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EXAMPLES OF NON-AUTONOMOUS BASINS
OF ATTRACTION

SAYANI BERA, RATNA PAL AND KAUSHAL VERMA

Abstract. The purpose of this paper is to present several ex-
amples of non-autonomous basins of attraction that arise from

sequences of automorphisms of C
k. In the first part, we prove

that the non-autonomous basin of attraction arising from a pair

of automorphisms of C
2 of a prescribed form is biholomorphic

to C
2. This, in particular, provides a partial answer to a question

raised in (A survey on non-autonomous basins in several complex

variables (2013) Preprint) in connection with Bedford’s Conjec-
ture about uniformizing stable manifolds. In the second part, we

describe three examples of Short C
k’s with specified properties.

First, we show that for k ≥ 3, there exist (k−1) mutually disjoint

Short Ck’s in C
k. Second, we construct a Short Ck, large enough

to accommodate a Fatou–Bieberbach domain, that avoids a given

algebraic variety of codimension 2. Lastly, we discuss examples
of Short Ck’s with (piece-wise) smooth boundaries.

1. Introduction

Let f be a holomorphic automorphism of a complex manifold X equipped
with a Riemannian metric, say dX . Suppose K ⊂X is an invariant compact
set on which f is uniformly hyperbolic. For p ∈ X , let Σs

f (p) be the stable
manifold of f through p, that is,

Σs
f (p) =

{
z ∈X : dX

(
f◦n(z), f◦n(p)

)
→ 0 as n→∞

}
.

By the Stable manifold theorem, Σs
f (p)⊂X is an immersed complex subman-

ifold, say of dimension k and this turns out to be diffeomorphic to R
2k. The

question of whether Σs
f (p) is biholomorphic to Ck for every p ∈K was raised

by Bedford in [3]. While this is known to be true in several cases (see, for
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example, [14], [1] and [16]), a result of Fornæss–Stensønes in [11] shows that
Σs

p(f) is biholomorphic to a domain in C
k for every p ∈K. This was done

by studying a related question which, more importantly, is a reformulation of
Bedford’s question:

Conjecture. Let {Fn} be a sequence of automorphisms of Ck satisfying

(1.1) C‖z‖ ≤
∥∥Fn(z)

∥∥ ≤D‖z‖

for z ∈Bk(0; 1) (the unit ball around the origin) and 0<C,D < 1. Then the
basin of attraction of {Fn} at the origin defined as

Ω{Fn} =
{
z ∈C

k : Fn ◦ Fn−1 ◦ · · · ◦ F1(z)→ 0 as n→∞
}

is biholomorphic to C
k.

On the other hand, the necessity of having such uniform bounds for each
Fn on the unit ball was shown by Fornæss in [9]. In particular, if {Hn} is a
sequence of automorphisms of C2 of the form

Hn(z,w) =
(
anw+ z2, anz

)
,

where 0< |an+1| ≤ |an|2 and 0< |a0|< 1, then the corresponding basin Ω{Hn}
is not biholomorphic to C

2 since it was shown to admit a non-constant
bounded plurisubharmonic function. Note that the Hn’s do not satisfy a uni-
form bound condition near the origin. In this case, Ω{Hn} can be written as
the limit of an increasing union of domains each of which is biholomorphic to
the unit ball in C

2. Furthermore, the infinitesimal Kobayashi metric on Ω{Hn}
vanishes identically. Thus, Ω{Hn} is neither all of C2 nor a Fatou–Bieberbach

domain. Such a domain was christened Short C
2 (or more generally, a Short

C
k if the domain sits in C

k, k ≥ 3) in [9].
As explained in [9], the existence of such domains is intrinsically linked

with a version of the Levi problem namely, to decide whether the union of an
increasing sequence of Stein domains is Stein. A counterexample constructed
by Fornaess [8] shows that this is not true in general if k ≥ 3. However, in C

2,
Fornaess–Sibony [10] were able to classify those domains which arise as the
increasing union of biholomorphic images of the ball and which additionally
satisfy the property that the Kobayashi metric does not vanish identically.
The other possibility is when the Kobayashi metric vanishes identically—and
this is where Short C

2’s make their appearance.
The purpose of this paper is two fold. First, we will study a seemingly

straightforward version of the conjecture mentioned above that was stated as
Problem 22 in [2]. We recall the statement below.

