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On Freudenthal’s geometry and generalized adjoint
varieties

By

Yasuhiro OMODA

1. Introduction

In this paper we have several observations about Freudenthal’s geometry and
calculate the degrees of dual varieties of adjoint varieties. Freudenthal introduced
a notion of symplectic geometry and metasymplectic geometry to study a geometric
aspect of exceptional Lie groups. This is an analogy of the relation of projective
geometry and projective tansformation groups. He studied several homogeneous
varieties which play very important roles in his geometry. On the other hand, we
obtain a homogeneous projective variety from an irreducible representation of a
simple algebraic group. We call such a homogeneous variety generalized adjoint
variety. In this paper we determine which representations the homogeneous varieties
in Freudenthal’s geometry are obtained from. The results show that there is a very
interesting correspondence between the homogeneous varieties and irreducible
representaions of simple algebraic groups.

It is known that the dual varieties of Freudenthal’s homogeneous varieties are
hypersurfaces in [KM]. The degree of such dual varieties were calculated for some
cases in [M1][M2]. We give a formula for the degree of the dual variety of adjoint
variety and calculate the degree of some Freudenthal’s homogeneous varieties.

We calculate irreducible decompositions of representations of complex simple
algebraic groups in Section3 by using a package [LiE].

When we consider a nonzero element x in a vector space as a element in a
projective space, we shall use the same symbol for it.

The author wishes to express his hearty thanks to A. Kono, J. Matsuzawa
with whom he had valuable discussions.

2. Freudenthal’s geometry

We know that real number, complex numvbar, quarternion and Cayley number are
Hurwitz algebras over R and that they are all of Hurwitz algebras over R. Here
the complexifications of them are denoted by R, C;, Hc and O,. They have a
natural conjugation as algebras over C. For example a conjugation X of the element
x=a+bl+cJ+dK(a,b,c,deC) of H is as follows,
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x=a—bl—cJ—dK.

H. Freudenthal investigated exceptional Lie groups and their geometries
according to following his magic square.
Freudenthal’s magic square

elliptic geometry B, A, C; F,
projective geometry A, A,+ A, As Eg
symplectic geometry C; A5 D¢ E,

metasymplectic geometry F, E¢ E; Eg

Each column corresponds to R¢, C¢, He or O respectively. In this section we will
give a brief sketch of his geometry. In Freudenthal’s papers coefficient field is real
number. Though we use complex number as coefficient field, most of assertions
in his papers hold similarly. So we give only overview here. For detail see [Fr1, 2].

2.1. Adjoint varieties

Let G be a complex, connected, simple algebraic group with Lie algebra g, V a
finite dimensional complex vector space, and p:G—GL(V) an irreducible repre-
sentation of G. Then G acts on the complex projective space P(V) through the
projection,

n: V\0— P(V).

If v is a highest weight vector of the representation, we obtain the unique closed
G-orbit,

X:=n(G-v)c P(V).
The orbit is a homogeneous projective variety and we call it generalized adjoint
variety. In paticular if the representation is the adjoint representation, its variety
is called adjoint variety. It is shown in the paper[L] that the generalized adjoint
variety is defined by a system of quadric equations in P(V).

2.2. Projective geometry

We denote by J the set of all Hermitian matrices of degree 3 whose entries are
elements in the complexification of a Hurwitz algebra. For X, Y,ZeJ, we put,

Xo Y:% (XY+YX),
(X, Y):=tr(X - Y),
XxYi=XoY— %(tr(X)Y+tr(Y)X—(tr(X)tr(Y)—tr(XY))E),

(X,Y,2):=(X,Yx 2),
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det(X) :=§ X, X, X).

Then we obtain projective varieties B and algebraic groups G'* of type 4,, 4, + A4,, A5
and Eg according to Hurwitz algebras as follows,

B:={XeP ()X x X=0},
GP:={geGL(J)|det(gX) =det(X) for all Xe3J}.

