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On Freudenthal's geometry and generalized adjoint
varieties
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1. Introduction

In  this paper w e have several observations about Freudenthal's geometry and
calculate the degrees of dual varieties of adjoint varieties. Freudenthal introduced
a notion of symplectic geometry and metasymplectic geometry to study a geometric
aspect of exceptional Lie groups. This is an analogy of the relation of projective
geometry and projective tansformation groups. H e studied several homogeneous
varieties which play very important roles in his geometry. On the other hand, we
obtain a  homogeneous projective variety from an  irreducible representation of a
simple algebraic g ro u p . We call such a  homogeneous variety generalized adjoint
variety . In this paper we determine which representations the homogeneous varieties
in Freudenthal's geometry are obtained from . The results show that there is a very
interesting correspondence between th e  homogeneous varieties a n d  irreducible
representaions of simple algebraic groups.

It is known that the dual varieties of Freudenthal's homogeneous varieties are
hypersurfaces in  [K M ]. The degree of such dual varieties were calculated for some
cases in [M  l][M 2]. We give a formula for the degree of the dual variety of adjoint
variety and calculate the degree of some Freudenthal's homogeneous varieties.

We calculate irreducible decompositions of representations of complex simple
algebraic groups in  Section3 by using a package [LiE].

When we consider a  nonzero element x  in  a  vector space a s  a  element in a
projective space, we shall use the same symbol for it.

The author wishes to express his hearty thanks to A. Kono, J. Matsuzawa
with whom he had valuable discussions.

2. Freudenthal's geometry

We know that real number, complex numvbar, quarternion and Cayley number are
Hurwitz algebras over R  and that they are all of Hurwitz algebras over R .  Here
the complexifications of them are denoted by Ro  C ,  l i c  and  O .  T h e y  have a
natural conjugation as algebras over C . For example a conjugation Yc of the element
x = a +bI + cJ + dK(a, b, c, de C) of lic  is  as follows,
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5c= a— b I — cJ — dK.

H .  Freudenthal investigated exceptional Lie g ro u p s and their geometries
according to following his magic square.

Freudenthal's magic square

elliptic geometry B, A2C 3  F 4

projective geometry A 2  A 2 + A 2  A 5  E 6

symplectic geometry C3 A , D 6  E,
metasymplectic geometry F4 E 6  E 7 E8

Each column corresponds to Rc , Cc , H , or Oc  respectively. In this section we will
give a brief sketch of his geom etry. In Freudenthal's papers coefficient field is real
num ber. Though w e use complex number as coefficient field, m ost of assertions
in his papers hold similarly. So we give only overview here. For detail see [Fr 1, 2].

2 .1 .  Adjoint varieties

Let G  be  a complex, connected, simple algebraic group with Lie algebra g, V a
finite dimensional complex vector space, and p :  G —GL(V) an irreducible repre-
sentation of G .  Then G  acts on the complex projective space P( V) through the
projection,

7C : V\O--41( V).

If v is  a highest weight vector of the representation, we obtain the unique closed
G-orbit,

X := n(G. v).g. P(V).
The orb it is  a homogeneous projective variety and w e call it generalized adjoint
v arie ty . In paticular if the representation is the adjoint representation, its variety
is called adjoint v arie ty . It is shown in the paper[L] tha t the generalized adjoint
variety is defined by a system of quadric equations in P(V).

2 .2 .  Projective geometry

W e denote by 3 the set of all Hermitian matrices of degree 3  whose entries are
elements in the complexification of a H urw itz algebra. For X , Y, Ze Z's, we put,

X . Y =-
1

 (X Y+ YX),
2

(X , Y):= tr(X. Y),

X x Y:= X . Y— —

1 

(tr(X) Y+ tr( Y)X— (tr(X)tr( Y) — tr(XY))E),
2

(X , Y, Z):= (X , Yx Z),
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det(X) := -

1  

(X, X, X).
3

Then we obtain projective varieties 0 and algebraic groups G131 of type A 2, A 2 - I-  A 2 , A 5
and E 6  according to Hurwitz algebras as follows,

93 := {XEP (NIX x X=0},

GE31 := e GL1311det(gX)= det(X) f or all Xe 3}.