Problem. Let F and G be automorphisms of Ck both having an attracting
fixed point at the origin. Let {fn} be a sequence in which each fn is either F
or G. Is the basin of attraction Ω{fn} biholomorphic to C

k?
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Furthermore in [2], the maps defined by

F (z1, z2) =
(
αz1 + z22 , βz2

)
and G(z1, z2) =

(
βz1, αz2 + z21

)
,

where |α|, |β|> 0 and |α|3 > |β| (for example, let α= 1/2 and β = 1/9) were
proposed as test cases to study. A moment’s thought shows that this problem
reduces to studying the non-autonomous basin of attraction of the sequence
{Hp(k),q(k) : k ≥ 1} where p, q :N→N∪ {0} and

Hp(k),q(k) = F p(k) ◦Gq(k).

This observation is used to prove the following result.

Theorem 1.1. Let F and G be automorphisms of C2 with an attracting
fixed point at the origin such that the matrices A= F ′(0) and B =G′(0) are
as follows:

A=

(
α 0
0 β

)
and B =

(
β 0
0 α

)
with |α|r < |β| for some r > 2. Then the basin of attraction of {Hp(k),q(k) : k ≥
1} at the origin is biholomorphic to C

2 in the following cases:

(i) For every k ≥ 1, q(k) is bounded, p(k)≥ 1 and (2 + 3
r−2 )p(k)− q(k)≥ 0.

(ii) For every k ≥ 1, p(k) is bounded, q(k)≥ 1 and (2 + 3
r−2 )q(k)− p(k)≥ 0.

Moreover, we will use methods similar to those in [15] to obtain a related
result for more specific automorphisms of C2.

Proposition 1.2. Consider the automorphisms

F (z1, z2) =
(
αz1 + z22 , βz2

)
and G(z1, z2) =

(
βz1, αz2 + zk1

)
,

where |α|k < |β| ≤ |α|k−1 for k ≥ 2. Let {Fn} be a sequence in which each Fn

is either F or G. Then the non-autonomous basin of attraction at the origin
of {Fn} is biholomorphic to C2.

Second, let us recall a classical result of Rosay–Rudin [17] which shows
that if an automorphism of Ck has an attracting fixed point, then the associ-
ated basin of attraction is a Fatou–Bieberbach domain. This result forms the
basis of several examples of Fatou–Bieberbach domains with prescribed prop-
erties that were constructed by them in [17]. In the same vein, it is natural
to ask whether it is possible to construct Short C

k’s with specified proper-
ties. In what follows, we provide several examples of Short C

k’s that satisfy
additional properties—these being much in the spirit of what is known for
Fatou–Bieberbach domains.

For the first example, recall that a shift-like map of type ν (where 1≤ ν ≤
k− 1) is an automorphism of Ck given by

S(z1, z2, . . . , zk) =
(
z2, z3, . . . , zk, h(zk−ν+1)− az1

)
,
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where h is an entire function on C and a ∈ C
∗. These maps were introduced

and studied by Bedford–Pambuccian [4]. By working with suitable shift-like
maps and the filtration they preserve, it is possible to create a mutually dis-
joint finite collection of Short C

k’s.

Theorem 1.3. For k ≥ 3, there exist (k − 1) Short Ck’s, say Ωi, 1≤ i ≤
k− 1, such that

k−1⋃
i=1

Ωi ⊂C
k and Ωi ∩Ωj = ∅ for i 
= j.

For the second example, recall that Hubbard–Buzzard [5] have constructed
a Fatou–Bieberbach domain that avoids a given algebraic variety of codimen-
sion 2 in C

k for k ≥ 3. Again, by working with suitable shift-like maps and by
controlling the rate of convergence of their linear parts, we have the following
theorem.

Theorem 1.4. Let V ⊂C
k, k ≥ 3, be an algebraic variety of codimension 2.

Then there exists a Short Ck, say Ω and a Fatou–Bieberbach domain, say D
such that D ⊂Ω⊂C

k \ V .

