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On the associated graded module of an ideal generated by
an unconditioned strong d-sequence
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K. KHASHYARMANESH, SH. SALARIAN and H. ZAKERI

0. Introduction

Throughout this paper, 4 is a commutative ring with non-zero identity,
X1,...,Xs is a sequence of elements of 4 of length s> 0, a is an ideal of 4 and
M is an A-module. We use N (respectively Np) to denote the set of positive
(respectively non-negative) integers. For each i (1 <i<s), let q; = (x1,...,X),
q=(x1,...,%x;) and qy = (0). If there is no confusion, the associated graded
ring Gy(A) =@,.,q9"/a""" and the associated graded module Gq(M) =
@nzoan /q"*'M are denoted by G and G(M) respectively. We put h =
x;modq? (1 <i<s), the initial forms of x;’s in G.

The concept of a d-sequence is given by Huneke (see [5]) and it plays an
important role in the theory of Buchsbaum modules and in the theory of Blow up
algebra, e.g. Ress Algebra. The sequence xj,...,x, of elements of A4 is called a
d-sequence on M if, for each i = 0,1,...,s — 1, the equality

i i
( ij>M M Xipl Xk = (Zij)M M Xk
i=1 j=1

J

holds for all k > i + 1 (this is actually a slight weakening of Huneke’s definition); it

is an unconditioned strong d-sequence (u.s.d-sequence) on M if x|',... x* is a
d-sequence in any order for all positive integers «;, . . ., &;.

It is well known that if A4 is local, M is finitely generated and x;,...,x; is a
system of parameters for M, then x|,...,x, is an u.s.d-sequence on M if and only

if the natural homomorphism H;(q, M) — H(:(M ) is surjective for all i <s. Al-
though these natural homomorphisms do provide a satisfactory characterization of
u.s.d-sequence, they have the disadvantage that their underlying ring is local and
the ideal q is a parameter ideal of M.

In [7], for a sequence x = xj,...,x, of elements of 4, we established the
canonical homomorphisms Y_’; 1 between the homology modules of the Koszul
complex K,(x,M) and the homology modules of a complex C(&/(x), M) of
A-modules which involves modules of generalized fractions derived from M and
the sequence x. Then we showed that these canonical homomorphisms do provide

Communicated by Prof. K. Ueno, July 6, 1998



608 K. Khashyarmanesh, SH. Salarian and H. Zakeri

useful criteria for u.s.d-sequences without any restriction on 4 and M. The purpose of
this paper is to show that our criteria for u.s.d-sequences is good help when we treat the
u.s.d-sequences in relation with associated graded modules. Indeed we shall prove,
among other things, the following two theorems.

Theorem A. If x|,....x, is an u.s.d-sequence on M, then it is an unconditioned
a-filter regular sequence on M and the sequence hy,... hs constitute an u.s.d-
sequence on Go(M). Moreover if A is Noetherian and M is finitely generated, the
converse is also true.

The proof of Theorem A is divided in two parts. The proof of the first part of
the theorem is given in 2.3, while the second part of the theorem is a consequence
of 2.4. It is shown, in 2.5, that the result [3, 2.12] of Goto and Yamagishi can be
deduced from Theorem A.

Theorem B. For an ideal a of a Noetherian ring A, a finitely generated A-
module M and a positive integer s, the following statements are equivalent:

(i) HI{(M) is finitely generated for all j< s,

(i) There is an a-filter regular sequence x,....xs on M such that hy, ... h; is
an unconditioned I-filter regular sequence on Gy(M) and H ,’ (G4(M)) is finitely
generated G-module for all j <s, where I =3 " | hiG,(A).

1. Notations and preparatory results

We say that a sequence xj,...,x; of elements of A4 is an a-filter regular
sequence on M if xj,...,x;€a and

spp<<(z Ax,)M » ) / (ZA)M> c V(@

forall i=1,... s where V(a) denotes the set of prime ideals containing a. When
such property holds in any order, we will say that the sequence xi,...,x, form an
unconditioned a-filter regular sequence on M. The concept of an a-filter regular
sequence on M is a generalization of the one of a filter regular sequence which has
been studied in [9], [12], [13] and has led to some interesting results. Note that
both concepts coincide if A4 is local, M is finitely generated, and a is the maximal
ideal of 4. Also note that x|,...,x; is a poor M-sequence (15, §2] if and only if
it is an A-filter regular sequence on M. D-sequences are closely related to filter
regular sequences. It is easy to see that if xj. ..., x; is a d-sequence on M, then it
is an Y7, Ax;filter regular sequence on M. For the converse, we have the
following

