let f :  X  C  b e  a non-isotrivial semi-stable fibration with g >  1
and q = g(C )> 1, then in this case we have only the type A n  fo r all S i . Thus by

1 
1

neglecting the non-positive part —  3 (E    f r o m  the  right-hand side of
ir +  1j

(3) and using formulae (A3), (A4) of Appendix A  one gets ([Par3])

co2 5_ 3(5' + (2g — 2)(2q — 2), (4)

where 6' is the number of double points after contracting all (— 2)-curves in fibres.

2.3. Furthermore if w e take a  cyclic covering C„ C  of degree n  (totally)
b r a n c h e d  o n ly  o v e r  S  ( to  b e  m o r e  p r e c is e  n  o d d  if s  o d d )  s o  th a t
2q„ — 2 = n(2q — 2) + (n — 1 )s  b y  t h e  Riemann-Hurwitz form ula, w here  q„=
genus (C „) . Let X „ be the relatively minimal resolution of X  x c•C„ then applying
(4) to  X „ one obtains

co! 5_ 36' + n(2g — 2)(2q — 2 + s), (5)

where con denotes the relative canonical class of X „ C n . Since it is well-known
([A], [Sz]) that co 2 =  nw 2  and an n o o  we infer from (5) the so-called canonical
class inequality ([Va], [E-V])

co2 :5_ (2g — 2)(2q — 2 + s). (6)

A  key point further is to use the above negligible pa rt a s  will be shown in
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the  following theorem.

2.4. Theorem (Beauville's conjecture). L e t  f : X 13 ' b e  a  non-isotrivial
semi-stable f ibration with g>  1. Then s > 5.

P ro o f .  First note that X „ is minimal of general type as well as n > 2. Now
taking into account the  negligible part from  2.2 w e rew rite the Sakai-Miyaoka
inequality for X,,

mo2  n (2 g  —  2)(s — 2) —  s(2g — 2) + E
r, + 1

where pi h a s  the type A,7, on  X „.  Since F , + 1 = n(r, + 1)> n  so that

3 36'
E  •ri + 1 n

Therefore we infer from (7) that

3(5'
s(2g — 2)  n[(2g — 2)(s —  2) —  co l

Further by virtue of Beauville's Theorem (cf. Appendix A) one can  assume
tha t s = 4. From  (8) (or (6)) as n — > co it is clear that

co24 (g  —  1 ) (9)

O n  th e  other hand from  Beauville's Theorem  it follow s that d = g. Then
using Xiao's inequality (1) we have

co2 > 4(g — 1) (10)

(see also Corollary A.4.4)
Combining (9), (10) one gets co2 = 4(g — 1). As emphasized in the Introduc-

tion this is a  key point essentially due to  G . Xiao ([B3], cf. also [T n ]).  Taking
into account this equality it is easy to see that (8) can be rewritten as

36'
8(g — 1)  <0

The latter inequality is impossible as g > 1 and  n »  1. This completes the
proof of the theorem.

2.5. In  closing this section we give a n  improvement o f the  canonical class
inequality using the trick above and inequality (1).

2.5.1. Theorem. Let f: X  — >C be a non-isotrivial semi-stable f ibration with
g > 1 .  Then there exists a  constant A  = A (s, q)<2q —  2 + s  depending on s  and
q  such that

3
(7)

(8)

W
2  A(2g — 2).
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P ro o f . First we note that 2q — 2 + s > 0 because f  is non-isotrivial. Now
we rewrite (8) for this general case as

36'
s(2g 2)  <  n[(2g — 2)(2q — 2 + s) — co2 ] (11)

From (6) and (11) it is easy to see that co 2  < (2g — 2)(2q —2 + s) as g >  1 .  So
if we write co' = a(2g — 2) then (11) is equivalent to

36'
c(a, n)(o 2 <  

s — n(2q — 2 + s)
where c(a, n) =  + n.

a
Obviously 6' < ô = the  number of double points in fibres of X .  N ow  the

standard form ula 6  = 12d — co2  (cf. A ppendix  A ) together with inequality (1)
enables us to deduce

( 1 —
3

)[c (a, n) + —
g n j

9
—
n

(12)

The idea here is to choose an optim al value n and a(n) < 2q — 2 + s  such

tha t c(a, n)> —

6  

for all a > a(n), since in  this case the inequality (12) holds only

for finitely many values of g. Thus we can find the desired constant as will be
shown below.

