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QUANTUM SEMIGROUPS GENERATED BY LOCALLY
COMPACT SEMIGROUPS

M. A. AUKHADIEV AND Y. N. KUZNETSOVA

Abstract. Let S be a subsemigroup of a second countable lo-
cally compact group G, such that S−1S = G. We consider the

C∗-algebra C∗
δ (S) generated by the operators of translation by

all elements of S in L2(S). We show that this algebra admits a

comultiplication which turns it into a compact quantum semi-
group. The same is proved for the von Neumann algebra VN(S)
generated by C∗

δ (S).

1. Introduction

The notion of a quantum semigroup, as a C∗- or von Neumann algebra
with a comultiplication, appeared well before the term and before the notion
of a locally compact quantum group. But it is especially these last years that
substantial examples of quantum semigroups are considered; we would like
to mention families of maps on finite quantum spaces [22], quantum semi-
groups of quantum partial permutations [2], quantum weakly almost periodic
functionals [9], quantum Bohr compactifications [20], [21].

In this article, we construct a rather “classical” family of compact quan-
tum semigroups, which are associated to sub-semigroups of locally compact
groups. The interest of our objects is in fact that they provide natural exam-
ples of C∗-bialgebras which are co-commutative and are not however duals
of functions algebras. Recall that the classical examples of quantum groups
belong to one of the two following types: they are either function algebras,
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such as the algebra C0(G) of continuous functions vanishing at infinity on a lo-
cally compact group G, or their duals, such as the reduced group C∗-algebras
C∗

r (G). In the semigroup situation, one can go beyond this dichotomy.
If S is a discrete semigroup, then the algebra C∗

δ (S) which we consider co-
incides with the reduced semigroup C∗-algebra C∗

r (S) which has been known
since long ago [6], [7], [3], [26], [18]. If S =G is a locally compact group, then
C∗

δ (S) = C∗
δ (G) is the C∗-algebra generated by all left translation operators

in B(L2(G)) [12], [4]. If G is moreover Abelian, then C∗
δ (G) equals to the

algebra C(Ĝd) of continuous functions on the dual of the discrete group Gd

[12].
The new case considered in this paper concerns non-discrete nontrivial sub-

semigroups of locally compact groups, and our objective is to show that their
algebras admit a natural coalgebra structure. Let G be a second countable
locally compact group, and let S be its sub-semigroup such that S−1S =G.
Set HS = {f ∈ L2(G) : suppf ⊂ S}; let ES be the orthogonal projection of
L2(G) onto HS and let JS be the right inverse of ES , so that ESJS = IdHS

.
After the study of semigroup ideals in Section 2, in Section 3 we define
C∗

δ (S) as the C∗-algebra generated in B(HS) by the operators Ta =ESLaJS
over all a ∈ S, where La is the operator of the left translation by a on
L2(G).

The strong closure of C∗
δ (S) in B(HS) is denoted VN(S) and is said to be

the semigroup von Neumann algebra. In the case S =G, this is the classical
group von Neumann algebra, and in the case when the interior of S is dense
in it, this equals to the von Neumann algebra generated by the reduced C∗-
algebra C∗

r (S) introduced by Muhly and Renault [16], see Section 4.
By defining it first on VN(S), in Section 6 we show that C∗

δ (S) admits a
comultiplication Δ such that Δ(Ta) = Ta ⊗ Ta. To obtain the main result, we
are using techniques of inductive limits and crossed products analogous to the
constructions carried out in [14] and [8] for the discrete case. The proof is also
based on the duality of semi-lattices in Section 6.1. The discrete Abelian case
was studied in detail in [1].

The article concludes by a more explicit description of C∗
δ (S) in the Abelian

case.

2. Semigroup ideals

Let G be a second countable locally compact group, S a closed subsemi-
group of G containing the identity e of G and such that G= S−1S. Denote by
μ the left Haar measure on G. We suppose that μ(S)> 0, otherwise our defi-
nition would produce a trivially zero algebra; this implies immediately that S
has a nonempty interior (apply [10, 20.17] with A,B ⊂ S compact of positive
measure). One can hold in mind a model example S = [0,+∞), G=R.
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For any subset X ⊂ S and any p ∈ S, define the translations in S:

(2.1) pX = {pq : q ∈X}, p−1X = {q ∈ S : pq ∈X}.
Obviously, pS is a right ideal in S, eS = e−1S = S and p−1S = S for any
p ∈ S. For the usual translations in G, we use the notation g ·

G
X = {gh :

h ∈ X}, so that p−1X = S ∩ p−1 ·
G
X . It is also easy to see that p(qX) =

(pq)X and p−1(q−1X) = (qp)−1X for any X ⊂ S and all p, q ∈ S. We will
omit parentheses in the products of this type. Moreover, p−1pX =X , but in
general, the products pq−1 or p−1q should be viewed purely formally, and
pp−1X might differ from X (see, for example, Lemma 2.2).

More precisely, denote by F = F(S) the free monoid generated by S and
S−1 \ S. Any element in F can be canonically reduced to a form of a finite
word with alternating symbols in S and S−1, replacing expressions of the
type st, s−1t−1 with s, t ∈ S by u, v−1 respectively, with u = st and v = ts
in S. The monoid operation on F is concatenation of words combined with
multiplication in S of neighbouring elements, for example,(

p−1qr−1
)
·
(
a−1bc−1d

)
= p−1q(ar)−1bc−1d.

The operation of taking inverse in G induces the operation w �→ w−1 on the
monoid F , by (p±1

1 · · ·p±1
n )−1 = p∓1

n · · ·p∓1
1 .

For every w = p±1
1 · · ·p±1

n ∈ F and X ⊂ S, define by induction wX =
p±1
1 (· · · (p±1

n X) · · · ). If X = S, then wS is a right ideal in S. Define the family
of all constructible right ideals in S [14]:

J =

{
n⋂

i=1

wiS : wi ∈ F
}
∪ {∅}.

Suppose that w ∈ F has the form w = p−1
1 q1p

−1
2 q2 · · ·p−1

n qn with pj , qj ∈ S,
maybe with p1 = e or qn = e. Then it follows from the definition that wS is
the set of elements x satisfying

x = p−1
1 q1 · · ·p−1

n qnrn+1,(2.2)

where rn+1 ∈ S and

rk = p−1
k qk · · ·p−1

n qnrn+1 ∈ S for all k = 1, . . . , n.