1.1. Remarks. Consider the special case in which 4 is Noetherian and M is
finitely generated.

(1) By slight modification in the arguments of [13, 2.1], one can show that if
X1,...,Xs 1s an a-filter regular sequence on M, then, for each k > 0, there exists
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an ascending sequence of integers k <rj < --- <r; such that x{',... x/" is a
d-sequence on M.
(i) [3, 6.12] Let 4 be local with maximal ideal m and let xj,...,x, be an

unconditioned m-filter regular sequence on M. Then the following conditions are
equivalent:

(@) x,...,x; form an u.s.d-sequence on M;

(b) x4 Hj(M/q;M) =0 for every 0 <i+j<s.

Now we recall some facts about d-sequences which are needed for the proof of
the main results in this paper. The reader is referred to [4, 5.1.1] and (3, 1.3, 1.6
and 1.9(2)] for their proofs.

1.2. Proposition. (i) xj,...,x; form a d-sequence on M if and only if the
equality

[0 My xi]N QM = q; M

holds for all 1 <i<s.
(M) i xi,...,x5 form a d-sequence on M, then the equalities

G- MNQ"M=0q0q"'M  and  x"MNq"M =x{"q""M

hold for every 1 <i<s, m>0 and neZL.
(iii) hy,...,hs form a d-sequence on G,(M) if and only if the equality

[q,'_lan + qn+2M M xi] nan _ qi—lqn_lM + qn+1M

holds for all 1 <i<s and n > 0.
(iv) If x1,...,x; form a d-sequence on M, then the equality

[a;M pr xipa]Na"M = ;9" ' M
holds for every 0 <i <s and n >0, where x; = 1.

For a system of elements x = x,...,x, of 4, let K,(x, M) and H,(x, M)
denote the Koszul complex generated by x over M and the homology module of
the Koszul complex, respectively. When discussing the Koszul complex, we shall
use the notation of [8]. In particular, we shall abbreviate K,(x,M) to K,(M)
when no confusion is possible. Also, in this paper, we shall use the concept of a
modules of generalized fractions introduced in [I1]. The notations and termi-
nology concerning triangular subset of 4" (for n e N) and modules of generalized
fractions will be the same as that used in [7, §2]. In particular, C(2/(x), M)
denotes the associated complex of modules of generalized fractions derived from x
and M.

In [7, §2], we established the homomorphism Wx’f u between the Koszul
homology module H, ,(x,M) and the p-th homology module of the complex
C((x). M). Let us recall briefly the construction of these morphisms and review
the main result of [7, §2] which play a significant role in the proof of the main
results of this paper.
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Write the associated complex C(</(x), M) as

et 0 el _.
028 M Y U M ES - — UM S U M
For each integer p with 0 < p <5, we define
W7y Kiop(M) — U(x),"M
0 . . s b
as follows. %', is the identity map, ¥,),(b) = TR for all b e M and, for
lyeooyXs
each 1 <p<s—1, M is defined by the rule
b if (i is—p) =(p+1 s)
—_ lyeoesls—p) = Yoy
W2 (beiyiy,) = (¥l 0%p) ) =P
' 0 otherwise

for all be M. 1t is easily seen that, forall 0 < p < s, ‘I’X’f » 1s an A-homomorphism
and that the diagram

0 — K(M) — K (M) — -+ — K (M) —  Ky(M)

l*«?u J%‘M J‘lﬂf;) JW;‘M

0 -1
€M

=5 UM

€y, M

€M —1 —s+l
0O — M —SUx)M— - — Ux), M

is commutative. Therefore, for all 0<p<s—1, ¥/, induces an A-
keref, M

homomorphism H,_,(x, M) — which is denoted by ?’xp M-

ime

1.3. Theorem. [7, 2.4]. The following conditions are equivalent:

(1) xi,...,x5 is an u.s.d-sequence on M;
(i) For any permutation o of the set {1,...,s}, the canonical homomorphism
kere?
(x), M
Pl Hoplo(x), M) — - ,:”.
imeg ) 4
is surjective for all p with 0 < p <s—1, where a(x) 1= Xg(1),- .-, Xo(s)-