Type A,,A,+A,, A5 and E4 correspond to the second row in Freudenthal’s magic
square. The algebraic group G!! acts on variety B and the action is
transitive. Moreover T is an irreducible representation of G'*), and B is the
generalized adjoint variety which is obtained from J. For each Ye®B we define
the subset Ly in B as follws,

Ly:={XeB|X x Y=0}.

We call it the line. Then B is naturally identified with the set of lines in B. We
denote the set of lines in B by B* Let L, be a line. For distinct X, YeL, we
obtain an element Xx Y in B. This element does not depend on the choice of
X,YeL, Then XxY is Z in B.

Remark 1. First we define an involutive automorphism A of G'*! as follows,
Mo)="a"! aeGBL

Here we denote transposed o with respect to the inner product (X,Y):=tr(XoY) by
'v. Then we obtain a following relation,

aXxaY="a"'(XxX) XeJ.

For X,Y,Ze3J we define {(X,Y) in End(J) by

(X, VZ:=2Yx(XxZ)— %(z, NX— % X, NZ.

Then the vector space which is spanned by these maps coincides with the Lie
algebras of above algebraic groups G'* in End(J). We denote the Lie algebras by
Inv(det).

H, Freudenthal called the geometry of points and lines in B projective geometry.
2.3. Symplectic geometry
First we define two vector spaces B and £.
B:=JOJDCHC.
2:=Inv(det)@IDIDC.
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For P,=(X, Y, ¢, w)eB(i=1,2), the element P, x P, of € and skew inner product
on B are defined by,

Xy, Y0 +<{X5, Yy)
=Y, x Y, 43¢, X, +&,X))

1
PIXP2:=§ XlxXz—%(in2+w2Y1).

—H(Xy, Vo) + (X3, Yy) =3¢ 0, — 3¢ 0,
{P, P} :=(X, Y,))—(Xp, Yy)+ &0, — &0,

Then we obtain varieties I and algebraic groups G of type of C;, 45, Dg and
E, according to R¢, C¢, He and Oc as follows,

M :={PeP(B)|P x P=0}.
G?:={geGL(B)g(Px Q)g~ ' =gPxgQ for P,QcB}.

Type C,;, As, D¢ and E, correspond to the third row in Freudenthal’s magic
square. The variety MM is homogeneous projective veriety of G'2. Moreover B is
an irreducible representation of G'2, and M is the generalized adjoint variety which
is obtained from fB.

For @=(Z(X, Y, A,B,p)e and P=(X, Y, w)eB, the element OP of B is
defined as follows,

ELX, YD +3p)X+2Bx Y+ wA
—(ELY, XD)+p)Y+24x X +¢B
OFP:= (4, Y)—p¢
(B, X)+pw.

Then we can consider £ as a subspace of End(B). In fact € coincides with the Lie
algebra of G'?. We denote the Lie algebras by Inv(IR). When we consider £ as
a subspace of End(B), we obtain varieties N,

N :={OeP(Inv(M))|©?=0}.

Then it is known that R are the adjoint varieties of G2 An element of N is
called a point. If [®,, ©,]1=0 for O, ®,eN, we say that @, O, are jointed. The
maximal set of points which are jointed each other is called plane. If different
planes contain at least two points in common, the intersection is called line. If
OP=0 for ®cf and PeN, we say that ® is incident to P.

Proposition 1. For each plane there exists exactly one element P of M such
that ®P=0 for any point @ of the plane.

Hence we can consider MM as the set of planes in M. Moreover each plane P
has The structure of the projective geometry.
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We denote the set of lines in 9t by €. It is known that € are projective
homogeneous varieties. Then we expect that each € is naturally embedded in an
irreducible representation of G'?! which contains T as a representation of G'*! and
that the intersection of P(J) and € is B as the set of lines. We shall show it in
Section 3. The dimensions of N, € and M are known as follows,

Rc C. H; O
m" s 9 17 33
€ 7 12 22 4
m 6 9 15 27

H, Freudenthal called the geometry of points, lines and planes in N symplectic
geometry.