6
O ne firstly sees easily that th e  inequality c(a, n) > — is equivalen t to  the

inequality a > a(n), where

n[n(2q — 2 + s) — s]
a(n) = 

n2 — 6
(13)

Thus we need to choose n = n, such that a(n i ) < 2q — 2 + s. A computation
(q —

using (13) shows tha t it su ffices to  choose  n , > 6 + 12n .  N o w  p u ttin g

a, = a(n 1 ) + e  fo r  a  sufficiently small e  w e see that (12) holds only for g g 1 ,
where

n1c(a1,n1)+ 3
g 1 =  n,) — 6

Consequently the desired constant should be chosen as follows

2g — 2 I g < g , •

2.5.2. R em ark . In  case  the  C  P I t h e  optimal value for n  is n 1 =  7 .  A

1

{

A = m a x  a 2q  —  2 + s
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computation in  this case shows tha t A(5, 0) = 2.84 and  A(6, 0) = 3.85.

§ 3 .  On a  class of semi-stable fibrations

3 .1 .  This paragraph is devoted to the  proof of Theorem 3.1 formulated in
the  In troduction . F or convenience it will be given in  a  series o f several claims
below . W e keep the  same notation as before. Recall that w e have defined the
number s o f o r  a  fibration f : X  —> C such that

so = the  number of So , So = IteC :g (5 f ,)= g o l.

3.1.1. Definition. A fibration f  is called regular if there is at least a fibre
X , such that g(X

-
,) = g o ,  i.e., s o > O. O therw ise  w e say  tha t f  is irregular.

The following lemma is essentially due to  [B3].

3.1.2. Lemma. Let f: X —> P 1 be a relatively minimal fibration with g >1 and
1) to2  = 4(g —  1),
2) x(6x ) 3 —  g.

Then
1) X  is a  ruled surface (in the sense o f  [B4]), defined as a family n: X  —> E,

g(E)= g o . F am il ie s  f  and  ir define a 2-to-1  m ap  f ro m  X  to  Y=  E  x 13 '  with
branch locus, say  B.

2) I n  particu lar i f  go =  0  t h e n  X  i s  a  ratio n al su rf ace  a n d  f  is
hy perelliptic. M oreov er X  is the canonical resolution o f  X(Y, y , B ), 2y B  with
double rational singularities. T he second projection of  Y  induces f  an d  B  is  of
numerical type (2a, 2), where a = g + 1 —  2g 0 .

3) I f  f  is regular then g o1 .

P ro o f .  1) The Riemann - Roch inequality applied to K s  + F  gives us

h
°
(Kx  + F) x ( (9  s ) + g — 1.

O n the other hand the first condition implies that (K , + F) 2  = O. T herefore
the  linear system 1Kx  + F l is composed with a  pencil without b a se  p o in ts . So
writing the general member of this pencil a s  the  sum  of irreducible components
D2 = Ei P "  w e infer from  th e  theorem o f  Bertini that they m utually  d o  not
intersect and  by  the  same token

P2 ,i ) = 0 Vi, j (14)

Now we shall use the familiar construction expounded in the proof of theorem
of Castelnuovo-de Franchis ([G-H], Chap. IV, § 5 ) .  Namely let E = {13

2 ,1}2,1 be
the set of connected components of curves in the pencil {D,} which is a  (ramified)
covering of 1)". Thus one obtains the fibering X  —> E by sending each point
p  to  the pair (2, 0  such that p e P 2 ,i . Since it is easy to see from the adjunction
formula and (14) that (K s , 13