Define a homomorphism F → G: w �→ (w)G, by (p±1)G = p±1 for p ∈ S.
We fix also an injection ı : G ↪→ F which might not be a homomorphism:
for any element g ∈ G we fix one of its representations g = p−1q and set
ı(g) = p−1q ∈ F . The notation gX , where g ∈G and X ⊂ S, is understood in
the sense gX = ı(g)X .

Lemma 2.1. For any w1,w2 ∈ F , we have w1w2S ⊂w1S.

Proof. Follows immediately from the facts that pS ⊂ S,p−1S = S for any
p ∈ S. �
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Lemma 2.2. For any w ∈ F , wS =ww−1S.

Proof. We can assume that w has the form w = p−1
1 q1p

−1
2 q2 · · ·p−1

n qn with
pj , qj ∈ S, maybe with p1 = e or qn = e. Then every x ∈wS has the form (2.2)

with rn+1 ∈ S and rk = p−1
k qk · · ·p−1

n qnrn+1 ∈ S for all k = 1, . . . , n.

Now write x = p−1
1 q1 · · ·p−1

n qnq
−1
n pn · · · q−1

1 p1x. In this product, x ∈ S
and rk+1 = q−1

k pk · · · q−1
1 p1x ∈ S for k = 1, . . . , n, as well as rk = p−1

k qk · · ·
p−1
n qnq

−1
n pn · · · q−1

1 p1x ∈ S for k = 1, . . . , n. It follows that x ∈ ww−1S, so
wS ⊂ww−1S. The inverse inclusion follows from Lemma 2.1. �

Lemma 2.3. Let a word w ∈ F have the form w =w1w2, where w1,w2 ∈ F .
Then wS =w1S ∩ (w1)Gw2S.

Proof. Suppose w1 = p−1
1 q1p

−1
2 q2 · · ·p−1

i qi, w2 = p−1
i+1qi+1p

−1
i+2qi+2 · · ·p−1

n qn
with pj , qj ∈ S. Then every x ∈ wS satisfies (2.2). This implies directly that
x ∈ w1S. If we denote (w1)G = p−1q, p, q ∈ S, then in the notations (2.2) we
have also x= p−1qri+1 which implies that x ∈ p−1qw2S = (w1)Gw2S.

Conversely, if x ∈w1S ∩ (w1)Gw2S, then

x = p−1
1 q1p

−1
2 q2 · · ·p−1

i qir
′
i+1,

r′i+1 ∈ S, r′k = p−1
k qk · · ·p−1

i qir
′
i ∈ S for k = 1, . . . , i,

and

x = p−1qp−1
i+1qi+1p

−1
i+2qi+2 · · ·p−1

n qnrn+1,

x ∈ S, rn+1 ∈ S, rk = p−1
k qk · · ·p−1

n qnrn+1 ∈ S for k = i+ 1, . . . , n.

By cancellation, it follows that r′i+1 = p−1
i+1qi+1p

−1
i+2qi+2 · · ·p−1

n qnrn+1, thus in
fact the condition (2.2) holds for x and x ∈wS. �

Corollary 2.4. For any v,w ∈ F , we have vS ∩wS =ww−1vS.

Proof. Since (ww−1)G = e, by Lemmas 2.2 and 2.3 we have

wS ∩ vS =ww−1S ∩ vS =ww−1S ∩
(
ww−1

)
G
vS =ww−1vS. �

It follows directly that

J = {wS|w ∈ F} ∪ {∅}.

Definition 2.5. We will say that measurable subsets X , Y of G are equiv-
alent and write X ∼ Y if μ(XΔY ) = 0, where Δ denotes the symmetric dif-
ference. The equivalence class of X is denoted by [X].

For any X,X ′, Y, Y ′ ∈ J and p ∈ S the following holds.

(1) If X ∼X ′ and Y ∼ Y ′, then X ∩ Y ∼X ′ ∩ Y ′ and X ∪ Y ∼X ′ ∪ Y ′.
(2) If X ∼X ′, then pX ∼ pX ′ and p−1X ∼ p−1X ′.
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We define, as usual, [X] ∩ [Y ] = [X ∩ Y ], [X] ∪ [Y ] = [X ∪ Y ], p[X] = [pX],
p−1[X] = [p−1X], for any X,Y ∈ J and p ∈ S. We will work further with the
set J ′ = {[X] : X ∈ J }.

The following notion was defined by X. Li in [14]. The constructible right
ideals of the semigroup S are independent, if X =

⋃n
j=1Xj for X,X1, . . . ,Xn ∈

J , n ∈N implies X =Xj for some 1≤ j ≤ n. This notion is appropriate for a
discrete semigroup S. In our case, this definition should be adjusted.

We say that the constructible right ideals of S are measurably independent,
if

X ∼
n⋃

j=1

Xj for X,X1, . . . ,Xn ∈ J implies

X ∼Xj for some 1≤ j ≤ n.

Passing to J ′, we get the following reformulation of measurable indepen-
dence.

[X] =

n⋃
j=1

[Xj ] for X,X1, . . . ,Xn ∈ J implies

[X] = [Xj ] for some 1≤ j ≤ n.

The notions of independence and measurable independence in fact do not
coincide. We present a simple example of a semigroup which has certain non-
independent constructible right ideals, and at the same time all its (con-
structible right) ideals are measurably independent.

Example 2.6. Let G be the group R+ \ {0} with respect to the usual
multiplication, and consider the subsemigroup S = {1} ∪ {2} ∪ [3;+∞) in G.
Computing the constructible right ideals 2S, 4−13S, 3−12S we get

2S = {2} ∪ {4} ∪ [6;+∞),

4−13S = [3;+∞),

3−12S = {2} ∪ [3;+∞).

Hence, we have non-independent ideals: 2S ∪ 4−13S = 3−12S. At the same
time, all the ideals are equivalent to the ideals of the type [a;+∞), a≥ 3, and
therefore are measurably independent.

The following is an example of a semigroup whose ideals are not measurably
independent.

Example 2.7. Consider S = {0} ∪ [1; 1.5] ∪ [2;∞) as a subsemigroup of
the group R with respect to usual addition and the usual topology. Further
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compute the following ideals:

1 + S = {1} ∪ [2; 2.5]∪ [3;∞),

1.5 + S = {1.5} ∪ [2.5; 3]∪ [3.5;∞),

−1.5 + (1 + S) = {1} ∪ {1.5} ∪ [2;∞).