Type Az , + Az , A , and E 6  correspond to  the second row in  Freudenthal's magic
sq u a re . T h e  a lg e b ra ic  g ro u p  G131 a c t s  o n  v a r ie ty  93 a n d  th e  a c t io n  is
transitive. M oreover 3 i s  a n  irreducible representation o f  0 31,  a n d  93 i s  the
generalized adjoint variety which is obtained from 3. F or each  Ye93 we define
the subset L y  in  93 as follws,

L y := {Xe 931X x 0}.

We call it the line. Then 93 is naturally identified with the set of lines in B .  W e
denote the set of lines in  0  by  13*. Let L z  b e  a  line. For distinct X, YeL z  w e
obtain an  element X x Y  in 93. This element does not depend on the choice of
X, Y e  L .  Then X x Y  is Z  in  93.

Remark 1. First w e def ine an involutive automorphism 2 o f  0 3 1 a s  follows,

2(a)= (a- 1  oceG 131.

Here we denote transposed a w ith respect to  the inner product (X, Y):= tr(X. Y) by
Ia. T hen w e obtain  a following relation,

a X x  Y=ta -  i (Xx X )  Xe3.

For X, Y,Ze3 we define <X, Y ) in  End(3) by

1
<X, Y)Z := 2 Y x (X x Z)—  

1

- (Z, Y)X — - (X , Y)Z.
2 6

Then the vector space w hich is spanned by these m aps coincides w ith the Lie
algebras of above algebraic groups GE31 in  End(3). We denote the Lie algebras by
Inv(det).

H, Freudenthal called the geometry of points and lines in 0 projective geometry.

2.3. Sym plectic geometry

First we define two vector spaces /3 and 2.

93 := 3OCC) C.

:= Inv(det)03e3$ C.
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For Pi =(X 1, Yi , 4 (0 0 3 ( i= 1,2), the element P, x P 2  of .2 and skew inner product
on /3 are defined by,

<Xi, Y2> + <X2, Yi>
— Y1 x Y2 +MX2 + 2X1)

1
P, x P2

2
X1X X2 - 1( 01 Y2 + CC/2 Y,)•

4-0(1, 172) + (X25 Y1) 1W2 n2C°1

{Pi, P2} :=(X1, Y2 )—(X2 , YO+ — 20 .)1

Then we obtain varieties 931 and algebraic groups GE23 of type of C 3 , A 5 , D 6  and
E , according to Itc ,  Cc , l i c  an d  Oc  a s  follows,

951:= {13  eP(13)IP x P=O}.

G121 :={geGL($)1g(P x Q)g - l =gP x gQ f o r P,Qe$1.

Type C 3 , A 5 , D 6  and  E 7  correspond t o  the  th ird  row  in  Freudenthal's magic
square. The variety 931 is homogeneous projective veriety of 0 21 . Moreover 93 is
an irreducible representation of 0 21 , and M is the generalized adjoint variety which
is obtained from /3.

F o r  = (XXX, Y 1> , A, B, p)e2 and P = (X, Y ,  co)e/3, the element OP of /3 is
defined as follows,

 

Yi > +1p)X +2B x Y+ coA
— (Ei < Yi, Xi> + 1p)Y1- 2 A x X + B

(A, r -

(B,X)+pco.
OP:=

 

Then we can consider .2 as a subspace of End(B). In fact .2 coincides with the Lie
algebra of 0 21 . We denote the Lie algebras by Inv(M). When we consider 2 as
a  subspace of End(Z), we obtain varieties 91,

:= {0 P(Inv(M))10 2  = 0).