2 ,1) are even integers — 2 and E1 (105 , 13
2 ,1) = 2 — 2g

< O .  O n  t h e  o th e r  h a n d  a l l  P a r e  hom ologically  equivalent, so that
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(K r , — 2 V i. Thus one gets P f", (F.
 P A , ) =

 2 and the first assertion.
2) Evidently then go  = g(E)= 0 implies the  rationality of X  and  that f  is

hyperelliptic. In particular, x((9x ) = 1, so  that d = g  by standard formulae using
the  L eray  spectra l sequence (c f . th e  p roof o f  1 .2 .5  o r  Appendix A ) .  Hence
2f :=co 2 1d= 4 —  4/g . So  the assertion follows direcly from 1.2.6 and standard
calculations for double coverings with rational singularities (cf. [H], [P e n ]) .

3) If there is a  singular fibre say X , such that g ( i-  1) = go  and  if go > 2 then
the Riemann-Hurwitz formula shows that X , is the union of a section and several
fibres of n  (cf. [B 1], C ). This contradicts the fact that (X „ P,,,)= 2.

3.1.3. F ro m  n o w  o n  w e  assum e the  semi-stability condition for f . We
always assume that conditions 1)-2) in Lemma 3.1.2 h o ld .  It is easy to see that
in  th is case X(Y, y, B) is  the stable m odel o f X , i.e ., can be obtained from  X
b y  a  contraction of all (— 2)-curves in  f ib re s . T h e  analysis o f  singularities of
branch locus B  in  th e  above situation is a lm ost th e  sam e a s  in  [ T n ] .  I f  we
denote by F'0 ( -  E )  the fibre of type (0, 1) on Y  then

For any  point peB nF o  the intersection number (B, Fo )p 2 .

Further a s  in  [T n ]  w e denote by F o ,  the im ages of singular fibres X , in
Y. Let a, (resp. b„ c 1) be the number of points p of type A  (resp. B, C) on Fo ,

A: (B, Fo )p = 1,

B: (B, F0 ), = 2, (13, p) is smooth,

C :  (B, Fo )p = 2, (B, p) is  singular.

By virtue o f Lemma 3.1.2 one has the following

3.1.4 . C laim . a, + 2b, + 2c1 = 2g + 2 —  4g0 .
L et us consider the case of go <  I (in  particu lar if f  is regular)

3.1.5. C laim . W e have
i) so < 8 (well a s  g > 4  if  go = 0),
ii) for each value so >  5  one has g go  + 

so 4
ni) i f  r  <  1  then so < 4.
For the  proof it suffices to use the formula for p 2 (cf. Appendix A) and the

fac t tha t th e  num ber of double points in fibres 5 is 8g + 4 —  12g 0 (since  for
ruled surfaces one has pg =  0  and  then  it rem ains to  use  the  first condition in
Lemma 3.1.2 together with formulae (A7), (A8) Appendix A ). N o te  that obviously
so = 8 im plies s = so  a n d , a s  will be shown below (3.2.1) the case go  = 1, n = 3
gives an  example with s = so  = 8.

3.1.6 . Case so  = 4, r =  O . S ince in  th is  case aga in  by  the form ula for p,
one sees that g(1 1) = g  Vt(tS o . T he Riemann-Hurwitz formula shows tha t the
image of X , in the stable model X(Y, y, B) is irreducible and  therefore, smooth,
except for the degeneracies at the cross of two elliptic curves (g = 2, go =  1). B u t
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in this case each elliptic curve is isomorphically mapped onto E  that contradicts
Persson's result (cf. Corollary 1.2.6 of § 1 ) .  T hus one ob ta in s tha t a ll X , are
smooth V t0S 0  so  th a t s  =  s , = 4  and by virtue of Theorem 2.4 this case is not
realized.

3.1.7. Case so =  4 , r = 1, g, :5_ 1. Follow ing [Tn] w e take a new branch
c u r v e  =  B  + E F01. Then /3 has the following types of double points on Fo ,

teSo

aif  + b ,A 3  + E DPp+3,
P p  '1 ,p eF o ,

where pip i s  the M ilnor num ber at (B, p), i.e., the length of corresponding chain
of (— 2)-curves.