Let us recall the methods of constructing a Short C
2 from [9]:

• Let {Fn} be a sequence of automorphisms of C2 of the form

Fn(z1, z2) =
(
anz2 + z21 , anz1

)
,

where 0< |an+1| ≤ |an|2 and 0< |a0|< 1. Let φ and a∞ be defined as

φ= lim
n→∞

1

dn
logφn(z) and a∞ = lim

n→∞
|an|−2n ,

where
φn =max

{∣∣πi ◦ Fn ◦ . . . F0(z)
∣∣, |an| : 1≤ i≤ 2

}
.

Here, and in what follows πi is the standard projection map on the ith
coordinate for 1≤ i≤ k.

Then for every c > loga∞, the c-sublevel set of φ, that is,{
z ∈C

2 : φ < c
}

is a Short C2. Moreover, the 0-sublevel set of φ is the non-autonomous basin
of attraction for the sequence {Fn}.

• Let H be a Hénon map of the form

H(z1, z2) =
(
z2, δz1 + zd2

)
.

Then for every c > 0, the c-sublevel set of the positive Green’s function of
H , that is,

G+(z) = lim
n→∞

1

dn
log+

∥∥Hn(z)
∥∥

is a Short C
2.
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Both φ and G+ are known to be pluriharmonic on the sets{
z ∈C

2 : φ(z)> loga∞
}

and
{
z ∈C

2 :G+(z)> 0
}

respectively. Hence, by Sard’s theorem, for most values of c in the admissi-
ble range, the c-sublevel sets of either φ or G+ are Short C

2’s with smooth
boundary. However, this does not ensure that the 0-sublevel set of φ, which
is the non-autonomous basin of attraction at the origin, always has smooth
boundary. In this regard, we have the following theorem.

Theorem 1.5. There exists a Short C2 with C∞-smooth boundary that
arises as the non-autonomous basin of attraction for a sequence of automor-
phisms having an attracting fixed point at the origin.

This is motivated by Stensønes’s proof of the existence of Fatou–Bieberbach
domains with C∞-smooth boundary (see [18]). We follow a similar approach
for Short C

2’s as well, namely we try to control the behaviour of the bound-
ary on a large enough polydisc and then exhaust all of C2 with polydiscs of
increasing size. A construction of a Short C2 with C∞-smooth boundary on
a fixed polydisc was also given by Console in [7].

By adopting some methods from Globevnik’s work [13] and [7], it is possible
to retain boundary smoothness and at the same time avoid a given variety of
codimension 2.

Theorem 1.6. Let V ⊂Ck, k ≥ 3, be an algebraic variety of codimension 2.
Then there exists a sequence of automorphisms {Fn} of Ck with a common
attracting fixed point, say p such that the basin of attraction Ω{Fn} at p is a

piecewise smooth Short Ck that does not intersect V .

2. Proof of Theorem 1.1 and Proposition 1.2

Let us recall the following from [15].

Definition 2.1. Let F be an automorphism of Ck, k ≥ 2 having a fixed
point at the origin such that F ′(0) is a lower triangular matrix. We say F is
correctly ordered if the diagonal entries of F ′(0), i.e., λ1, . . . , λk (from upper
left to lower right) satisfy the condition

|λj ||λi|< |λl|,

for 1≤ l≤ j ≤ k and any 1≤ i≤ k.

Definition 2.2. A family F of correctly ordered automorphisms of Ck,
k ≥ 2 is said to be uniformly attracting if there exist 0<C <D < 1 such that
for every z ∈Bk(0; 1) and F ∈ F

C‖z‖ ≤
∥∥F (z)

∥∥ ≤D‖z‖
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and there exists 0< ξ < 1 such that

(2.1) |λj ||λi|< ξ|λl|
for 1≤ l≤ j ≤ k and any 1≤ i≤ k.

Theorem 2.3 (Peters, H). Let {Fn} be a uniformly attracting sequence
of automorphisms of Ck, k ≥ 2. Then the basin of attraction of {Fn} at the
origin is biholomorphic to C

k.

We will use the following version of this theorem which is valid when k = 2.