We easily see that −1.5 + (1 + S) = (1 + S) ∪ (1.5 + S), and the same is true
for the equivalence classes of these ideals. Hence, the ideals of S are not
independent and not measurably independent.

Both examples above are called perforated semigroups, since they are ob-
tained from R+ by deleting some intervals.

3. The semigroup C∗-algebras

Further on we will assume that the constructible right ideals of S are mea-
surably independent. It is exactly this property which will guarantee that our
comultiplication is well defined.

Consider the Hilbert space L2(G) with respect to μ. For any measurable
subset X ⊂G set HX = {f ∈ L2(G) : ess suppf ⊂X}; this subspace is isomor-
phic to L2(X,μ). Let IX ∈ L2(G) be the characteristic function of X , and let
EX be the orthogonal projection of L2(G) onto HX , which is just the multi-
plication by IX . Let L : G→ B(L2(G)) be the left regular representation of
G, that is, for any a, b ∈G,f ∈ L2(G)

(3.1) (Laf)(b) = f
(
a−1b

)
.

We define the left regular representation T : S →B(HS) of the semigroup S
analogously to L. For any a, b ∈ S, f ∈HS we set

(3.2) (Taf)(b) = f
(
a−1b

)
,

so that Ta =ESLaES ; then

(3.3)
(
T ∗
a f

)
(b) = f(ab).

One can verify that Ta is an isometry, T ∗
aTa = I , and that for any f ∈HS

and a, b ∈ S we have (
TaT

∗
a f

)
(b) = IS

(
a−1b

)
f(b).

Clearly, a−1b ∈ S if and only if b ∈ aS, where aS is a constructible right ideal
defined in the previous section. Hence, the projection TaT

∗
a is an operator of

multiplication by IaS . The map T : S →B(HS) is obviously a representation
of S.

Definition 3.1. Let C∗
δ (S) be the C∗-subalgebra in B(HS) generated by

the operators {Ta : a ∈ S}. Denote by VN(S) the strong operator closure of
C∗

δ (S) in B(HS) and call it the semigroup von Neumann algebra of S.
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If S =G, then C∗
δ (S) =C∗

δ (G) is the C∗-algebra generated by all left trans-
lation operators in B(L2(G)) [12], [4]. If S is discrete, then C∗

δ (S) =C∗
r (S) is

the reduced semigroup C∗-algebra [18].
A finite product of the generators Ta, T ∗

b for any a, b ∈ S is called a
monomial. We will denote also T ∗

a by Ta−1 , which does not create confu-
sion in the case a−1 ∈ S. Generally, for every w = p±1

1 · · ·p±1
n ∈ F we denote

Tw = Tp±1
1

· · ·Tp±1
n
, and clearly every monomial has this form.

Lemma 3.2. For any monomial Tw, function f ∈HS and x ∈G we have

(3.4) (Twf)(x) = IwS(x) · f
((
w−1

)
G
x
)
.

Proof. Let k be the length of the word w. For k = 1, either w = a or
w = a−1 with some a ∈ S. If w = a then for f ∈ HS we have f(a−1x) =
f(a−1x)IS(a

−1x) = IaS(x)f(a
−1x), thus the expressions (3.2) and (3.4) are

equal. If w = a−1, then, due to the fact that a−1S = S, the formula (3.3)
implies (3.4).

Suppose (3.4) is proved for k ≤ n and w = vw′ is a word in F with the
length k + 1, where the length of v and w′ is 1 and k, respectively. First
assume that v = a ∈ S and denote g = Tw′f . Then for any x ∈G we have

(Twf)(x) = (TaTw′f)(x) = (Tag)(x) = g
(
a−1x

)
= (Tw′f)

(
a−1x

)
= Iw′S

(
a−1x

)
f
((
w′−1

)
G
a−1x

)
= Iaw′S(x)f

(((
aw′)−1)

G
x
)
= IwS(x) · f

((
w−1

)
G
x
)
.

Now assume that v = a−1 ∈ S−1. Then for any x ∈G we have

(Twf)(x) =
(
T ∗
aTw′f

)
(x) =

(
T ∗
a g

)
(x)

= IS(x)g(ax)

= IS(x)(Tw′f)(ax) = IS(x)Iw′S(ax)f
((
w′−1

)
G
ax

)
.

Note that x ∈ S and ax ∈w′S if and only if x ∈ a−1w′S. Thus,

(Twf)(x) = Ia−1w′S(x)f
(((

a−1w′)−1)
G
x
)
= IwS(x) · f

((
w−1

)
G
x
)
.

The formula (3.4) follows. �

Lemma 3.3. The C∗-algebra C∗
δ (S) is isomorphic to the C∗-subalgebra in

B(L2(G)) generated as a closed linear space by

(3.5) EwSL(w)GES , w ∈ F ,

and equivalently by

(3.6) EwSL(w)G , w ∈ F .

Proof. It follows directly from (3.4) that TwES = EwSL(w)GES for every
w ∈ F . At the same time, ESTES = TES for every T ∈C∗

δ (S). Thus, the map-
ping T �→ TES =ESTES is a∗-homomorphism from C∗

δ (S) to B(L2(G)), and
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its image is generated exactly by the operators (3.6). Moreover, this mapping
is clearly isometric and thus it is an isomorphism.

To arrive at the second description, one calculates that LgES = Eg ·
G
SLg

for every g ∈G. Thus,

EwSL(w)GES =EwS∩((w)G ·
G
S)L(w)G .

By definition, wS ⊂ (w)G ·
G
S, and (3.6) follows. �

The formula (3.4) shows that Tw = 0 if and only if μ(wS) = 0, that is,
wS ∼ ∅. For a non-zero monomial Tw define its index by (w)G ∈G. We have
indT ∗

w = (w)−1
G and ind(TvTw) = (v)G(w)G, if TvTw �= 0. Recall that EX ∈

B(L2(G)) is the operator of multiplication by IX .

Corollary 3.4. A non-zero monomial Tw in C∗
δ (S) is an orthogonal pro-

jection if and only if indTw = e. In this case, Tw =EwS .

Proof. Let Tw be an orthogonal projection. Then (ww)G = (w)2G = (w)G
and w−1

G =wG. Hence, (w)G = indTw = e.
Suppose that indTw = e. Then due to Lemma 3.2, Tw = EwS which is an

orthogonal projection. �

Lemma 3.5. Every projection EX for X ∈ J is contained in C∗
δ (S) and

equals Tww−1 for some w ∈ F .