3.1.8. C la im . Let b e  the canonical resolution o f  X(Y, j7, /3), where
2)7 T h e n  I  is  of general type with the following invariants

c ( I )  = 4(g — 1),

x(02) = 2g + 1 — 3g 0 .

The p r o o f  i s  a d irect calculation on double coverings w ith rational
singularities.

3 .1 9 . Claim. g  6g0  + 3r + 7.

P ro o f .  It suffices to remark that
a,

+ 4 — 8g0 ,,E40 (-2  +  b, + c i ) = 4g  

a,.
teS 2 teS o

E  >  4g — 8g o — r + —

1  

E

Further applying the Sakai-Miyaoka inequality to I as in [Tn] we are done.

3.2. Examples
3.2.1. Explicit calculations for the series in  [B 1 ] .  First recall the construc-

tion in [ B 1 ] .  Consider a morphism 9 :  E  13 '  of degree n and an automorphism
u  of 1)1 such that

(i) a ll ramification points of 9  have index 2,
(ii) the set R  c  P 1 o f  branch points of cp is  stable under the action of u

and contains no fixed points of u.
Put Y =  E  x  13 1 ,  B  = y = F,p ,  where FI„ F g r a p h s  of 'p  and

u o  (f) respectively. Then the double covering X(Y, y, B ) has singularities of type
A , a t the intersection points of ['4, n F .  L e t  X  be its canonical resolution then
f: X —> 13 1  induced by the second projection of Y is semi-stable. Under hypothesis
(i), (ii) above we have

1) S = RU {two fixed points of 4
2) g(F) = n —  1 + 2g 0 , where g o =  g(E).
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3) B  2nP 1 + 2E, y n P 1 +  E, where P ' and E denote fibres of type (1, 0)
and (0, 1) respectively (an abuse of notation).

4) Ki = 2(K, + y) 2 = — 4(g(F) — 1), p = b 2  = 4n + 2.
So w e have the situation in  Theorem 3.1. N ow  fo r simplicity we assume

tha t the number of R  is smallest a s  n  and go a r e  given.

5) s =
6 +

6 +

4(g, — 1)

4g,
n — 1

n even 14(g0 — 1)

n — 1 even 4g 0

6) (The case  of n  even a n d  go = 0  will be considered separately in  3.3.2
below)

{ 2n go 1

r =
2(n — 1) n odd, go = 0

2g0 — 1 either n even, or n
g (I)  = odd and te S \R

2g0 n  odd, t e R

In  particular f  is regular in  the  sense of Definition 3.1.1 i f  g , < 1. In  fact
such fibrations with s = 6 further are constructed explicitly in  [B1].

3.2.2. Example of genus 3 fibration with s = 5 ( [B 1 ]) . A s one has seen in
3.3.1 case n even and g, = 0  is  possible i f  n  =  2 , 4 . The first one (n = 2, s = 4)
gives a n  elliptic example with configuration (214 , 212 )  (cf. [ B 1 ] ) .  Another one
(n = 4, s = 5) can be defined, e.g., by the folowing equation

y 2  _ _ _  (x 4  t x 2  
± 1) [1t 2PC4 — 2(t — 6)x 2 +  (t + 2)]

w ith  5  singular fibres o v e r  { 2 .,/—  3 , ± 2 ,  o o } . S o  th a t  s = s o = 5 , g, = 0,
r = 3. In  fact it is nam ely the  example obtained from th e  above construction

1 2t + 12
by putting q(x) = x 2 ± , E u(t )=

2 — t

3.2.3. Example of genus 2 fibration with s  = 5 . M. - H. Saito has constructed
th e  fo llow ing  in teresting  exam ple  w hich  I reproduce below  w ith  h is k ind
permission.