T hen  it is  know n tha t 91 are the adjoint varieties of 0 2 1 . An element of 91 is
called a p o in t . If [O s , 0 2 ] =0 for 0,, 0 2 E51, we say that 0,, 0 2  are jo in te d . The
maximal set of points which are jointed each other is called p lan e . If different
planes contain at least tw o points in  common, the intersection is called line. If
OP=0 for 0e2  and Pe91, we say that 0  is incident to  P.

Proposition 1. For each plane there exists exactly one element P of  931 such
that OP=0 f o r any point 0  of the plane.

Hence we can consider M as the set of planes in 91. Moreover each plane P
has The structure of the projective geometry.
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We denote the set of lines in  91 by Œ . It is known that OE are projective
homogeneous varieties. Then we expect that each e is naturally embedded in an
irreducible representation of Gt21 which contains 3 as a  representation of V I  and
that the intersection of P (3 ) and e is /LI as the set of lines. We shall show it in
Section 3. The dimensions of 91, e and M  are known as follows,

R c Cc H oc
91 5 9 17 33
OE 7 12 22 42
9J1 6 9 15 27

H, Freudenthal called the geometry of points, lines and planes in  91 symplectic
geometry.

2.4. Metasymplectic geometry

2.4.1. Exceptional Lie algebras. First we define a  vector space as follows,

914  := Inv(9)1) 11) a l e Z  ED Q3.

Here we denote the complex simple Lie algebra of type A, by a l and the element
(I) of 914  by,

(I )
4 ( 0  + y  6

3 0  —  y) ( P A

Here 0 Inv(M), y, 6, 3E C, P, QE 3. The Lie bracket on 914  is defined as follows,

[0
1 2

]= [ ( ' '

for (Di = [ (® ` : Yi( P Q ) 1  i = 1, 2.
0 i e i — yi

Here,

0 = [0 1 ,0 2 D -P i X Q2—P2 x Q1,

Y = 6132— 623 1— jP 1  Q 2 } +  {P2 , Q1},

3= —2y132+2Y231— 
1
—
4

{Qi, Q2} ,

1
6 = 2y 162 — 426 1 + —

4
{Pi, P21,

P= ( 1 +  Y i)P 2— (0 2+ y  2 )P  +  1 Q 2 - 6 2Q i ,
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(° 1  Y 1 ) Q 2  ( C 12 - 1 2 ) Q 1  3 P 2  3 2P1.

Then each 914  becomes the complex exceptional Lie algebra of type of F4, E6,
E , or E8 according to R c ,  Cc , Hc  o r  Oc  respectively.

2.4.2. Metasymplectic geom etry. W e have an  inportant inner product in  914  a s
follows,

(01,(1)2):=  —  —  tr(:
1

1(

1
2) $1,

0 2E
91

4
6 2

Here we denote adOi b y and  62 := 9, 12, 18 o r  30 according to R c ,  Cc ,
Hc  o r  0 ,  respectively. Moreover we define a  linear m ap < 1 ,(1 >  of 914 for 01),
0 1, 02E914 as follws,

1 —  1 1
<$1, (1)2>0  := —

2  
01 0 2 +0 20 00 —  —

2  
P i ,  (1:90 2 — —

2  
(0 2,0 4 1 + 60$1, 0 2/0 .

Here e *, 4 o r  according to Rc , C'c , 1/6  o r  Oc  respectively. Then we obtain
varieties 0 4  a s  follows,

03 4 := {0 E1°(914)1<$, =0}.

It is known that each 9:134  is the adjoint variety of the adjoint group 0 11 of 914. The
element of 2134  is called symplecton.

The vector space 91, is defined as a linear subspace of End(914 ) which is spanned
by 10 ) 1, 0 2>I0 1, $2E9141.

 Then we obtain varieties aB, as follows,

9131 := {<0 1, 0 2> GP(911/1[0 1, 0 2 ] =  (Di, 0 2E0 4/.

It is know n that the adjoint group GE' )  o f  914  a c ts  on  aBi .  An element of 9E1 is
called a point.

For symplecta (1:01, 0 2 E2134  we define following three relations,

(DI  is jointed w ith 0 2 i f  <01),,(1:02) =0,

(Di  is interwoven with 1:1:02 if [1 1 , D2 ] =0,

0 , is hinged with 02 if {(1),, 402 }=0 .