Proof. By Corollary 2.4, X =wS for some w ∈ F . Due to Corollary 3.4, if
(w)G = e then EwS ∈C∗

δ (S).
Suppose w is an arbitrary element in F . By Lemma 2.2, wS =ww−1S and

EwS = Eww−1S . Since (ww−1)G = e, by Corollary 3.4 we have that EwS =
Tww−1 ∈C∗

δ (S). �

Xin Li [14, Definition 2.2] defined the full semigroup C∗-algebra of a discrete
semigroup as generated not only by isometries associated to the points of S,
but also by projections corresponding to its constructible ideals. The aim
of this construction is to obtain a smaller algebra than just generated by
the isometries, so it stays reasonable at least in the case of a commutative
semigroup. See [14] for a longer discussion. Taking into account the topology
on S, we adjust the definition of [14], using the family J ′ instead of J . If S
is discrete, the new definition coincides with the old one. Consider a family of
isometries {vp|p ∈ S} and a family of projections {eX |X ∈ J ′} satisfying the
following relations for any p, q ∈ S, and X,Y ∈ J ′:

(3.7) vpq = vpvq, vpeXv∗p = epX ,

(3.8) eS = 1, e∅ = 0, eX∩Y = eXeY .
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Definition 3.6. The universal C∗-algebra C∗(S) of the semigroup S is
the universal C∗-algebra generated by {vp|p ∈ S} ∪ {eX |X ∈ J ′} with the
relations above. Since the relations between Tp and EX in B(HS) are the
same, this algebra is nonzero. Denote by D(S) the commutative C∗-algebra
generated by the family of projections {eX |X ∈ J ′} in C∗(S).

Lemma 3.7. There exists a surjective ∗-homomorphism λ : C∗(S)→C∗
δ (S)

such that λ(vp) = Tp, λ(e[X]) =EX . It extends to a normal ∗-homomorphism
λ :C∗(S)∗∗ →VN(S). Both maps will be called the left regular representations,
of C∗(S) and C∗(S)∗∗ respectively.

Proof. Clearly, EX =EY if and only if X ∼ Y . Hence, the map λ : e[X] �→
EX is well defined. Due to the definition of ∩ on J ′, λ is a semigroup iso-
morphism between the semigroups {e[X] : [X] ∈ J ′} and {EX : X ∈ J }. One
can easily verify that the operators Tp and EX satisfy the equations (3.7)
and (3.8) for all p ∈ S,X ∈ J . The universality of C∗(S) implies the existence
of the homomorphism λ. Its extension exists by the universality property of
C∗(S)∗∗. �

Denote by Dδ(S) the C∗-subalgebra in C∗
δ (S) generated by monomials

with index equal to e. By Corollary 3.4 and Lemma 3.5 Dδ(S) is generated
by projections {EX |X ∈ J }, and is obviously commutative.

Lemma 3.8. The algebras D(S) and Dδ(S) are isomorphic.

Proof. By definition, λ(D(S)) contains the generators of Dδ(S). Applying
Lemma 2.20 in [14] and using the measurable independence of constructible
right ideals in S we obtain injectivity of λ|D(S). �

There exists a natural action of the semigroup S on the C∗-algebra Dδ(S).

(3.9) τp(A) = TpAT
∗
p , p ∈ S,A ∈Dδ(S).

Using the formula (3.4), we obtain for A=EX , X ∈ J :

(3.10) τp(EX) =EpX .

4. Comparison with reduced semigroup C∗-algebras

In the case when S has a dense interior (in addition to our assumptions),
there exists a construction of the reduced C∗-algebra C∗

r (S), see [16] and a
more general construction in [23], [19]. The connection between C∗

r (S) and
C∗

δ (S) precisely corresponds to the case of C∗-algebras of locally compact
groups. In particular, as we show further, the von Neumann closures of the
two coincide.

We recall the construction of C∗
r (S) of [16], [23] according to the symmetric

case G= S−1S adopted here. Similar to the subspace L2(S)⊂ L2(G), we can
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consider L1(S)⊂ L1(G), which is in addition a Banach algebra with respect
to convolution. For any f ∈ L1(S) define an operator Vf ∈B(L2(S)):

(4.1) Vf =

∫
f(a)Ta dμ(a).

One can easily verify that Vfξ = f ∗ ξ for ξ ∈ L2(S) and

V ∗
f =

∫
f(a)T ∗

a dμ(a).

The reduced C∗-algebra of S is the C∗-subalgebra of B(L2(S)) generated by
operators Vf over all f ∈ L1(S).

Proposition 4.1. Let S be a closed subsemigroup with dense interior of a
locally compact group G such that G= S−1S. Then VN(S) equals to the von
Neumann closure of C∗

r (S) inside B(L2(S)).

Proof. It is sufficient to show that the commutants of C∗
r (S) and C∗

δ (S)
coincide. If A ∈B(L2(S)) commutes with Ta and T ∗

a for every a ∈ S, then due
to (4.1) A commutes with every Vf and V ∗

f for every f ∈ L1(S).
To prove the reverse inclusion, take φi to be the approximate identity of

L1(G) lying in L1(S) which exists by the assumption that the interior of S is
dense in it (see also [19, Lemma 2.3] for more details on its construction). We
can assume also that every φi has compact support so that φi ∈ L2(S). For any
ξ ∈ L2(G), we have then φi ∗ ξ → ξ in the L2-norm. Denote φi,a = Taφi, where
a ∈ S; one verifies that φi,a ∈ L1(S) and Vφi,aξ = Ta(φi ∗ ξ) for ξ ∈ L2(S).

Moreover, Taφi ∈ L1(S) so that Vφi,a ∈C∗
r (S).

For any A in the commutant of C∗
r (S) and any ξ ∈ L2(S),

ATaξ =ATa limφi ∗ ξ = limAVφi,aξ = limTa(φi ∗Aξ) = TaAξ,

so that the two commutants coincide. �

Example 4.2. There are semigroups to which the construction of [16], [23]
is not applicable while ours is. Let C ⊂ [0,1] be the middle-fifth Cantor set
(of positive measure). Let S be the additive semigroup

S = {0} ∪ {2} ∪
∞⋃

n=0

(
2 + 2−2n−1 + 2−2n−1C

)
∪ [4,+∞).