Take th e  Hirzebruch surface F3 = P ( 0  e ( 3 ) ) and let W  and -.2° be
homogeneous coordinates o f f ib res  s o  t h a t  S, = =  0 1 ,  S o e  = { .  =  0 }  are
sections s u c h  th a t  SI, = 3, S oe

2 =  —  3  a n d  (S0 , S oe ) = O. I n  f a c t  w e  have
S, S oe + 3F 0 , where F , is the fibre of type (0, 1). Consider the pencil in  12S0 1
defined by the following two elements

C0 : + x(x —  1).11 = 0,

C : { [ x 4  — (x — 1)4 ]oN — (x — 1) 5 x .11 = 0,

where x  is  an  inhomogeneous coordinate of the base 13 '.
W rite C, = S 0  u Do , C oe = S oe u Do e . Then the base points of the pencil are
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the set of points

Po = tx = = 01,

P i = x =  1}n{'&' = O}.

Moreover the intersection multiplicities of D .  with S o  a n d  Do  a r e  given as
follows

multpo (D ., S0 ) = mult p , D0) = 1,

multp , S0) = mult p o D 0 )  =  5.

So blow ing up F3  6  tim es each  a t p0 , p i  a n d  their infinitely near points one
obtains a  genus 2 fibration which can be written in  the  following equation

C,: y2 = P(x, t),

where

P(x, t) = 4t(x — 1) 5 x + lx(x — 1) + t[x 4  — ( x 1 ) 4] }2 .

The discrim inant of P(x, t) as a  po lynom ia l in  x  can  be  ca lcu la ted  by  a
computer program as

4(0= const. t 1 4 (4t + 1) 2 (8t + 1) 2 (t — 1).

T hus th e  pencil has th e  following configuration of singular fibres ( in  the
nota tion  of [N-U]) : (4_ 6 _ 1 , /1_0_0, /1_0_0, I  _ i _ 0 ,  / I _  i )  resp. over 10, 1,
— 1/4, — 1/8, c o l .  S o  th a t  s0 =  3, r =  0, g o  = 0. The fact that w e have types
4 - 6 - 1  a n d  / , _ , _ ,  over 0  a n d  co respectively  is c lear from  th e  geometric
construction ab o v e . F u rth e r  s in ce  th e  leading coefficient and th a t  i n  x 5 o f
P(x, t) are  t(4t + 1) w e have the type 11 _0 _ , (over t = a n d  t = 1) and the
type I, _0 over t = —k according to [N -U ] . Thus the correction terms coming

dx d x  y "
from (—  A X are given a s  follows (cf. [U ], a n d  1.2.3 a n d  1.2.5).

Y )

dx dx

0 otherwise

3.2.4. R em ark s. 1) A s noted in the Introduction this example is enough
close to  a  "counterexample" to Beauville's conjecture in the sense that we were
able to  ob ta in  it if  tw o fibres of the type / 1 _0 _0 (o v e r  1 a nd — 1/4) could be
deformed to a fibre of the type /, _, _ 0 .

2 )  It m akes sense in  another connection to generalize the construction in
3.2.3 for any F„(n 2), e.g., the pencil

Y Y

— 1 over t = 0, — —
1

ora, ( A X
r °4

{ 2 over t = oo

C :  y 2 +  I) (x -  1 ) t  EX2 -  -  1 ) 1 1  2% — t(x — 1) 3 x.% 2  = 0
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o n  F 2 g iv e s  u s  familiar configuration (18, 12, .1 1 ,  / ,)  o v e r  {0, co, 1/4, — 1/4}
respectively.

Appendix A: semi-stable fibrations and their integer invariants

This appendix is essentially the m ajor part of [V t 0 ] .  O ur summary will be
based on  [A ], [B 1 ], [P ar2 ], [Sz ], [V g] and  [Vt4].

A .1 . For a semi-stable fibration f :  X  C there exist two fundamental exact
sequences

0

O f *Q . — +121 — > ‘21 1c.

where N  = C) C(P i)-the skyscraper sheaf sitting at the double points of fibres.

The dual to  (A l) exact sequence is the following:

0 — + T 1  — 4 Tx  - - - ) I * T c N 0 (A2)
12

(ow

The following lemma is a direct consequence of (A l) and  (A2).