2.4. Metasymplectic geometry
2.4.1. Exceptional Lie algebras. First we define a vector space as follows,
Ry =Inv)Da, ®BDB.

Here we denote the complex simple Lie algebra of type 4, by a; and the element

® of !‘R4 by,
(®+‘y I/} )’ (P) .
| 5 @—-'y Q I

Here ®cInv(M), 7,9, e C, P, QeB. The Lie bracket on R, is defined as follows,

| (®+y & P

[‘D"q”]‘[( 3 @—y)’ (Q)]'

for d>i=[<®‘_+”" % ) (Pi>] i=1,2.
0; O;,—¥ o

0=[0,0,]+P, xQ0,—P,xQ,,

Here,

1 1
)’=é152—é251-§{P1,Q2}+ g{Pzan}’
1
8= —2y,0,+2y,8,— Z{Qan}a

1
0=2y,6,—2y,0, + Z{Pppz}’

P=@;+y)P,— (@, +7)P1+0,0,—6,0,,
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Q=(®1—?1)Qz—(®z—)’z)Q1+5P2_32P1-

Then each R, becomes the complex exceptional Lie algebra of type of F,, Eg,
E; or Eg according to R, C¢, He or O, respectively.

2.4.2. Metasymplectic geometry. We have an inportant inner product in R, as
follows,

1 -~ ~
(@,,D,):=— 5— tr(®,0,) @,,P,eR,
2

Here we denote ad®; by @, and €,:=9, 12, 18 or 30 according to R, Cg,
H or O respectively. Moreover we define a linear map {®,,®,> of R, for @,
d,, D,eR, as follws,

-~ - ~ 1 1
(D, 0,)0:=— (0,0, +D,D,)O— 5((1)1,([’)‘1)2— 5((1)2,(1))(1)14-5((1)1,(])2)@,

O] =

Here €:=3%, £, 1 or { according to R¢, C¢, H¢ or O respectively. Then we obtain
varieties 1B, as follows,

W, :={®eP(R,)|<D, D) =0}.

It is known that each 2B, is the adjoint variety of the adjoint group G!!! of ®,. The
element of MW, is called symplecton.

The vector space R, is defined as a linear subspace of End(R,) which is spanned
by {(®,, ®,)|®,, P,eR,}. Then we obtain varieties W, as follows,

W, = {<®1’¢2>6P(“R1)I[(D1’®2] =0, (Db(bzeq&t}*

It is known that the adjoint group G'" of R, acts on I,. An element of I, is
called a point.
For symplecta ®,, ®,e1, we define following three relations,

®, is jointed with @, if (&, ®,>=0,
®, is interwoven with @, if [®,,®,]=0,
®, is hinged with @, if {®,,®,}=0.
Similarly for points A,BeI, we define following three relations,
A is jointed with B if AB=0,
A is interwoven with B if AB—BA=0,
A is hinged with B if tr(4B)=0.

Moreover we define a relation between a point Ae B, and a symplecton PeIB,
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as follows,
A is incident to ® if there is a symplecton ®* with @ =AD*

The set of points which are incident to a fixed symplecton has the structure of
symplectic geometry.

If A is jointed with B for A4,BeB,, there exits a subset {®eIW,|® is incident
to A and B} and for an element @ of this set there is a unique line in the sense
of symplectic geometry such that the line contains 4 and B. The set which the
line determines in 2B, does not depend on the choice of ®. So we can define the
notion of the line in metasymplectic geometry. We denote the set of lines in
metasymplectic geometry by ,. The algebraic group G acts on 9B,
transitively. The algebraic group G'*! which is contained by the stabilizer of ®eB,
in G'"! acts on the set of lines €. So the algebraic group G''! acts on B, transitively.

If A, B and C for A, B, CeqB, are jointed with each other and there is no
line that contains all points of {4, B, C}, there exists an element ®eB, such that
®@ is incident to A,B and C and for each ® there is a unique plane in the sense of
symplectic geometry such that the plane contains 4, B and C. The set which the
plane determines in MW, does not depend on the choice of .