Then the interior of S is not dense in it so S does not satisfy the assump-
tions of [16], [23]. However its ideals are measurably independent, and other
assumptions made in Section 2 are also satisfied.
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5. The semigroup C∗-algebra and crossed products

In what follows, we establish a connection between C∗
δ (S), VN(S) on one

hand and the C∗- and von Neumann group crossed products by the group G
on the other hand. The proof repeats almost verbatim that of Lemma 4.2 of
[8] and is based on Theorem 2.1 of [13]. The difference with the mentioned
references lies in the topology of the action of G in the outcoming dynamical
system.

Recall that a semigroup is called right reversible if every pair of non-empty
left ideals has a non-empty intersection (see [13], [5]). The following theorem
by Ore (for discrete semigroups) can be found in [5].

Theorem 5.1. A cancellative semigroup S can be embedded into a group
G such that G= S−1S if and only if it is right reversible. And in this case, G
is a unique up to isomorphism group generated by S.

By our assumptions, S is embedded into G so that G = S−1S; by Ore’s
theorem, S is right reversible. This allows us to define a preorder on S: set
p≤ q if qp−1 ∈ S, or equivalently if q ∈ Sp. By Ore’s theorem, for any p, q ∈ S
the left ideals {xp : x ∈ S}, {yq : y ∈ S} have a non-empty intersection. Hence,
S is upwards directed with respect to this preorder: for any p, q ∈ S there
exists r ∈ S such that q ≤ r and p≤ r. In the case when S ∩ S−1 �= {e}, this
might not be an order; in fact, p≤ q and q ≤ p if p−1q ∈ S ∩ S−1.

Consider the directed system of C∗-algebras Dp indexed by p ∈ S, where
every Dp = Dδ(S). For p, q ∈ S such that p ≤ q we have qp−1 ∈ S and the
action (3.9) generates a ∗-homomorphism τqp−1 : Dp →Dq :

τqp−1(A) = Tqp−1AT ∗
qp−1

which acts on the generating projections as a translation, see (3.10). Clearly,

τqp−1 = τqr−1τrp−1 for p ≤ r ≤ q. Let D
(∞)
δ (S) denote the C∗-inductive limit

of the directed system {Dp, τqp−1}.
Recall the notation q−1 ·

G
X = {q−1x : x ∈X} ⊂G for q ∈ S and X ∈ J .

Lemma 5.2. The C∗-algebra D
(∞)
δ (S) is isomorphic to

DG =C∗({Eq−1 ·
G
X : q ∈ S,X ∈ J }

)
⊂B

(
L2(G)

)
.

Proof. By definition, Dδ(S) ⊂ B(HS). Recall that we denote JS : HS →
L2(G) the canonical imbedding; denote by π : Dδ(S)→B(L2(G)) the lifting
π(A) = JSAES .

For any p ∈ S, the map

φp(A) = L∗
pπ(A)Lp, A ∈Dδ(S),

is a ∗-homomorphism φp : Dδ(S)→DG, such that φp(EX) = Ep−1 ·
G
X for all

X ∈ J .
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Then for p≤ q and X ∈ J we have:

φqτqp−1(EX) = L∗
qEqp−1XLq =Eq−1 ·

G
(qp−1X).

Since qp−1 ∈ S, we have qp−1X = (qp−1) ·
G
X , and we can continue the previ-

ous formula as

φqτqp−1(EX) =Ep−1 ·
G
X = φp(EX).

So the maps φp are compatible with τqp−1 , and there exists a limit map

Φ: D
(∞)
δ (S) → DG, such that Φ((Ap)p∈S) = φp(Ap), p ∈ S. The homomor-

phisms φp are injective since π is obviously injective and Lp is a unitary
operator. It follows that Φ is also injective.

To prove surjectivity of Φ, it suffices to show that for any q1, . . . , qn ∈ S,
X1, . . . ,Xn ∈ J and λ1, . . . , λn ∈C we have∑

i

λiEq−1
i ·

G
Xi

∈Φ
(
D

(∞)
δ (S)

)
.

Since the system {Ap, τqp−1} is upwards directed, there exists s ∈ S such

that qi ≤ s, i= 1,2, . . . , n, and this implies that sq−1
i Xi ∈ J and q−1

i ·
G
Xi =

s−1 ·
G
(sq−1

i Xi) ∈ φs(Dδ(S)). Hence,∑
i

λiEq−1
i ·

G
Xi

∈ φs

(
Dδ(S)

)
and we obtain

DG =
⋃
p∈S

φp

(
Dδ(S)

)
.

Therefore, Φ is surjective and we get the isomorphism D
(∞)
δ (S)∼=DG. �

We identify further the C∗-algebra D
(∞)
δ (S) with DG and in this way

consider it to be a subalgebra of B(L2(G)).
On B(L2(G)), we have the adjoint action of G generated by the left regular

representation: αg(A) = LgAL
∗
g , g ∈ G, A ∈ B(L2(G)). On an operator of

multiplication Mf by a function f ∈ L∞(G) it acts by translation: αgMf =
MLgf , and in particular, αg(EX) =Eg ·

G
X for X ∈ J .

Let us show that DG is invariant under this action. For g ∈G, q ∈ S, X ∈ J

(5.1) αg(Eq−1 ·
G
X) =E(gq−1) ·

G
X .

Since G= S−1S, we can write gq−1 = t−1s with some s, t ∈ S. Then s ·
G
X =

s ·X ∈ J , and E(gq−1) ·
G
X =Et−1 ·

G
(sX) ∈DG.
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Moreover, since conjugation is strong operator continuous, D′′
G is also in-

variant under α. One can easily verify that the action α is point-strong con-
tinuous on DG. (D

′′
G,G,α) is thus a von Neumann dynamical system, and by

definition the pair (Id,L) is a covariant representation of this system.

Lemma 5.3. The crossed product D′′
G �α G of the commutative von Neu-

mann algebra D′′
G and the group G by the action α, is isomorphic to the von

Neumann algebra M= {EX ,Lg : X ∈ S−1 · J , g ∈G}′′.