For an ideal b of 4 and b e A, we shall denote the submodule
{meM:b'mebM for some re Ny}

of M by bM :p <b). Assume that x|,...,x; form an unconditioned a-filter
regular sequence on M and that x; is a non-zero-divisor on M. Then, by using
the fact that Z' lAx“’)M v XD (E' le“’ M :p {x,) for all 1 <i<s and
o,...,0_1 € N, we may apply the same drguments as in the proof [7, 2.3] to
obtain, for each 0 <i <s, the exact sequence

0— U(x); M U(x); ‘M — U(x)_'(M/x\ ) — 0,
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where U(x)[_iM — U(x);]'(M/x;M) is the natural homomorphism. Put
M = M/x;M. Then the above exact sequence induces the exact sequence of
complexes

0— C((x), M) = C(A(x), M) — C(A(x), M) — 0

which, in turn, yields the exact complex

X5

- — H'(C(o/(x), M)) = H'(C( (x), M))

L H(C(L(x), M) 25 HF(C(st(x), M) — - -. (+)

Throughout the paper, we shall appeal to such exact complexes without further
comments.

1.4. Remark. In this note we shall employ the notion of graded modules.
For an integer n and a graded module X, we define X (n) as the module X whose
grading is given by [X(n)],, = Xu4m. Also it should be observed that, if X is a
graded module over a graded commutative ring R (with identity) and U is a
triangular subset of R” (n e N) composed of homogeneous elements, then U™"X
has graded structure as R-module which is such that, for a homogeneous element

xeX and (u),...,u,) € U, the degree of the fraction is degx—

(ury ..., up)
>, degu;. Hence, for a chain of graded triangular subsets % on R, every
homology module of the complex C(%,X) has graded structure as R-module (see
[1]). When discussing such complexes, we shall use the above mentioned grading.

2. Proof of the main results

It was shown in [12, Appendix 2(i)] that whenever A is local (Noetherian) with
maximal ideal m, M is finitely generated and s is a positive integer, then there
exists an m-filter regular sequence on M of length s. The following proposition
establishes a similar result for unconditioned filter regular sequences.

2.1. Proposition. Suppose that A is Noetherian and that M is finitely gen-
erated. If xi,...,x, is an unconditioned a-filter regular sequence on M, then there
exists an element x,.| € a such that x\,...,X,, X,y| is an unconditioned a-filter
regular sequence on M.

Proof. If r =0, then choose x| € a\UpeASS(M)\V(a) p arbitrary. So suppose
that r > 1. Set

S = {p:peAss(M/(ZAx,-)M),Ig {1,.‘.,r}}

and let x,,) € a\UpeS\V(ﬂ) p. Let y;,..., y., be any permutation of xj,..., x4

and suppose that y, =x,,; for some 1 </<r+1. To complete the proof,
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it is now suﬂicient to show that, for each i=1,...,r+1, y;¢p for all pe
Ass(M/ (Z I 4 y;)M)\V(a). To do this assume contrdry Then there exist an
integer i, w1th I+1<i<r+1, and pe Ass(M/( Z ,ij M)\ V(a) such that
yiep. Itiseasy to see that y,,..., ¥, ...,y y, is an a-filter regular sequence on
M, where the character with ~ means that it is deleted. Now, by slight modi-

fication in the arguments of [9, 2.2], one can show that y i Yi N

Z1 7
T € pA,

is an M,-sequence. Hence, by [8, p. 127], &,...,&,...,& forms an M,-
P 1 1 »

sequence too. Therefore pA, ¢ Ass(M,/ Z _1 Y;M,), which is impossible by the
choice of p.

2.2. Lemma. Let xy,...,x; be an u.s.d-sequence on M. Then, for all « € N,
0 :6,m AT = (0:4 x1)(0).

Proof. Let geO0:guyhY be a homogeneous element of degree n(>0).
Choose an element y of q”M such that g = ymod ¢""'M in [G(M)],. Then
x{yexiMNg" M. Hence, by 1.2(ii), x{ye x¥q"*'M. Therefore, it is the
case that y = umod qM for some ue0:p x* if =0, but yeq"'M if n> 0.
Hence the inclusion < holds. As the opposite inclusion is trivially true, the result
follows.

Next, we show that the result [3, 2.10] of Goto and Yamagishi is quickely
derived from our criteria 1.3 for u.s.d-sequences.