We denote the set of planes in metasymplectic geometry by IB;. The algebraic
group G'! acts on B, transitively. The algebraic group G'*! which is contained
by the stabilizer of ®e¥, in G acts on M. So the algebraic group G!'! acts on
B, transitively. The dimensions of 1B,, MW,, W; and W, are known as follows,

R C. H. O
W, 15 24 42 78
W, 20 31 53 97
W, 20 29 47 83
W, 15 21 33 57

For ®eW,, {®} =W, is defined by,
{®}:={A4€W,|4 is incident to ®}.

Proposition 2. If ®, is jointed with ®, for ®,, ®,eW,, {O,}n{D,} is a
plane.  Moreover for any plane there are symplecta ®,, ®,e, such that {®,} N {D,}
is the plane.

Proposition 3. For symplecta ®,, ®,eW,, ®, is jointed with ®, if and only if
I, contains the usual projective line over C which is spanned by ® | and ®, in P(R,).

Let L(2B,) be the set of usual projective lines over Cin P(R,) which I, contains.

Proposition 4. For a plane we define a subset in I, as the set of symplecta
which contain the plane. The subset is a projective line over C, and defines a element
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of L(IB,). Then there is a one-to-one correspondence between the elements of L(I,)
and the elements of 1B,.

Remark 2. Let L(9M) be the set of usual projective lines over C in P(B) which
M contains. Then similarly there is a one-to-one correspondence between the
elements of L(M) and the elements of €.

Proposition 5. Let ®,, ®,, O, be elements of W,. If ©,, ®,, ®; for i, j=123
are jointed with each other and @, ®,, ®, are linearly independent, {®,} " {®,} " {D;}
is a line. Moreover for any line there are symplecta ®,, ®,, ®,elB, such that
{@}n{D} N {D@,} is the line.

Let P(2B,) be the set of usual projective plane over Cin P(R,) which 1B, contains.

Proposition 6. For a line we define a subset in I, as the set of symplecta
which contain the line. The subset is a projective plane over C, and defines a element
of P(M,). Then there is a one-to-one correspondence between the elements of P(1B,)
and the elements of 1B,.

H, Freudenthal called the geometry of points, lines, planes and symplecta in
1B, metasymplectic geometry.
For convenience we list up symbols of spaces in the following table.

points lines planes symplecta
projective geometry B B*
symplectic geometry n € M
metasymplectic geometry W, W, W, m,

3. Freudenthal’s geometry and generalized adjoint varieties
3.1. Summury of results

Let G be a complex semisimple algebraic group with the Lie algebra g. Let | be
a Cartan subalgebra, and {a,,---,a,} simple roots with respect to h. In the case
of A,® A, we use the numbering of simple roots as follows.

o—0C O0—O

oy o, oy oy
In other cases we follow the notation of simple roots in [B].
A set of fundamental weights {a},--,a;} is defined by,

2(&;, aj) _

(ai’ aj)

0;j.

1)
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Here (, ) is Killing form. If an irreducible representation of G has a highest weight
A, we denote it by V.

From now on we describe several observations on Freudenthal’s geometry and
generalized adjoint varieties. Proofs will be given in 3.2, 3.3.

Proposition 7. Each I, is a generalized adjoint variety which is obtained from
the representation Vi, Vo vas, Vs 0r Ve of the adjoint group G of R, according
to Re, C¢, He or Oc respectively.

Proposition 8. Each I, is a generalized adjoint variety which is obtained from
the representation V., Vs sas, Vay 0r V,o of the adjoint group G of R, according
to R, C¢, He or Oc respectively.

Proposition 9. Each B, is a generalized adjoint variety which is obtained from
the representation Vs, Vs, Vo or Vs of the adjoint group G of R, according to
R¢, Cc, He or O¢ respectively.

Remark 3. From 24.2 each I, is a generalized adjoint variety which is
obtained from the adjoint representation V,,, V4, V4 or V,, of adjoint group G'!!
of R, according to R, C¢, He or O respectively.

For convenience we write a correspondence between metasymplectic geometry
and representations in a following table.