Proof. By definition (see [24, Definition X.1.6]), the crossed product D′′
G�α

G is the von Neumann algebra generated by {π(A) :A ∈D′′
G}∪{L̃g : g ∈G} ⊂

B(L2(G,L2(G)))�B(L2(G×G)), where(
π(A)ξ

)
(s, t) =

(
α−1
s (A)ξ(s, ·)

)
(t),

(L̃gξ)(s, t) = ξ
(
g−1s, t

)
for any ξ ∈ L2(G,L2(G)), g, s, t ∈ G, X ∈ S−1 · J . Since every A ∈ D′′

G is a
multiplication operatorMf with some f ∈ L∞(G), we can write more precisely(

π(Mf )ξ
)
(s, t) = Ls−1f(t)ξ(s, t) = f(st)ξ(s, t).

On L2(G × G), define a unitary operator W (with δG being the modular
function of G):

Wξ(s, t) = δG(t)
1
2 ξ(st, t),

which has the adjoint W ∗ξ(s, t) = δG(t)
−1/2ξ(st−1, t). One verifies that(

W (Mf ⊗ 1)W ∗ξ
)
(s, t) = f(st)ξ(s, t) =

(
π(Mf )ξ

)
(s, t),

W (Lg ⊗ 1)W ∗ = L̃g,

so that D′′
G �α G= {W (A⊗ 1)W ∗ :A ∈D′′

G ∪ {Lg : g ∈G}}′′. It is easy to see
that this algebra is isomorphic to {D′′

G∪{Lg : g ∈G}}′′, and as a consequence,
to M. �

Lemma 5.4. The algebra M is equal to the strong operator closure of the
linear space generated by the operators Eq−1 ·

G
XLg with q ∈ S, X ∈ J , g ∈G.

Proof. The statement follows from a direct calculation with q, p ∈ S, X,Y ∈
J , g,h ∈G:

Eq−1·XLgEp−1·Y Lh =Eq−1·X
(
LgEp−1·Y L

∗
g

)
LgLh

=Eq−1·XE(gp−1)·Y Lgh

=E(q−1·X)∩((gp−1)·Y )Lgh.

Represent gp−1 as gp−1 = s−1t, s, t ∈ S. There exists r ∈ S such that r ∈
Sq ∩ Ss; then rq−1, rs−1 ∈ S and (q−1 ·X)∩ ((gp−1) · Y ) = r−1 ·Z with

Z =
(
rq−1 ·X

)
∩

(
rs−1t · Y

)
=

(
rq−1X

)
∩

(
rs−1tY

)
∈ J .
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This shows that the linear space in question is closed under multiplication,
which proves the lemma. �

Theorem 5.5. The algebra VN(S) is isomorphic to the corner subalgebra
ESMES of M.

Proof. In fact, ESMES is just the strong operator closure of the C∗-algebra
A described in Lemma 3.3, as we will now show. By Lemma 5.4, ESMES is
the strong operator closure of the linear space generated by ESEq−1 ·

G
XLgES

with q ∈ S, X ∈ J , g ∈G. Such an operator can be written in another form:

ESEq−1 ·
G
XLgES =ES∩(q−1·X)LgESL

∗
gLg =Eq−1XEg·SLg

=Eq−1XESEg·SLg =Eq−1XES∩g·SLg.

Let g = a−1b with a, b ∈ S. Then S ∩ g ·
G
S = S ∩ (a−1 ·

G
(bS)) = a−1bS. By

Lemma 3.3, Ea−1bSLa−1b ∈ A. Next, if Ψ : C∗
δ (S) → A denotes the isomor-

phism in Lemma 3.3, then by Lemma 3.5 Eq−1X =Ψ(Tww−1) for some w ∈ F
which depends on qX . Thus, Eq−1XEa−1bSLa−1b ∈A, so that ESMES ⊂A′′.
From the other side, A is generated as a C∗-algebra by the operators
ESLa−1bES =Ψ(Ta−1b), a, b ∈ S which are contained in ESMES ; this shows
that ESMES =A′′, which proves the theorem. �

6. The universal and reduced compact quantum semigroups

A compact quantum semigroup is a pair (A,Δ), where A is a unital C∗-
algebra and Δ: A→ A⊗min A is a unital ∗-homomorphism which is coasso-
ciative, i.e.

(id⊗Δ)Δ= (Δ⊗ id)Δ.

A Hopf von Neumann algebra is a pair (B,Δ), where B is a von Neumann
algebra and Δ: B →B ⊗B is a normal unital coassociative ∗-homomorphism.
The homomorphism Δ in both cases is called a comultiplication. See [25] for
details.

Consider the C∗-subalgebra A in C∗(S)⊗min C
∗(S) generated by the ele-

ments {
vp ⊗ vp, eX ⊗ eX : p ∈ S,X ∈ J ′}.

Clearly, these elements satisfy relations (3.7), (3.8). The universal property
of C∗(S) implies the existence of a unital ∗-homomorphism Δu : C

∗(S)→A,
such that

Δu(vp) = vp ⊗ vp, Δu(eX) = eX ⊗ eX .

The map Δu admits a restriction Δu|D(S) :D(S)→D(S)⊗min D(S) which is
also a unital ∗-homomorphism.

The pair Q(S) = (C∗(S),Δu) is a compact quantum semigroup [1]. We call
the algebra C∗(S) with this structure the universal algebra of functions on
the compact quantum semigroup Q(S) associated with the semigroup S.
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6.1. On duality of semilattices and their C∗-algebras.

Definition 6.1. Let E be a semilattice, that is, a commutative semigroup
of idempotents. A character on E is a semigroup morphism ξ : E → {0,1}.
The set of all characters on E is denoted Ê; it forms a compact 0-dimensional
semilattice with the pointwise multiplication and the topology of pointwise
convergence. By Theorem 3.9 Chapter II of [11], the functor E �→ Ê is a
duality functor between the category of discrete semilattices and the category

of compact 0-dimensional semilattices. In particular, the map ηE : E → ˆ̂
E

defined by ηE(s)(c) = c(s) is an isomorphism.

Proposition 6.2. Let E ⊂B(H) be a set of linearly independent commut-
ing projections closed under multiplication and containing 1H . Then C∗(E)

is ∗-isomorphic to C(Ê), where Ê is the dual semilattice of E. Under this

isomorphism φ for every e ∈E, χ ∈ Ê, φ(e)(χ) = χ(e).

Proof. Note that E is a discrete (in the norm topology) semilattice. Denote
A=C∗(E). By Gelfand–Naimark theorem, the commutative C∗-algebra A is

∗-isomorphic to C(Ω), where Ω = Â is the space of characters on A with the
topology of pointwise convergence, which is compact and Hausdorff. Obvi-
ously, every χ ∈ Â is a character on E. Let us show that every χ ∈ Ê extends
to a continuous character on A.