Let {Fn} be a uniformly attracting sequence of automorphisms of C2 and
let {λ1,n}, {λ2,n} be the diagonal entries of {F ′

n(0)}. We may assume that
F ′
n(0) is lower triangular and λ1,n and λ2,n are the eigenvalues of F ′

n(0). If
there exists 0< ξ < 1 such that

|λ1,n|< ξ, |λ2,n|< ξ and |λ2,n|2 ≤ ξ|λ1,n|,
the basin of attraction of the sequence {Fn} at the origin is biholomorphic
to C

2.

However, by assumption {Fn} is a uniformly attracting sequence of auto-
morphisms and hence there exists 0< ξ1 < 1 such that

|λ1,n|< ξ1, |λ2,n|< ξ1

for each n≥ 1. Therefore (2.1) reduces to

(2.2) |λ2,n|2 ≤ ξ|λ1,n|
for some ξ, where 0< ξ1 < ξ < 1.

We will complete the proof of Theorem 1.1 by showing the existence of a
suitable ξ so that (2.2) holds.

Proof of Theorem 1.1. It can be seen that

DF p(k)(0) =

(
αp(k) 0
0 βp(k)

)
and DGq(k)(0) =

(
βq(k) 0
0 αq(k)

)
and hence

DHp(k),q(k)(0) =

(
αp(k)βq(k) 0

0 αq(k)βp(k)

)
for all p(k), q(k)≥ 1.

It is sufficient to find a uniform 0< ξ < 1 so that

|α|2q(k)|β|2p(k) < ξ|α|p(k)|β|q(k)

for all k ≥ 1. First, some reductions are in order. If q(k) = 0 for k ≥ k0 ≥ 0, then
Fn = F for all large enough n. In this case, Rosay–Rudin [17] show that the
basin of attraction of {Fn} is all of C2. We can therefore assume that q(k)≥ 1
for infinitely many k’s. The same reasoning applies to p(k) as well. Further,
by the assumptions in Theorem 1.1(i), there exists a uniform M such that
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0≤ q(k)≤M for all k. There are two possibilities for p(k), namely p(k)≤M
or p(k) >M depending on k. If p(k) ≤M , we leave Hp(k),q(k) undisturbed.

Else, if p(k) > M , let p(k) = MN(k) + R(k) where 0 ≤ R(k) < M . Observe
that

Hp(k),q(k) = FR(k) ◦ FM ◦ · · · ◦ FM︸ ︷︷ ︸
N(k)

◦HM,q(k)

=HR(k),0 ◦HM,0 ◦ · · · ◦HM,0︸ ︷︷ ︸
N(k)

◦HM,q(k).

In other words, Hp(k),q(k) is the composition of maps, all of which are of the
formHγ(k),δ(k) with γ(k)≤M and δ(k)≤M . Therefore, it is possible to create
a new sequence, still denoted by {Hp(k),q(k)}, from the given one so that

0≤ p(k)≤M and 0≤ q(k)≤M.

We may assume, by rearranging the sequence {Hp(k),q(k)} if needed, that
both p(k) and q(k) are maximal in their ranges for every k ≥ 1. The bound-
edness of both p(k) and q(k) ensures that the sequence {Hp(k),q(k)} has a
uniform bound on the rate of contraction on a sufficiently small ball around
the origin.

Case 1: Suppose that 2p(k)− q(k)≥ 0. In this case, note that

|α|2q(k)−p(k)|β|2p(k)−q(k) ≤ |α|p(k)+q(k) ≤ |α|,

where the last inequality holds since p(k) ≥ 1. Here, in this case, we do not
have to worry about how |α| and |β| are related.

Case 2: Suppose that 2p(k)− q(k)< 0. In this case, let 0< η < 1 be such
that

|α|r ≤ η|β|< |α|.
Note that 2q(k)− p(k)> p(k) + q(k)≥ 1. Then

|α|2q(k)−p(k)|β|2p(k)−q(k) ≤
(
η|β|

)(2q(k)−p(k))/r|β|2p(k)−q(k)

≤ η(2q(k)−p(k))/r|β|((2q(k)−p(k))/r+2p(k)−q(k)).

Simplifying the exponent of |β| and noting that 2q(k)−p(k)≥ 1, the last term
above is dominated by

η1/r|β|
r−2
r ((2+ 3

r−2 )p(k)−q(k)).