R, Cc H; O
Wy, 20 oytoay oy o
W, 20y oy+as oy oy
W, o oy oy oh
W, o o oy o

Proposition 10. Each W is a generalized adjoint variety which is obtained from
the representation Vi, Ve, Vo or Vs of G? according to Re, C¢, He or O
respectively. In the type D¢ we cannot distinguish Vs and V. So in the case of
H¢ we can choose the representation V,, instead of V.

Proposition 11. FEach € is a generalized adjoint variety which is obtained from
the representation V,yus, Vs ios, Vis 0r Ve of G according to Re, Ce, He or O
respectively.

Remark 4. Each 9 is a generalized adjoint variety which is obtained from
the adjoint representation V., Viysas, Vi OF Ve of G according to R¢, C¢, He
or O respectively.

For convenience we write a correspondence between symplectic geometry and
representations in a following table.
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R¢ C He O
R 207 ajtoy  ay o
C 20, o5toy oy g

* * *
M o o oy o5

Remark 5. In projective geometry over O¢ we can regard J as V,. and also
as V,, By Remark 1 it is better that we distinguish the projectivization of the
representation in which 8 is embedded from the projectivization of the representation
in which B* is embedded. So we shall consider B as the adjoint variety of V.
and B* as the adjoint variety of V,,. Similarly we shall consider B as a generalized
adjoint variety which is obtained from the representation Viu, Vi, Vg O Vs
of G and B* as a generalized adjoint variety which is obtained from the
representation Vs, Visias Vay Of Vi of G according to Re, Cc, He or Oc¢
respectively.

We show results stated above in Dynkin diagrams.

[ T
O0—0—0—0—0—0—0 o0—0—0—0—0—0
W, W, 9@, W, W, W, 9B, m,

| T
o0—O0—0—0—0—0 o—O0—0—0—=0
N € m m G =
0—0 I o0—o0 I o0—0—0
B B B+ B

W, W, W, W, W W, W, 2, 2%,

O0—O0—O0—0—0 O==0—20
9N € M (7 N m 26 2%
o—=oO o—=0 o—™20

B B* B* B 28* 2B
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When there are same symbols in a diagram, we consider that the homogeneous
variety is obtained from an irreducible representation with summed highest
weight. For example in metasymplectic geometry over C. homogeneous variety
3, is obtained from an irreducible representation with the highese weight af + g,
and in metasymplectic geometry over R, homogeneous variety I3, is obtained from
an irreducible representation with the highest weight 2aj

3.2. Metasymplectic geometry and generalized adjoint varieties

In this section we prove the results in 3.1 on metasymplectic geometry. The
dimension of a generalized adjoint variety is given as follows. (see e.g. [FH])

Lemma 1. Let X be a generalized adjoint variety which is obtained from an
irreducible representation V, of a simple algebraic group G with highest weight
A=3;na;. The dimension of X is equal to the cardinal number of the set {oe® ,|For
some i with n; #0, a contains component of o;}. Here @, is the set of positive roots.

Each variety 9, of symplecta is the adjoint variety of GU'L

By definition 9B, is a generalized adjoint variety which is obtained from an
irreducible representation of G*'! in Hom(g,g). According to R¢, C¢, H¢ or O the
irreducible decomposition of Hom(g, g) is as follows,

Rc Hom(g,0)=Vu@®Vy® V2@V, ®C,
Cc Hom(g,0)=Vu®@Vyu® V1@ V2 ®C,
He Hom(g,g)=Vu@ V@ V@V, ®C,
O Hom(g,0)=Vu@®Vu®Vs®V,u®C

Then there exists a unique irreducible representation in the irreducible decomposition
such that the dimension of the generalized adjoint variety coincides with the dimension
of W,. The irreducible representation is Vs, Vis4as, Vag Or Vs according to R,
Cc, H or O respectively. So each 1B, is a generalized adjoint variety which is
obtained from V5,5, Vot 443, Vig OF Vg according to Re, Ce, He 01 Oc respectively.