Similarly for points A,BE9131 we define following three relations,

A  is jointed with B  if A B=0,

A  is interwoven with B  if AB —  BA = 0,

A  is hinged with B  if tr(AB)= O.

Moreover we define a relation between apoint A e9331 and a symplecton 4:19e9134
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as follows,

A  is incident to  (13, if  there is a  symplecton (D* with =A ID *.

The set of points which are incident to  a  fixed symplecton has the structure of
symplectic geometry.

If A  is jointed with B  for A,Be9131, there exits a  subset {oDe9134 VD is  incident
to  A  and B} and for an  element (I) of this set there is a  unique line in  the  sense
of symplectic geometry such that the  line contains A  and  B .  The set which the
line determines in 9E1 does not depend on the choice of D . So w e can define the
no tion  o f the  line in  metasymplectic geom etry . W e denote  th e  se t  o f  lines in
metasymplectic g e o m e try  b y  9E2 . T h e  a lg e b ra ic  g ro u p  G E "  a c ts  o n  9B4
transitively. The algebraic group Gm which is contained by the stabilizer of 4De9B4

in GE' 1 acts on the set of lines S o  the algebraic group GE" acts on 0 , transitively.
If A , B  a n d  C  for A, B, Ce113 1 a r e  jointed with each other and  there is no

line that contains all points of {A, B , C} , there exists an  element (De91134  such that
a. is incident to  A ,B  and C  and for each 41 there is a unique plane in  the sense of
symplectic geometry such that the plane contains A , B  a n d  C . T h e  se t which the
plane determines in  9B1 does not depend on the choice of O.

We denote the set of planes in metasymplectic geometry by 033. The algebraic
group Gm  acts on  9B4 transitively. The algebraic group 0 21 which is contained
by the stabilizer of (De9134  in  Grn acts on 911. So the algebraic group GE" acts on
91B3 transitively. The dimensions of 9133 , /132 , 9E3 and  9134  a re  known as follows,

R c C H oc
9B1 15 24 42 78
9B2 20 31 53 97
9113 20 29 47 83
9B4 15 21 33 57

For iDe91134 , 9131 is defined by,

:= {A OE, IA is incident to  (1)}.

Proposition 2. I f  (Di  is  jo in ted  w ith  02 f o r (Di ,  (D2 e9E4 , {0 ,} n {0 2 }  is  a
p lan e . Moreover for any plane there are symplecta (D2 e9B4  such that { 0 1 } n {0 2 }
is the plane.

Proposition 3. For symplecta 0201134, (Di  is jointed w ith 02 if and only  if
9134  contains the usual projective line over C which is spanned by (Di  and (13•2 in P(914 ).

Let L(9134 ) be the set of usual projective lines over C in P(914 ) which 9134 contains.

Proposition 4 .  For a plane we define a  subset in 9134  as the set of  sy m plecta
which contain the plane. T h e  subset is a projective line over C, and defines a element
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of L(9934 ). Then there is a one-to-one correspondence between the elements of L(9334 )
and the elements of 9133 .

Rem ark 2. Let L(931) be the set of usual projective lines over C in P(93) which
931 contains. Then similarly there is a one-to-one correspondence between the
elements of L(9)1) and the elements of (g.

Proposition 5. Let (I), 4 12, 03 be elements of 9J34 . If  (Di , 0 2 , (1)3 for i, j= 1,2,3
are jointed with each other and (Di , 0 2 , 03 are linearly independent, {(1) 1 } (-) {0 2 } n{(1) 3 }
is a  l in e . Moreover f o r any  line there are symplecta 4:1:13 e/134  such that
{(1)1 } n {02 1n {0 3 } is the line.

Let P(9134 ) be the set of usual projective plane over C in P(914 ) which 9:64 contains.