2.3. Theorem. Let xy,...,xs be an u.s.d-sequence on M. Then hy, ... hs form
an u.s.d-sequence on Gq(M).

Proof. Let I =357, hG. 1t follows from 1.2 (ii) (iii) (iv) that every per-

mutation of hj,...,h; is a d-sequence on G(M). Hence, in particular,
Otg(M) hfZOZG(M)I (1)
for all 1 <i<s. Let h=hy,...,h. In order to prove the result, it suffices, in

view of 1.3, to show that ‘T’,,p G(m) 18 surjective for all integer p with 0 < p <s5— 1.
We prove this by induction on p. By (1) it is clear that the canonical homo-
0
kere, G

1
im € G(M)

with 1 < p <s—1 and suppose that the result has been proved for p —1. Set
G:=G(M)/(0 :6(m)y hs).  In view of (1), it is easy to see that U(h);p(O :6(m) hs)
=0 for all p > 1. Therefore the exact sequence

morphism &7’,,0 ey H(1,G(M)) — is surjective. Let p be an integer

0 — (0:6(p) ) — G(M) — G — 0
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P
ker €nG(M) _

yields an exact complex similar to (*) which in turn implies that 7 =

imej G
keref

— for all p>1. On the other hand, it follows from (1) that, the Koszul
ime; -

h G . . .

homology module H;_,(h,0 :g(r hs) is a direct sum of copies of 0 :g(ss) hs for all
p=1,...,s. Now, using the elementrary fact on the Koszul complex together
with 1.2(i), we may deduce that the map Hy_,(h,0 :gar) hs) — Hy—p(h, G(M)) is
injective for all p=1,...,s. Therefore, for all p=1,...,5—1, we obtain the

commutative diagram

HS—p(hv G(M)) — Hs—p(h’é) — 0

4 T4
l‘“’, G(M) qu. G

P r
kere, G kere, .
| P T o
ime} G ime,

in which the upper row is exact and the lower row is the natural isomorphism.
Hence we may assume, without loss of generality, that A, is a non-zero-divisor on
G(M). Put A'=A/x?4, M' = M/x}*M, q' = q4’ and G(M') = G(M’). Then,
using the exact sequence

0 — G(M)(-2) 2 G(M) — G(M") — 0,
we obtain, for all integer p, the commutative diagram

Hs—(p—l)(hvG(Ml)) - s—p(h»G(M)(—z)) ﬁ’ Hs—p(hvG(M))

—p—1 P 714
J/%, G(M") J/!Hl G(M)(-2) J/%L G(M)

p-1 P 4
ker € G(M") ker €} G(M)(-2) h2 ker € G(M)
im eP 2 im e? ! imeP !
mey o mey Goay-2) 1mey o

in which the rows are exact and, by inductive hypothesis, the map BT’hp ;(l M)
is surjective. Therefore in order to complete the inductive step it is enough

kere? ker e”
—-;"_C:(M)(_z) =0. Now, let Y e — G2 _ o Then,

h, G(M)(-2) m e/:,Gl(M)(—Z)

by employing a method of proof which is similar to that used in [14, 2.3(ii)], there
exists € N such that h!Y =0. If +>2, then, using the above diagram, there
exists Z € Hy_p(h, G(M)(—2)) such that ¥ ¢y _2(Z) = hi~2Y; which implies that
hs"I Y =0, since h,Z =0. Now, one can repeat the same arguments to achieve
that 42Y =0 as required.

to show that A?

ime

By the example (1) of [3, 1.12] we know that x;’s do not necessarily form an
u.s.d-sequence on M even though the 4;’s form an u.s.d-sequence on G(M). In
the following theorem we discuss about this fact.
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2.4. Theorem. Suppose that A is Noetherian and that M is finitely generated.
Let xi,...,x; be an unconditioned q-filter reqular sequence on M such that h{, ... h!
forms an u.s.d-sequence on Gy(M) for some teN. Then x!,... x! forms an u.s.d-
sequence on M for | =st—s+ 1.

Proof. Letl=st—s+1andlet x'=x!,...,x!. In view of 1.3, we have to

show that 'f’x’;‘ u is surjective for all integer p with 0 < p <s—1. To do this, first
we claim that

(0 :pr 1) <ZAx>M 0 for every 1 <i<s. (2)

Let re (0: xH)N Zj lAx’)M for some i with 1 <i<s. Let g be a homog-
enous element of degree / of G,(M) such that g = r mod q/*' M in [G,(M)],. So g €
0 :6,(m) h!. As h!is a d-sequence on G o(M) and [ > t we have that g € 0 :6, (an) A/.
Also it is easy to see that g e Z (A)h{)Gy(M). Hence, by 1.2 (i), g = 0; i.e.
req*'M. Now, one can repeat the same arguments to achieve that re qfM
for all $>1. On the other hand, by 1.1 (i), there exist nj,...,n; € N such that
x{',...,x% is a d-sequence on M. Therefore re (3, Ax;" )M; hence, by 1.2 (i),
we have r =0 and the claim follows.