The grassmanian variety which consists of all r-dimensional subspaces in a
n-dimensional vector space V is denoted by Gr(r,V). By Proposition 4 we can

2
regard 1B, as a subset of Gr(2,g) = P(Ag). So 2, is a generalized adjoint variety

2
which is obtained from an irreducible representation of G!!) in Ag. The irreducible
2
decomposition of Ag is as follows according to R, C¢, He or O respectively,
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2

Rc Ag=g@®V,,
2

Cc Ag=9@V,,
2

He Ag=g®V,,
2

Oc Ag=g@®V,,

Then there exists a unique irreducible representation in the irreducible decomposition
such that the dimension of the generalized adjoint variety coincides with the
dimension of ;. Each irreducible representation is Vi, V,, Ve or Vs ac-
coding to R¢, Cc, He or O respectively. So Each 2B, is a generalized adjoint
variety which is obtained from V., V.., Vi or V, according to R¢, C¢, He or
Oc respectively.

It follows from Proposition 6 that we can regard B, as a subset of Gr(3,

3
g)c P(Ag). So I, is a generalized adjoint variety which is obtained from an

3 3
irreducible representation of G!'! in Ag. The irreducible decomposition of Ag is

as follows according to R, C¢, He or O respectively,

3
Rc Ag=C®V,;s® Vas® V23 ® Vs,

3
Cc Ag=COVy3 1+ 3@V ® Vs ® Vs 4035

3
HC Ag = C® Va;,@ Va§® VZa‘l ® Va:’

3
OC Ag = C@ V“I @ Va;@ V2a§® Vag.

Then there exists a unique irreducible representation in the irreducible decomposition
such that the dimension of the generalized adjoint variety coincides with the dimension
of MW,. Each irreducible representation is Vyus, Vis1as, Vay Or Vi according to R,
Cc, H; or O respectively. So each 2B, is a generalized adjoint variety which is
obtained from V5, Vs 1as, Vg, O Vo according to Re, Ce, He or O respectively.

3.3. Symplectic geometry and generalized adjoint varieties

In this section we give a proof of results in 3.1 on symplectic geometry. The variety
N of points in symplectic geometry is a adjoint variety of G'*). The variety M of
planes in symplectic geometry is a generalized adjoint variety which is obtained from
the irreducible representation B of G'2. By the calculation of the dimension the
representation B is Vs, V,, V.3 or V,, as a representation of G'* according to
R, C¢, H, or O respectively.

By Remark 2 we can regard the variety € of lines in symplectic geometry
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2
as a subset of Gr(2, R)c P(AR). So € is a generalized adjoint variety which is
2
obtained from an irreducible representation of G'*) in A R. The irreducible

2
decomposition of A R is as follows according to R, C¢, He or O respectively,

Re AR=COV,u,
Ce lz\fR=C€DVa;+a;,
He AR=CoV.,
0c AR=COV,,

Then there exists a unique irreducible representation in the irreducible decomposition
such that the dimension of the generalized adjoint variety coincides with the dimension
of €. Each irreducible representation is V.5, Vis4a3, Vay Or Vs according to R,
C¢, H; or O respectively.

Remark 6. We can obtain same homogeneous varieties from highest weights
which are different in constant times. But by the proof as above we consider that
highest weights which are obtatined above are natural.

4. Dual varieties of adjoint varieties

Let V be a finite dimensional complex vector space, P(V) a complex projective space
with a projection,

7:V\0—P(V)

and X< P(V) an irreducible projecrtive variety. We can define a cone variety
ConeX and a dual variety X of X in P(V*) as follows,

Cone X :={veV|n(v)e X},

X:=J{HeP(VH[H>TX}.

xeX
It is studied in [KM] which fundamental representatons give the generalized
adjoint varieties whose dual varieties are hypersurfaces. In paticular it is known
that the dual varieties of the adjoint varieties are hypersurfaces and that the dual
varieties of 1B,, M and B* are hypersurfaces in P(V'*).