A .1 .1 . L em m a. The following formulae are valid

1) x (X )= c ,(X )= 4(q —  1)(g —  1) + 6 (A3)

w here 6 = E 6„ 6, is the number of  double points in X „
teC

2) c (X )=  co' + 8(q — 1)(g — 1) (A4)

W e denote by ni t h e  number of components of X .

A .1 .2 . L em m a ([B 1]). The following formula holds

—  n, + 1 = g — g(i?,) (A5)

w here g(I) denotes the genus of  the normalization of  X ,.
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P ro o f . We give here an  elementary proof o f  (A 5 ). F irst one remarks that
double points of X , are divided into two types :

— the singular po in ts  o f com ponents each o f  these low ers the  genus of
corresponding component onto one,

- the intersection points of components.
If we p u t X , = EC1 then  from  X,2 = 0 it follows that

Ec? + 2 E c i • C  O .
i <

By the  adjunction formula we have

E(2p„(C,)— 2 — Kx • C ,)+ 2 E  c i • c i  = o.
i<,

Since E Kx • C ,=K x •X ,= 2g — 2 then

y,Pa(Ci) E c i • c i  — n, + I = g.
i•<;

Now rem ark that the quantity of points of the first type is
and  the  one of the  second type i s  E c i • c i .  W e obta in  the

E paw ) — g ( I r)
assertion of the

lemma.
< j

A .1 .3 . Corollary ( [ A ] ) .  On the stable m odel X  the number of double points
in each f ibre is not greater than 3g —  3.

P ro o f . Indeed, in  view o f  th e  absence o f  rational (— 2)-curves it follows
that n, <2g —  2. A p p ly in g  the formula in Lemma A.1.2 one obtains : 6, < 3g — 3.

A .1 .4 . L em m a. W e have the following formulae

1) x(.9x) = d + (1 — q)(1 — g) (A6)

2) co2 = 12d —  6 (A7)

3 ) Pg = d +(9 —  go)(q — I) + goq (A8)

where recall that g o = dim  of  the f ix ed part o f  Pic
°
 (X /C).

T h e  p ro o f  is  standard  b y  u s in g  the  L eray  spec tra l sequence fo r  f ,  the
Riemann-Roch theorem o n  C  and Noether's classical formula.

A .2 . Let p  denote the P icard number o f X  th a t is  p = rk,:) N S (X ), where
N S(X ) is the Néron-Severi group of X .  In  order to get Arakelov's estimate for
d  we shall need the  following obvious lemma.

A .2 .1 . Lemma ([Par2], [ B 1 ] ) .  One has the following inequality

2 +  E (n, — 1) (A9)
teC
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R ecall that n, denotes the number of  components o f  X ,.

A.2.2. Definition. The defect r is to be defined as in the following formula

p = 2 + (n, — 1) + r, (A10)
teC

(cf. [Tt]).

A.2.3. Lem m a. g( 1) g 0 , V t e C.

The proof can be found in  [A ]  a n d  [B 1 ] . There a re  tw o w ays to  get it:
th e  first one  ([A ]) u ses  the  N éron  m odel o f  J ,  the  second  one  ( [ 31]) uses
Albanese's morphism o f  X .  H ere n o te  a  nice version of the p roof by  M.-H.
Saito and S. Ishii using Mixed Hodge Structures (personal com m unication). We
rem ark that there exist fibrations (so-called "irregular") such that g(X-

1) > g„,
Vt E S (cf. [131] or §3).

A.2.4. Proposition ( [ A ] ) .  In  th e  sam e notation the following inequality  is
valid

d (g —  go)(g —  1 + - + gog (All)

P ro o f . By definition we have

x (X )= 2 — 4 q (X )+ h " + 2 p g .