Now, let 1 <i<sand let re0:y x,?" for some integer « with o > 2. Then,
by (2), r€0:y x!. Therefore 0:y x* =0:) x!. Hence, using the assumption
that x;,...,x, form an unconditioned g-filter regular sequence on M, we have

0:p (Zij!):O:Mx,“I “foralli=1,...,s and o € N. (3)

Thus the canonical homomorphism

_ ker e?
P, Hy(x! M) — —=M

x', 1
im €M

is surjective. Next, consider the exact sequence
0 — (02 x!) — M — (M/(0 2 x!)) — 0
to deduce the long exact sequence
- — H,(x',0 v x!) — Hy(x', M)
- Hp(xl, M/(0:pm xf)) - ,,_l(xl,O ‘M xi) —_

It follows, in view of (3), that H,(x'.0:y x!) is a direct sum of some copies of
0:p x! for all p=0,1,...,s. Therefore, using (2), it is easy to see that the map

Hy(x',0 1 X1y — H,(x'. M)
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is injective. So, for all 1 < p <s—1, we have the commutative diagram

Hy p(x',M) — H,_,(x',M/(0:p xI)) — 0

l l

)/ P
ker exY M = ker e.\'. M/(O:MX‘/)
i P i P
me, m e,\‘, M /(0:px))

in which the upper row is exact and the lower row is the natural isomorphism.
Therefore we may assume, without loss of generality, that x, is non-zero-divisor on
M. Now, by the same arguments as in the proof of 2.3 we can complete the
proof.

As we mentioned in the introduction, Theorem A is an immediate conse-
quence of 2.3 and 2.4. Let us now indicate how the result [3, 2.12] of Goto and
Yamagishi can be deduced from Theorems 2.3 and 2.4.

2.5. Consequence. Consider the special case in which 4 is Noetherian, M is
finitely generated and xi,...,x; is contained in the Jacobson radical of 4. Then,
using 1.2 (iii), it is straightforward to see that xj,...,x,; forms an unconditioned g-
filter regular sequence on M if hy,..., A is an u.s.d-sequence on G,(M). Hence,
in view of 2.3 and 2.4, the following conditions are equivalent:

(i) xi,...,x; is an u.s.d-sequence on M,

(1) hy,...,hs is an u.s.d-sequence on G,(M).

2.6. Remark. Suppose that A4 is Noetherian and M is finitely generated.
Then the existance of u.s.d-sequence on M in a are closely related to the finiteness
properties of H:(M). In fact if x,...,x, is an u.s.d-sequence on M, then, in view
of [14, 2.4], [7, 2.4] and [2, Lemma 3], it is easy to see that H(ixh‘..,x,,)(M) is finite
for all 0 <i<n—1. If in addition, xi,...,Xx, is an a-filter regular sequence on
M then, by [7, 1.3(ii)], H/(M) is finite for all 0 <i<n—1.

Proof of Theorem B. (i) = (ii) By [6, Theorem], there exists k € N such that
every a-filter regular sequence on M of length s is an a¥-weak M-sequence. Now
suppose that xi,...,x, is an unconditioned a-filter regular sequence on M in a.
(Note that the existence of such a sequence is guaranteed by 2.1.) Then xi,...,xs
is an u.s.d-sequence on M. Hence, by 2.3, hj,... . hs; is an u.s.d-sequence on
G(M). Thus, for 0 <i<s—1, H/(G(M)) is finitely generated, as required.

(ii) = (i) First of all, using [6, Theorem], we may deduce that Af..... h¥ is an
u.s.d-sequence on G(M) for some x e N. Hence, by 2.4, x{}xff is an u.s.d-
sequence on M for some fe€N. Moreover, by our assumption, x....,x; is an
a-filter regular sequence on M. Therefore, by 2.6, H/ (M) is finitely generated
forall 0 <j<s—1.

2.7. Corollary. [10, 4.2]. Suppose that A is local with maximal ideal m and
that M is finitely generated of dimension s (>0). Then the following conditions are
equivalent:
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(i) H] (M) is finitely generated for all 0 <i<s— I;

(ii) There is a system of parameters xi,...,x; for M such that H}.(Gy(M)) is
finitely generated for 0 < i <s— 1, where q =Y, Ax; and m* is the unique graded
maximal ideal of Gq(A).