It is known in [M1,2] that for each B* the degree of the dual variety is three
and that for each MM the degree of the dual variety is four.

Remark 7. If we identify J* with J by the inner product (X, Y)=tr(X-Y), the
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defining equation of the dual variety of B* is as follows,
det(X)=0.
Since X is 3 x 3 matrix, the degree of the dual variety of B* is three.

The variety B* is the set of lines in projective geometry and the variety I is
the set of planes in symplectic geometry.

In the remaining of this paper we calculate the degree of the dual variety of
MW, which is the set of symplecta in metastmplectic geometry. Each B, is a adjoint
variety of an adjoint group G!!! of R,. Here we calculate the degree of dual
varieties of adjoint varieties.

Let G be a complex, connected simple algebraic group with Lie algebra g and
X the adjoint variety of g. Moreover let

3=H®(®3)
acd

be a root decomposition with respect to a cartan subalgebra . Here @ is a root
system. We fix a simple system A of roots. We denote the set of positive (resp.
negative) roots by @, (resp. ®_) and Weyl group by W.

For a set S we denote the cardinal number of S by #S. When we consider
a nonzero element x in a vector space as a element in a projective space, we shall
use same symbol for it.

Theorem 1. Let G be a complex, connected simple algebraic group with Lie
algebra g, A the highest root, W the Weyl group, X the adjoint variety of g, and X
the dual variety of X. Then we have following formula,

deg X =#(W- ).

Proof. Let x;eg; be a highest root vector. By the definition the adjoint
variety is

X=G-x,< P(g).

By using Killing form (, ) we identify g* with g. Then

¥="TJ{HeP(@)(H.[5.x) =0}

xeX

=G-{HeP(9)|(H,[g,x,])=0}.
There is an element x_, in g_, and an element 4, in [y such that following relations hold,
[xb X ),] =hb

(A, x3] =2x,,
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[hix-a]=—2x_,
We have
L9, x:]nh=C"[x,,x_;]=C"h,,

[o.x,]<=hB( @ g,).

ae® +

We define a variety X, as follows,
X,:={HeP(g)|(H,[g,x,])=0}.
From above observations a following relation holds,
X,ob,:={heb|(h,h;))=0}.

When a group A acts on a complex affine variety Y, we denote the ring of invariant
polynomial functions by C[Y]4. By Chevalley’s theorem we obtain an isomorphism,

¥*: C[h]" - C[g]",

and the inverse morphism of the isomorphism is a restriction map. We consider
the comoposition of the categorical quotient g—g/G and the isomorphism
g/G-bh/W. We call this map the adjoint quotient and denote by

W:g—-bh/W.
We introduce following notation for an inclusion and a quotient,
iz:Cone X < g,
ph-b/w.
By the irreducibility of X,
Im(¥eiz)=p(h,) or h/W.

If Im(¥-iz)=bh/W, the dimension of general fibers of Woiz is dimg-rankg-1. But
there exists a unique regular orbit in each fiber such that the complement of it has
codimension two in the fiber. So Wiz is not surjective.

Im(¥oiz)=p(h,).
Then we have,

Cone X=¥"'op(h,).

We consider a W-invariant function f(h) on b

S)=T1 uh).

neWw-a
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We have following relation,

p~op(b;)={heblf(h)=0}.

Since the inverse of the isomorphism W* is a restriction map, there exists a unique
element F in C[g]€ such that the restriction of F to b equals to f and as sets

Cone X = {xeg| F(x)=0}.

Since X is an irreducible hypersurface, there exists an irreducible polynomial F on
g and a positive integer n such that

F=F,
Because F is G-invariant, we have

gF=pugF geG,u(geC with p(g)y'=1.

Since G is connected, u(g) is constant. So Fis G-invariant too. Then n=1. So
F is irreducible and

deg(F)=deg(f)=#(W" 7).

Remark 8. In the case of A4, the polynomial F is given by the discriminant
of the characteristic polynomial.

Corollary 1. The degrees of M, are as follows.

Rc C H¢ Oc
The degreeof W, 24 72 126 240
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