Since E is linearly independent, we can extend χ by linearity to its linear
span B = linE ⊂ C∗(E). Let t =

∑n
j=1 λjpj ∈ B, where pj ∈ E, λj ∈ C. Set

J0 = {j : χ(pj) = 0}, J1 = {j : χ(pj) = 1}. Set X =
∨
{pj : j ∈ J0} to be the

union of projections. Since X is a linear combination of pj , j ∈ J0 and their
products, we have χ(X) = 0.

Next, set Y =
∏

j∈J1
pj ; we have χ(Y ) = 1. Since χ(Y X) = 0, we have

Y �= Y X =XY , what means that Y (H) �⊂X(H). Pick v ∈ Y (H) ∩ (X(H))⊥

with ‖v‖= 1. Then∥∥∥∥∥
n∑

j=1

λjpj

∥∥∥∥∥ ≥
∥∥∥∥∥

n∑
j=1

λjpjv

∥∥∥∥∥ =

∥∥∥∥∑
j∈J1

λjpjv

∥∥∥∥
=

∥∥∥∥∑
j∈J1

λjv

∥∥∥∥ =

∣∣∣∣∑
j∈J1

λj

∣∣∣∣ =
∣∣∣∣∣χ

(
n∑

j=1

λjpj

)∣∣∣∣∣.
This implies that χ has norm 1 on the linear span of E, so it can be extended
to its closure by continuity.

Furthermore, the topologies on Ê and Â are both defined by pointwise
convergence, on E and on A, respectively. The bijection defined above is thus
continuous in the direction Â→ Ê; both spaces being Hausdorff and compact,
they are in fact homeomorphic. �
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Proposition 6.3. Let E be a set of linearly independent commuting pro-
jections on a separable Hilbert space H , closed under multiplication and con-
taining 1H , and A = C∗(E). Then there exists a positive measure μ on Ê,

such that A′′ is ∗-isomorphic to L∞(Ê, μ)⊂B(L2(Ê, μ)).

Proof. By Lemma 4.4.1 in [17], there exists a separating vector v ∈H for
the Abelian von Neumann algebra A′′. Analogously to the proof of Theo-
rem 4.4.4 of [17], projecting H onto its subspace Hv = [A′′v] we get that the
vector v is cyclic for A′′ restricted to Hv . Since v is separating for A′′, A′′

restricted to Hv is ∗-isomorphic to A′′.
Denote φ : A → C(Ω) the ∗-isomorphism from Proposition 6.2, where

Ω = Ê. In what follows we reproduce the proof of the Theorem 4.4.3 of [17].
Define a positive linear functional τ on C(Ω): τ(f) = 〈φ−1(f)v, v〉. Applying
the Riesz–Markov theorem we obtain a positive measure μ on Ω realizing the
functional τ .

Let π be the composition of φ and the ∗-representation of C(Ω) by multipli-
cation operators on L2(Ω, μ). The map u : Av→C(Ω)⊂ L2(Ω, μ), av �→ φ(a)
is linear and isometric, and hence can be extended to a unitary u from Hv onto
L2(Ω, μ). In fact, π(a) = uau−1. Since π(A) is strongly dense in L∞(Ω, μ), we
get uA′′u−1 = L∞(Ω, μ). �

Proposition 6.4. Let E ⊂B(H) be a set of linearly independent commut-
ing projections on a separable Hilbert space H , closed under multiplication and
containing 1H , and A = C∗(E). Then there exists a comultiplication on A′′,
such that Δ(e) = e⊗ e for every e ∈E.

Proof. By Proposition 6.3, A′′ (resp. A′′⊗A′′) is ∗-isomorphic to L∞(Ê, μ)

(resp. L∞(Ê × Ê, μ× μ)). By Theorem 3.9 Chapter II of [11], the set Ê of
characters on E is a compact zero-dimensional semilattice with the (jointly
continuous) pointwise product. As in the group case, this product gives rise

to a coproduct on L∞(Ê, μ) by the formula:

Δ(f)(x, y) = f(xy)

Since elements of E are characters on Ê, we have for every e ∈E and x, y ∈ Ê:

Δ(e)(x, y) = e(xy) = e(x)e(y) = (e⊗ e)(x, y). �

Remark 6.5. The product on Ê is the pointwise product of characters.
But this operation is not the pointwise product when the elements of Ê are
considered as characters on C∗(E). Namely, for any χ1, χ2 ∈ Ê, λi ∈C, ei ∈E,
1≤ i≤ n we have:

χ1χ2

(
n∑

i=1

λiei

)
=

n∑
i=1

λiχ1(ei)χ2(ei)
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6.2. The quantum semigroup associated to S.

Theorem 6.6. There exists a comultiplication Δ: VN(S) → VN(S)⊗
VN(S), and its restriction Δ: C∗

δ (S) → C∗
δ (S)⊗minC

∗
δ (S), with which

(VN(S),Δ) is a Hopf von Neumann algebra and Q(S) = (C∗
δ (S),Δ) is a com-

pact quantum semigroup.

Proof. Recall that we suppose G to be second countable, so that L2(G)
is separable. We use the Theorem 5.5 to identify VN(S) with the corner
ES(D

′′
G �τ G)ES inside B(L2(G)). Due to Proposition 6.4, there exists a co-

product on D′′
G, defined on generators by

Δ(Eq−1 ·
G
X) =Eq−1 ·

G
X ⊗Eq−1 ·

G
X

for q ∈ S,X ∈ J . One can easily see that Δ commutes with the action of G
on D′′

G defined in (5.1). Consequently, Δ gives rise to a comultiplication on
D′′

G �τ G, which we also denote by Δ. Due to the fact that ES ∈D′′
G, using

Lemma 5.5 we obtain the required comultiplication Δ on VN(S).
Since Δ(Eq−1 ·

G
X) ∈C∗

δ (S)⊗C∗
δ (S) for every generator Eq−1 ·

G
X with q ∈ S,

X ∈ J , the map Δ restricts to a comultiplication on C∗
δ (S). �

Remark 6.7. The bialgebras C∗(S) and C∗
δ (S) are co-commutative, as for

example the group C∗-algebra C∗(G) of G. But their dual algebras, unlike
the Fourier–Stieltjes algebra B(G) = C∗(G)∗, cannot be viewed as function
algebras on S or even on G. It is possible that φ,ψ ∈ (C∗

δ (S))
∗ are nonequal

but have the same values on Ta and T ∗
a for all a ∈ S.