Further by (A3): x (X )= 4(1 — q)(1 —  g) + 6 and using formula (A8) for pg one gets

d = (g —  go )(q —  1) + —

1

(6 —  h") + 1 + g q.
2

From  the Lefschetz (1, 1)-theorem it follow s that p  <  h " .  This fact, together
with (A9) and (A5), enables u s  to deduce

d ( g  —  g0 ) (q  —  1 + —

s  

+ go q —  —

1  

1 ( g ( i , )  —  g 0 ).
2 2 (es

Now estimate (A11) already can be obtained if remark that g(1 1) go (Lemma
A.2.3) Vt- e C.

A.2.4. Corollary.

E [5 (g — 90) +  1] s + 12 [ ( g  — 90)(9 — 1) + 909] •
teS

P ro o f . Indeed by (A5) one gets

n, 6 — (g — g, — 1)s
tEs

O n  th e  o ther hand  it is  know n tha t w 2 0  ( s e e ,  e .g . ,  [P ari], [A ], [S z]).
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This m eans that (5 < 12d. Now the corollary immediately follows from (A 1 1 ).

A .2.6. R em ark. In  the  elliptic case (i.e., g  =  I)  w e have

E  <  6s + 12(q—  1) (Al2)
teS

E ssentia lly  th is inequality  belongs to  L . Szpiro . It is w ell know n that a
number field analog of (Al2) enables us to deduce Fermat's last theorem due to
G . Frey. Concerning the connection with Frey's result, see [Par3].

A.3. Now let us denote "the number of transcendental cycles" of X  (or the
number of independent 2-differentials of the second kind) by p 2 .

A .3 .1 . Proposition. In the previous notation the following form ula holds

p 2 =(g —  g 0 )(4q — 4 + s) — E (g(X- ,) — g0 ) —  r + 4g 0 q (A13)
teS

A .3 .2 . Corollary. p 2 (g  —  g 0 )(4q — 4 + s) + 4g 0  q.

P ro o f . It is well known that (see, for example, [G-H], Chap. III, §5)

111 ' 1 = p + p 2  - 2p g .

By the definition of z (X ) and from (A3) it is easy to see that

p 2 = 4(1 — q)(1 —  g)+ ((5 —  p)+ 4(q + g o ) — 2.

Now applying (A5) and (A10) we obtain the required result.

A.4. N o w  le t  u s  consider semi-stable fibrations ove r the projective line
P 1 . Since q = 0 we rewrite the basic relations of previous parts in the following
form.

A .4 .1 . Lem m a. In  the notation of  previous parts the following relations are
valid

1) 9x) = d — (g — 1) (A14)

2) Pg = d — go) (A15)

3 )  p 2 = (g —  g 0 )(s — 4) — E (g (i t) — g0 ) — r (A16)
tes

Recall that we consider the case with g  > 1 .  A s an immediate consequence one
gets the following

A .4.2 . Theorem ( [B 1 ] ) .  L e t  f :  X  P 1 b e  a non-isotriv ial sem i-stable
fibration. T h e n  s> 4. M oreov er, s  = 4  is  equ iv alen t to  th e  follow ing three
conditions

1) p 2 = 0,

2) g( ) g ,  V t S ,
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3 )  r =O.

P ro o f . It is obvious by virtue of (A16).

A .4 .3 . R em ark s. 1 ) It should be noted that the author learned from M.-H.
Saito recently a  nice proof of Beauville's estimate s > 4 using Variation of Hodge
Structure (unpublished).

2) Using the  theory of algebraic surfaces A. Beauville (/oc. cit) has proved
a  stronger statement that go = 0  if s = 4.

A .4 .4 . Corollary. The notation being as above, if  s = 4  then

1) f* WX/P,0  6 P, (1),
g copies

2) co —  F  is numerically  effective,

3) co' > 4(g — 1).

P ro o f .  1) By the second remark of A.4.3 one has : d = g  and g, = O. On
the  other hand, according to [A],

g ,= dim H° (P i , R 1 f * (cx ).

Consequently it follows from applying Grothendieck's theorem on vector bundles
over P 1 (see, e.g., [G -H ], Chap. IV, §3) that

R 1C )  ( 9 , 1 ( —  1).
g copies

So that by  the duality we obtain the required assertion.
2) From Lemma 3 ([X]) we have known that co — pf (f,,co x i pt) • F is nef. It

rem ains to use the definition of g f  (cf. [X ]) and the first assertion.
3) Evident by 2).