Proof. In view of Theorem B ((i)= (ii)) it is enough to prove the

implication (ii) = (i). To do this, note that, by the assumption, h;,... A is a
system of parameters for G,(M) and that, since H, .(G,(M)) is finitely generated
for all i=0,1,...,5 — 1, there exists r € N such that A{,... A is an u.s.d-sequence

on Go(M). Let y,...,y, be any permutation of xi,...,x;. Then, by applying
1.2, it is easy to check that the equality

i—1 i—1

DoV M A IM oy yf [ NQ"M = yla" M + g™ M 4)
Jj=1 j=1
holds for all 1 <i<s and n>st—s— 1. Since the sequence x|,...,x; is con-
tained in the Jacobson radical of 4, we can deduce from (4) that x;,...,x, is an

unconditioned g-filter regular sequence on M. Now the assertion follows from the
implication (ii) = (i) of Theorem B.

The following theorem clarify the structure of the homology modules of the
complex C(f(h),G(M)) of G(A)-modules which involves modules of generalized
fractions derived from G(M) and the u.s.d-sequence h:= hy,... h; on G(M). It
follows from this theorem in conjunction with [14, 2.4] that if 4 is Noetherian,
then i-th local cohomology module H/(M)(i) and Hj(G(M)), where Q=
Z,i,h;G, are isomorphic. Thus, under Noetherian hypothesis on A4, the next
theorem provide an alternative proof of [3, 4.2].

2.8. Theorem. Let x,...,x; be an u.s.d-sequence on M. Then

i i
kere, G _ kereg 5

il = S
ime; o ime,
for all i=0,1,...,s— 1.

Proof.  We prove this by induction on s. If s =1, by 2.2, we have noting to
do any more. So, suppose, inductively, that s > 1 and that the result has been
proved for smaller values of s. In order to prove the assertion for s we use
. e . kere},’ G(M) kere?
induction on i. By 2.2, it is trivial in case i =0, i.e. ——; ~ ———(0).

imej, ¢ ime_ '),
Now, suppose that 1 < i <s— 1 and that the result holds for smaller values of i.
Put M = M/(0:p x,) and G = G,(M). Consider the exact sequences

0—O0:iyyxs) —M—M-—0
and
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and apply 2.3 to obtain

i kere! _
keref’{" ~ —>=%  and — ~ -
imei~ imei~
mel,, e

|_
g
D
Q
=
g
o

forall i=0,1,...,s— 1. Thus, without loss of generality, we may assume that x;
(respectively A;) is a non-zero-divisor on M (respectively G(M)). Let A’ = A/x;A,
q =qd', M'=M/x;M and G(M') = G;(M’). Consider the exact sequences

0 — G(M)(~1) 25 G(M) — G(M') — 0 (5)

and
0—M5M— M —0. (6)
Since, by 2.3, hj,...,h; is an us.d-sequence on G(M), we have that

kere!
G _ g for all i=0,1,...,s—1. Now, from (5), we obtain the

*imel]
h,G(M)(~1)
induced exact sequence

i—1 i—1 i
kereh'G(M) . kere,’,yG(M,) . kere,',‘G(M)(_l)
. i—2 . i—2 . i—1
1me;,YG(M) 1me,',’G(M,) lme,’LG(M)(_l)

which in turn yields, by applying inductive hypothesis on the module G(M’),

[ker €, GM)(-1)
N i—1
1m €, 76 pry(-1)
sequence

] =0 for all n # — i+ 1. Similarly, from (6), we obtain the exact
n

kerei ), kerel ), kere! ,,
— - - ’2 — - - ’2 — - a i 0.
ime, 4 ime; 4 ime;

Now, using inductive hypothesis, we may obtain a diagram

kerei~1 kerei =\ ., kere!
0 l @G(M)] . l haory| WGy |
—ifl il —itl

3 i-2 4 H i—1
1me; Gm) me; Gm) M€ G(my-1)
Tw A[wl
kerei=), kerei=),, kere! ,,
0 — " .Y2 — —,—-2-— — —’l — 0
ime. i ime; i, ime, ,

with exact rows in which ¢ and ¢’ are isomorphisms. Moreover the diagram is
commutative because the injections are naturally induced by M — M’. We are
therefore able to complete the inductive step; and the result follows by induction.

Note that, although the proof of the above theorem relies on the ideas of
Schenzel’s proof of [10, 4.1], but his theorem is a particular case of ours.
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