More specifically, consider for example G = Z, S = Z+. Let δk ∈ 
2(Z)
denote the indicator function of k ∈ Z. Set φk(T ) = 〈Tδk, δk〉, k ∈ Z. Then
φk(Ta) = φk(T

∗
a ) = δ0(a) for all k ∈ Z, a ∈ Z+, but φk(TaT

∗
a ) = IZ+(k − a)

while δ0(TaT
∗
a ) = δ0(a).

In what follows we use the commutativity assumption just to guarantee
that S, which is supposed to be right-reversible, is also left-reversible.

Proposition 6.8. Let S be Abelian. Then μ(X)> 0 for any constructible
right ideal X of S.

Proof. Clearly, any ideal of the form pS equals Sp and is not empty. Due
to the Theorem 5.1, the intersection of any pair of non-empty ideals is non-
empty. For any non-empty ideal X in S and p ∈ S we have

p−1X = {x ∈ S : px ∈X}= p−1 ·
G
(pS ∩X).

Therefore, p−1X is non-empty for any non-empty ideal X in S, and so is pX .
Hence, every constructible right ideal of S is non-empty.

Let U be any open subset in S with μ(U) > 0. Then for any non-empty
ideal X in S taking p ∈X we obtain pU ⊂X , hence, μ(X)> 0. �
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Remark 6.9. If S is Abelian, then there exists a natural short exact se-
quence connecting C∗

δ (S) with C∗
δ (G) described below.

Consider the commutator ideal K in C∗
δ (S), that is, the ideal generated by

{[A,B] =AB−BA : A,B ∈C∗
δ (S)}. Among others, K contains the operators

TaT
∗
a − T ∗

aTa =EaS −ES

for all a ∈ S. For any X ∈ J , a ∈ S we have

T ∗
a (EX −ES)Ta =Ea−1X −ES ,

Ta(EX −ES)T
∗
a =EaX −EaS ,

which allows to show by induction that EX −ES ∈K for every X ∈ J \ {∅}.
Consequently, in C∗

δ (S)/K we have the equivalence classes [EX ] = [ES ] = 1
for all X ∈ J \ {∅}.

By Lemma 3.2, Tw =EwST(w)G for every w ∈ F , and it follows that [Tw] =
[EST(w)G ] in C∗

δ (S)/K.
Due to Lemma 3.3, C∗

δ (S) is the closed linear space generated by operators
of the form EXTg with X =wS ∈ J , g ∈G, (w)G = g (where Tg is understood
as Tg = Ta−1b with any representation g = a−1b). The discussion above implies
that C∗

δ (S)/K is generated as a linear space by the classes [ESTg] = [Tg],
g ∈G.

Denote L̂g = [Tg]. For all g1, g2 ∈G one sees that L̂g1L̂g2 = L̂g1g2 , and every

L̂g is unitary since L̂∗
g = L̂g−1 .

Let us show that ‖
∑n

k=1 ckL̂gk‖C∗
δ (S)/K = ‖

∑
ckLgk‖B(L2(G)) for all ck ∈

C, gk ∈G. We have (by Lemma 3.3)∥∥∥∥∥
n∑

k=1

ckL̂gk

∥∥∥∥∥
C∗

δ (S)/K

≤
∥∥∥∑

ckTgk

∥∥∥
C∗

δ (S)
≤

∥∥∥∑
ckLgk

∥∥∥
B(L2(G))

.

From the other side, the fact that S has non-empty interior implies that the
norm of T =

∑n
k=1 ckLgk is attained on HS . Indeed, for every f ∈ L2(G) and

every ε > 0 there is a compact set K ⊂ G such that ‖f − EKf‖ < ε; there
exists (see [15], or alternatively this can be shown directly) g ∈G such that
gK ⊂ S, so that ESEgK =EgK . Set h= Lgf . We have EgKh= Lg(EKf), and

‖ESh− h‖ ≤
∥∥ES(h−EgKh)

∥∥+ ‖ESEgKh− h‖
≤ 2‖h−EgKh‖= 2‖f −EKf‖< 2ε.

If f is chosen so that ‖f‖= 1 and ‖Tf‖> ‖T‖ − ε, then ‖h‖= 1,

‖Th‖= ‖LgTf‖= ‖Tf‖> ‖T‖ − ε,

and at the same time ‖TESh−Th‖ ≤ 2‖T‖ε, which implies ‖TESh‖> ‖T‖−
(1 + 2‖T‖)ε. This proves the statement.
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Thus, we have an isomorphism C∗
δ (S)/K � C∗

δ (G) and the short exact
sequence:

(6.1) 0→K →C∗
δ (S)→C∗

δ (G)→ 0.

Example 6.10. Let us calculate the algebra C∗
δ (R+); we specify that in

our notation R+ = [0,+∞).

By our assumptions, G=R. It is immediate that

J =
{
[t,+∞) : t ∈R+

}
∪ {∅}.

Below, denote E[t,+∞) = Et, t ∈ R. In the multiplicative notation used

throughout the paper, one checks that a−1bS = [max(0, b − a),+∞) for
a, b≥ 0, and in general wS = [t,+∞) with t≥max(0, (w)R) for every w ∈ F .
Conversely, if g ∈ R and t ≥ max(0, g), then g = t − s with s ≥ 0, and
[t,+∞) = ts−1S. According to Lemma 3.3, we have thus

C∗
δ (R+)� lin{EtLg : t ∈R+, g ∈R, t≥ g}.

It is worth noting that

D(R+) =C∗(Et : t ∈R+)⊂B
(
L2(R+)

)
.

This algebra can be also described as the space of functions supported in
R+ and such that limt→t0−0 f(t) exists for every t0 ∈ (0,+∞] and f(t0) =
limt→t0+0 f(t) for every t0 ∈ [0,+∞). This is the uniform closure of the algebra
of piecewise continuous functions, and is sometimes called by the same name.

The short exact sequence (6.1) in this case is written as

0→K →C∗
δ (R+)→C∗

δ (R)→ 0.

The commutator ideal K in C∗
δ (R+) has the following form:

K = lin{E[a;b)Lg : a, b ∈R+, g ∈R, b≥ a≥ g}.
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