Appendix B .  Degenerate configurations for a class of hyperelliptic semistable
fibrations

B .1 . Assume that there  a re  at m ost two com ponents in  each fibre on the
stable model and  a ll the W eierstrass points P i o f  th e  generic fibre are rational.
Recall in  this case Arakelov's formula ([A])

g(g ± 1) g(g — 1) —
co E Pi + E ci  + f*d

2 2

where Pi d e n o te  the W eierstrass sections corresponding to Pi , C;  ( if  a n y )  are
components of fibres and a denotes the class of det ( f * cox i c ). It is not difficult
to  show that the contribution of each chain {C1 , C,.} of type A, of (— 2)-curves
intersected with Weierstrass sections is given a s  follows (r odd)
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g(g — 1)
2

( r + 1
C, + 2C 2  +  +  

2  
c  

1 ) /  2  +  "  •  +  2C,_ Cr )

B .2 . T h e  following fact is well-known ([A ], [P ar2 ]): w e  have an exact
sequence

0 T -4 Pic
°
 (X 1) -+ Pic

°
 (1) —>

w here  i t is  the normalization of X„ G m  C * .  So Pic
° (jet ) is an  abelian variety

of dim g (k t ). Below we give all possible configurations together with description
o f  Pic

°
 (X )  respectively. A s  f a r  a s  a  genera l ru le  o f  computing Pic

°
 (X 1)  is

concerned and for the local behavior of Weierstrass sections we refer to [Par2].

/0,-,)  (analogous to types II, /// of [Par2])
Here C is a  hyperelliptic or rational curve of genus g( 1 1), 10 ; 1 _ , is a  chain

of (— 2)-curves, r i o d d , the  number of such chains = g  —

g - g ( ,)

Pic
°
 (i - ,) Pic

°
 (C), T (j) [ (C * ) , ; 0 (C*),i2 ] /

a n d  ci,, c i
2  a re  in te rse c tio n  p o in ts  o f  th e  ch a in  {C } w ith  C, A  the diagonal

subgroup of a direct sum.

(m = 1, 2) (analogous to types /V— V/ o f [Par2])
H ere  C, D  a r e  hyperelliptic o r  rational curves o f  genera g 1 , g 2 ,

IZO are chains of (— 2)-curves, r i , r ;  odd . W e denote  by  ml , m2 , m the
number of chains {C}, {Z;;} respectively and  take a  lexicographical order:
g, >  g 2  (if g ,  = g 2  then  m, > m 2 ). The curves C, D are joined by m chains
W e have the following relations

91 + g2 = g(5e,), m1 + m2 = g — g(it)— m + 1( B 1 )
m, + g, g  — 1 (if m = 2 then m, + g, < g — 1) i = 1, 2,

Pic
°
 (i f) Pic

°
 (C ) x Pic

°
 (D),

T [(C*), 0 (C * ),..2 ]/ A 8 E(c*)di (c*)ai]/A
i = 1 j = 1

(i) UC*)„„ (c%„]/A]/A,
= 1

where c ,  c t
2 , a 1 (resp. d ,  d ,  b i ,) are intersection points of the chain ICkl, {Z;;}

(resp. {M}, W I)  w ith  C (resp. D ) .  We show why m is  1 or 2. In  this case the
counting of Weierstrass sections implies m, + m 2  + g  +  g 2  g  — 1. Comparing
with (B1) one obtains m < 2 as required.

/// (analogous to the  type  V// of [Par2])
H e re  C, D  a r e  curves o f  genus 0  jo in e d  b y  g +  1 cha in s { c ii Ir1=1 of

( —  2)- curves, r i o d d , i = 1,...,g + 1,
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g+1

Pic
°
 (X 1) T  L- -  E CD [(C*) . I  A

i= 1

a n d  ci (resp. di)  are  in tersection points of the chains {C i
i } w ith  C  (resp. D).
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