Proposition 6. Fo r a line we define a  subset in 1B4  as the set of  sym plecta
which contain the line. T h e  subset is a projective plane over C, and defines a element
of P(J134 ). Then there is a one-to-one correspondence between the elements of  P(034 )
and the elements of  al32 .

H , Freudenthal called the geometry of points, lines, planes and symplecta in
9131 metasymplectic geometry.

For convenience we list up symbols of spaces in the following table.

points lines planes symplecta
projective geometry 93 93*
symplectic geometry R e 991

metasymplectic geometry 9B , 9B 2 a l 3 3a l 3 4

3. Freudenthal's geometry and generalized adjoint varieties

3.1. Summury of results

Let G be a complex semisimple algebraic group with the Lie algebra g. Let t) be
a Cartan subalgebra, and {a l , • • oc„} simple roots with respect t o  b .  In the case
of A2 A 2 w e use the numbering of simple roots as follows.

0 0  0 0
a l °t2 a

3

In other cases we follow the notation of simple roots in [B].
A set of fundamental weights WI , • • 4 ,1  is defined by,

2(4 citi )_
(oti, ct)
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Here ( , ) is Killing form. If an irreducible representation of G has a highest weight
A, we denote it by V.

From now on we describe several observations on Freudenthal's geometry and
generalized adjoint varieties. Proofs will be given in 3.2, 3.3.

Proposition 7. Each 9131 is  a generalized adjoint variety which is obtained from
the representation V24, VŒI + 4 , V4  or V Œ* of  the adjoint group Gin of  914 according
to Rc , Cc ,  H  o r Oc  respectively.

Proposition 8. Each 02  is a generalized adjoint variety which is obtained from
the representation V2 4 ,  V4 + 4 , V4  o r Va t  of  the adjoint group G111 o f  914 according
to Ro  Cc , Hc  o r Oc  respectively.

Proposition 9. Each 9333 is a generalized adjoint variety which is obtained from
the representation V4 , Va l ,  V4  o r  V Œ ; of  the adjoint group Gin of  914 according to
Rc , Co  H c  o r Oc  respectively.

Remark 3. F ro m  2.4.2 each 9134  i s  a generalized adjoint variety which is
obtained from the adjoint representation VOEI, 1/4 , Ve ,  or V4  of adjoint group GE11

of 914 according to R ,  Cc , Hc  or Oc  respectively.

For convenience we write a correspondence between metasymplectic geometry
and representations in a following table.

Rc Cc Hc Oc

91.131 2ocs4 cel +ce6 ac*6
9132 2cc oe3 + ot; cce4 ce6
9133 cc*2 oc*4 oc; a*,
9

1
34 cc1 cc; oei cc*8

Proposition 1 0 .  Each 9I3 is a generalized adjoint variety which is obtained from
the  representation V4 ,  Val,  VŒ.,  o r  VŒI o f  G121 according to Ro  C c , Hc  o r  Oc

respectively. In the ty pe D6 we cannot distinguish V4  an d  V4 . S o in the case of
Hc  we can choose the representation V a t  instead of  VŒ .

Proposition 1 1 .  Each 0 is a generalized adjoint variety which is obtained from
the representation V24,  V4 + 4 , V a l o r  VOE: o f  GE21 according to Rc , Cc , Hc  o r  Oc

respectively.

Remark 4. Each 91 is  a generalized adjoint variety which is obtained from
the adjoint representation V2 4 , V4 or V Œ. of G121 according to Ro  C c , l i c

or Oc  respectively.

For convenience we write a correspondence between symplectic geometry and
representations in a following table.
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R C H  Oc

91 24 oe*, + cx; o4o c * ,

e 2e2 a ;  + a.4a * 4 a * 6

M a; a; a;

Remark 5 . In projective geometry over Oc  w e can  regard 3 as Kei and also
as V  R em ark  1 it is better that w e distinguish the projectivization of the
representation in which 23 is embedded from the projectivization of the representation
in which 93* is em bedded. So we shall consider 93 as the adjoint variety of VG,/
and 93* as the adjoint variety of V . Sim ilarly we shall consider 93 as a generalized
adjoint variety which is obtained from the representation V2 , V  V 4  or Ve i

o f V I  and 93* as a generalized adjoint varie ty  w hich  is ob ta ined  from  the
representation V24, V4+4, Ve4 o r V OEt o f  V I a c c o rd in g  to  Rc ,  Cc ,  I-1c  o r  Oc

respectively.