Hence, if (2 + 3
r−2 )p(k)− q(k)> 0 then

|α|2q(k)−p(k)|β|2p(k)−q(k) ≤ η1/r.
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p
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p

q

(a) (2 + 3
r−2 )p(k)− q(k)≥ 0 (b) (2 + 3

r−2 )q(k)− p(k)≥ 0

Figure 1. Region for the values of p(k) and q(k).

It remains to note that any ξ such that max(|α|, η1/r) < ξ < 1 works. This
completes the proof of Theorem 1.1(i).

Let

Lp(k),q(k) = τ ◦Hp(k),q(k) ◦ τ,
where τ(z,w) = (w,z). Then

DLp(k),q(k)(0) =

(
αq(k)βp(k) 0

0 αp(k)βq(k)

)
and if

2q(k)− p(k)≥ 0

and p(k) is bounded, a similar calculation applied to Lp(k),q(k) shows that the

basin of attraction of {Hp(k),q(k)} is biholomorphic to C
2.

The shaded regions in Figures 1(a) and 1(b) correspond to those sequences
for which the non-autonomous basins are biholomorphic to C

2. �

Proof of Proposition 1.2. By the given condition, there exists α̃ such that
|α|< α̃ < 1 and |β|> α̃k, and each Fn satisfies

α̃k‖z‖ ≤
∥∥Fn(z)

∥∥ ≤ α̃‖z‖

on a sufficiently small ball Bk(0; r).
Now corresponding to the sequence {Fn}, we will associate another se-

quence of automorphisms {Gn} defined as

Gn(z1, z2) =

{
F (z1, z2); if Fn = F,

(βz1, αz2); otherwise.

Let X0 be an automorphism of C2 of the form

X0(z1, z2) =
(
z1, z2 +X2,0z

k
1

)
,
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whereX2,0 ∈C. Also let {Xn}n≥1 be a sequence of polynomial endomorphisms
of C2 defined inductively by

(2.3) Xn+1 =
[
Fn ◦Xn ◦G−1

n

]
k
,

where [·]k means that the degree (k+1) terms are truncated from the expres-
sion. A simple computation by expanding (2.3) gives

Xn(z1, z2) =
(
z1, z2 +X2,nz

k
1

)
for every n≥ 1, that is, {Xn}n≥0 is a sequence of lower triangular automor-
phisms of C2. It can be checked that

X2,n+1 =
β

αk
X2,n

if Fn = F and

X2,n+1 =
1

αk−1
X2,n + 1

otherwise. Let {An}n≥1 be a sequence of affine maps of C defined as

An+1(z) =

{
β
αk z; if Fn = F,

1
αk−1 z + 1; otherwise.

From [15], there exists a z0 ∈C such that A(n)(z0) is bounded for every n≥ 1.
If we let X2,0 = z0, then {Xn} is a bounded sequence of automorphisms of C2.

By Lemma 14 from [2], it follows that the basin of attraction of {Fn} at
the origin is biholomorphic to the basin of attraction of the sequence {Gn}.
But the Gn’s are upper triangular maps with an attracting fixed point at the
origin and hence the basin of attraction of {Gn} at the origin is all of C2.
This completes the proof. �

3. Proof of Theorem 1.3

For 0< a< 1 and d≥ 2, consider the sequence of mappings

Fn(z1, z2, . . . , zk) =
(
ηnzk, z

d
2 + ηnz1, z

d
3 + ηnz2, . . . , z

d
k + ηnzk−1

)
,

where |ηn| ≤ ad
n

for every n≥ 0. The non-autonomous basin of attraction of
this sequence, i.e., Ω{Fn} will be a Short C

k. The arguments used to prove
this fact are similar to Fornæss’s proof in [9]. However, we will briefly rewrite
the proof for the sake of completeness.

Let Δk(0;R) denote the polydisk of radius R at the origin and

F (n)(z) := Fn ◦ · · · ◦ F0(z).

Theorem 3.1. The set Ω{Fn} has the following properties:

(i) Ω{Fn} is a non-empty open connected set.