W e show results stated above in Dynkin diagrams.

o
°

4

00 o o o 0 0 0
9131 9132 9133 9132 9!:61 034 U 3 29932 29B1

0 - 0 0 0 0
91 t 91 911 M 291

0 00 0 0 0
93 93* 0 0 293* 293
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When there are same symbols in a diagram, we consider that the homogeneous
v a rie ty  is  o b ta in ed  fro m  a n  irreducible representation with summed highest
w eigh t. F o r  example in  metasymplectic geometry over Cc  homogeneous variety
9131 is obtained from an  irreducible representation with the highese weight oc; + oc*6 ,
and in metasymplectic geometry over Rc  homogeneous variety al31 is obtained from
an irreducible representation with the highest weight 2 4

3.2. Metasymplectic geometry and generalized adjoint varieties

I n  th is  section w e prove  th e  results in  3.1 o n  metasymplectic geom etry . The
dimension of a generalized adjoint variety is given as follows. (see e.g. [F1-1])

L em m a 1. L et X  be a  generalized adjoint variety  w hich is obtained from  an
irreducible representation V A  o f  a sim p le  algebraic group G  with highest weight
A =E i n ia;. The dimension of X  is equal to the cardinal number of  the set {oce01) + 1For
some i with ni 0 0, a contains component of ai}. Here (I) ± is the set of positive roots.

Each variety 9934  o f  symplecta is  the adjoint variety of Gm.
By definition 9131 i s  a  generalized adjoint variety which is obtained from an

irreducible representation of Gm in Hom(g, g). According to R, Cc , lic  o r  0, the
irreducible decomposition of Hom(g, g) is as follows,

Rc
 Hom(g, g) = 0  Vas 0 V2 4  0 V2 4  C ,

C c  H om (, g) = V4eV4CIVŒI +Œt$ V 2 4(:)C,

Hom(g, g) = V 0 V4  0 V„:  0 V2OE., 0 C,

oc
 Hom(g, g) = VceD V  V4 C) V2 4 0 C.

Then there exists a unique irreducible representation in the irreducible decomposition
such that the dimension of the generalized adjoint variety coincides with the dimension
of a'131. The irreducible representation is V2 , V Œ + 4 ,  V at o r  V . accord ing  to  R,
Cc , lic  o r  Oc  respectively. So each 9B1 i s  a  generalized adjoint variety which is
obtained from V2 a .,, VOE., + 4 , V4  or Va., according to Rc ,Cc ,1-1c  or Oc  respectively.

T he  grassmanian variety which consists o f a ll r-dimensional subspaces in  a
n-dimensional vector space V  is denoted by Gr(r, V). B y Proposition 4  we can

2

regard //33 as a  subset of Gr(2, g) c P(Ag). So 9B3 is a  generalized adjoint variety
2

which is obtained from an irreducible representation of Gm in  A g . T he  irreducible
2

decomposition of Ag is as follows according to R ,  cc , Hc  o r  Oc  respectively,
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2

Rc  Ag = ge
2

Cc  A g  = ge) Vccti,
2

Hc  A g  =  g  V4 ,
2

o c  Ag = g C)

Then there exists a unique irreducible representation in the irreducible decomposition
su c h  th a t the  d im ension  o f the  generalized ad jo in t variety coincides w ith the
dim ension of 0 3 .  Each irreducible representation is VOEI, V 4 , Va l  o r  V Œ *  ac-
coding to R o  C c ,  Hc  o r  Oc  respectively. So Each i133 is  a  generalized adjoint
variety which is obtained from V4 ,  Ve s , VŒI o r  I/4  accord ing  to  Ro  cc, Hc  o r
Oc  respectively.

It follows from  Proposition 6 tha t w e  can  regard 032  a s  a  subset o f  Gr(3,
3

g) c P(Ag). S o  T82  i s  a  generalized adjoint variety w hich is obtained from  an
3 3

irreducible representation o f Gt i l in  A g . T h e  irreducible decomposition of A g is
as follows according to Ro  C o  H c  o r  Oc  respectively,

3
Rc  A g  = CPV240V40V2.10 V24,

3
Cc

 Ag = 1/04,031 V2Œ (4) V4 + 4 ,
3

Hc  Ag = CED VOEt e vOEI o V2 o 174 ,
3

Oc  Ag = CEI)17 „I S VOE; (1) V2 ,4 C) VOEt.

Then there exists a unique irreducible representation in the irreducible decomposition
such that the dimension of the generalized adjoint variety coincides with the dimension
of /132. Each irreducible representation is V2 4 , V 4 + 4 , V  VOEt according to Ro

Hc  o r  Oc  respectively. So each 1332 is a  generalized adjoint variety which is
obtained from V2 4 , VŒ.,± 4 , Ve4 or I7 4  according to Ro  Co  Hc  or Oc respectively.

3.3. Symplectic geometry and generalized adjoint varieties

In this section we give a proof of results in 3.1 on symplectic geom etry . The variety
91 of points in symplectic geometry is a adjoint variety of 0 21. The variety 93I of
planes in symplectic geometry is a generalized adjoint variety which is obtained from
the irreducible representation 0  of 0 21. By the calculation of the dimension the
representation 0  i s  VŒI,  VŒI ,  V4  o r  V,e ; a s  a  representation o f Gt21 according to
Ro  C o  H c  o r  Oc  respectively.

By Remark 2 w e can  regard the variety OE o f  lines in  symplectic geometry
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2

a s  a  subset o f Gr(2, 91) P (A R ). So E is  a  generalized adjoint variety which is
2

obtained from  a n  irreducible representation o f  GE21 i n  A  91. T h e  irreducible
2

decomposition of A  91 is as follows according to Ro  C c , Hc  o r  Oc  respectively,

2

Rc
 A91= CED V24,

2

C c  A91= CIS
2

Hc
 A91= CEDV4 ,

2

Oc
 A91= Ce V„t ,

Then there exists a unique irreducible representation in the irreducible decomposition
such that the dimension of the generalized adjoint variety coincides with the dimension
of e . Each irreducible representation is V2 4 , V 4 4 , V 4  o r  V4  according to Ro

Cc , Hc  o r  Oc  respectively.

Remark 6. We can obtain same homogeneous varieties from highest weights
which are different in constant tim e s .  But by the proof as above we consider that
highest weights which are obtatined above are natural.

4 .  Dual varieties of adjoint varieties

Let V be a finite dimensional complex vector space, P(V) a complex projective space
with a projection,

it : V \ 0--d)( V)

a n d  X  c P(V ) a n  irreducible projecrtive varie ty . W e can  define  a  cone variety
ConeX and  a  dual variety ;1" of X  in  P(V*) as follows,

Cone X:= {v e In(v)e X},

Y:= U {He P(V T.X}
xeX

It is studied in  [K M ] which fundamental representatons give the  generalized
adjoint varieties whose dual varieties are  hypersurfaces. In  paticular it is known
that the dual varieties of the adjoint varieties are hypersurfaces and tha t the dual
varieties of 9134 , 931 and  93* are hypersurfaces in  P(V*).

It is known in  [M1,2] that for each 93* the degree of the dual variety is three
and that for each 931 the degree of the dual variety is four.

Remark 7. If we identify 3* with 3 by the inner product (X, Y) tr(X . Y), the
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defining equation of the dual variety of 0* is as follows,

det(X) =-- O.

Since X  is  3 x 3 matrix, the degree of the dual variety of 0* is three.

The variety /3* is  the set of lines in projective geometry and the variety 9R is
the set of planes in symplectic geometry.

In the remaining of this paper we calculate the degree of the dual variety of
0 4  which is the set of symplecta in metastmplectic geom etry. Each 034  is a adjoint
variety of an adjoint group G[11 of 914 . Here we calculate the degree of dual
varieties of adjoint varieties.

Let G be a complex, connected simple algebraic group with Lie algebra g and
X  the adjoint variety o f g . Moreover let

g  E ) S (  Q.)
ale0

be a root decomposition with respect to  a cartan subalgebra I). Here 0 is a root
system . W e fix a simple system A of roots. W e denote  the set of positive (resp.
negative) roots by ( r e s p .  _ )  and Weyl group by W.

For a set S  we denote the cardinal number of S  b y  S .  When we consider
a nonzero element x in a vector space as a element in a projective space, we shall
use same symbol for it.

Theorem 1. L et G  be a com plex , connected sim ple algebraic group w ith Lie
algebra g, 1  the highest root, W  the W ey l group, X  the adjoint variety of  g, and I
the dual variety  of  X . T hen w e have following formula,

deg g = ##( W.1).

P ro o f  Let x„eg„ b e  a highest root vector. B y the definition the adjoint
variety is

X= G• x A c P(g).

By using Killing form ( , ) we identify g* with g. Then

1 = U {HeP(9) I (H, [g, x]) =
xeX

=G•IHeP(g)I(H, [g, x i ]) --- 01.

There is an element x _  in g_, and an element hA in h such that following relations hold,

[x,, x _ 2 ] =h,,

[h i ,x A]=2x1,
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[h,,,x_ 2 ]= — 2x_ A.
We have

[g, x ] n1)-- C [x i ,  x _ A] = C. h

[g, x  c  0 (  s  g OE).
cge0+

We define a  variety Xi as follows,

f A := {HeP(g) I (H, [g, xj) = 01.

From above observations a following relation holds,

T AD  := fhehl (h,hA)= 01.

When a  group A  acts on a complex affine variety Y, we denote the ring of invariant
polynomial functions by C[ Y]& By Chevalley's theorem we obtain an isomorphism,

‘1'*: C[h] w  —>C[gr,

and the inverse morphism of the isomorphism is a  restric tion  m ap . We consider
th e  comoposition o f  t h e  categorical quo tien t g—>g/G a n d  t h e  isomorphism
g/G-41)/ W . W e call this m ap the adjoint quotient and denote by

: g h /  W.

We introduce following notation for an inclusion and a quotient,

j1: Cone X  c  g ,

By the irreducibility of :Y,

Im(lloix-)=p(h A) o r t)/ w.
If Im(lf cii)=1)/W, the dimension of general fibers of P o j 1  is dim g—rank g-1. But
there exists a unique regular orbit in each fiber such that the complement of it has
codimension two in  the fiber. S o  T o ii is not surjective.

i =P(i)A).
Then we have,

Cone Î  =

We consider a  W-invariant function f (h) on I)

f (h)=
 f l

 ft(h).
geW-2
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We have following relation,

P - 1 °13(1).)= theb[f(h)= 0 ).

Since the inverse of the isomorphism kl"  is a restriction map, there exists a unique
element F in  C[g] G  such that the restriction of F to  1) equals to f  and as sets

C o n e  = {xeg I Plx) = 0).

Since Î is an irreducible hypersurface, there exists an irreducible polynomial F  on
g and a positive integer n such that

P .

Because F is G-invariant, we have

g = ti(g)P g e G, it(g)e C with p(g)" = 1.

Since G is connected, p(g) is constant. So F is G-invariant too . T hen n = 1 .  So
F is irreducible and

deg(f) = deg(f) =( W. /1).

Remark 8 . In the case of A„ the polynomial F is given by the discriminant
of the characteristic polynomial.

Corollary 1. The degrees of  9134  are as follows.

R c  C c  H c  O c
The degree of 914 2 4  7 2  1 2 6  2 4 0
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