(ii) Ω{Fn} =
⋃∞

j=1Ωj , Ωj ⊂ Ωj+1, and each Ωj is biholomorphic to the unit

ball Bk(0; 1) in Ck.
(iii) The infinitesimal Kobayashi metric on Ω{Fn} vanishes identically.
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(iv) There exists a plurisubharmonic function φ :Ck → [loga,∞) such that

Ω{Fn} =
{
z ∈C

k : φ(z)< 0
}
.

Proof. Let Δk(0; c) denote the polydisk of polyradius (c, . . . , c), 0< c < 1.
Then ∥∥Fn(z)

∥∥
∞ ≤ cd + |ηn|c

for every z ∈Δk(0; c), i.e., Fn(Δ
k(0; c))⊂Δk(0; cd + |ηn|c). Pick c′ such that

0< c < c′ < 1 and let cl = c(c′)l.

Claim. For l ≥ 0, there exists n large enough such that Fn+l(Δ
k(0; cl))⊂

Δk(0; cl+1).

Since l+ 1≤ dl for every l≥ 0,

log
(
|ηn+l|

)
= dn+l loga≤ (l+ 1)dn loga

=

(
l+ 1

2

)
dn loga+

(
l+ 1

2

)
dn loga

< log c(1− c) + (l+ 1) log c′

for n sufficiently large. So we get

|ηn+l|< c(1− c)
(
c′

)l+1
< c

(
c′

)l+1 − cd
(
c′

)dl

= cl+1 − cdl

that is,
cdl + cl|ηn+1|< cdl + |ηn+1|< cl+1.

Hence, the claim is true.
Now define

Ωn =
{
z ∈C

k : F (n)(z) ∈Δk(0; c)
}
.

Then Ωn ⊂Ωn+1 for sufficiently large n, that is, for every n≥ n0 and l≥ 1,

Fn+l ◦ · · · ◦ Fn+1(z)→ 0

uniformly on Ωn. So we have
⋃

n≥n0
Ωn ⊂ Ω{Fn}. But now note that if z ∈

Ω{Fn}, then ‖F (n)(z)‖ < c for sufficiently large n, i.e., z ∈ Ωn for n large.
Hence,

⋃
n≥n0

Ωn =Ω{Fn}. This proves statement (i).

Let Un = {z ∈C
k : ‖F (n)z‖< c}. Then for every n≥ 0, Un ⊂Ωn. Note that

for n≥ n0 ≥ 0 and for every z ∈Ωn, there exists l≥ 1 such that

F (n+ l)(z) ∈Δk(0; c)⊂Bk(0; c),

that is, Ωn ⊂ Un+l. Thus, we have

Ω{Fn} =
⋃

n≥n0

Ωn ⊂
⋃
m≥0

Un0+l+m ⊂
⋃
m≥0

Ωn0+l+m ⊂Ω{Fn},

that is, Ω{Fn} =
⋃

m≥0Un0+l+m, which proves (ii).

Pick a point p ∈ Ω{Fn} and ξ ∈ TpΩ. Let pn = F (n)(p) and ξn =
DF (n)(p)(ξ) for every n ≥ 0. Note that pn → 0, hence consequently, ξn → 0
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as n→∞. Fix R> 0, a sufficiently large value. Now define maps ηn from the
unit disc as follows:

ηn(z) = pn + zRξn for every z ∈Δ(0; 1).

Depending on R> 0, there exists n0 such that ηn(Δ(0; 1))⊂Δk(0; c) for n≥
n0. Let η = F (n0)

−1 ◦ ηn0 . Note that η(Δ(0; 1)) ⊂ Ωn0 ⊂ Ω. Thus, η(0) = p
and η′(0) =Rξ. Since it is possible to construct a map η for every R > 0, it
follows that the infinitesimal Kobayashi metric on Ω{Fn} vanishes.

Let
F (n)(z) =

(
fn
1 (z), . . . , f

n
k (z)

)
,

that is, fn
i (z) denotes the ith component at the nth stage. Define the functions

φn as:
φn(z) =max

{∣∣fn
1 (z)

∣∣, . . . , ∣∣fn
k (z)

∣∣, |ηn|}.
Lemma 3.2. Let

ψn(z) =
1

dn
logφn(z).

Then ψn → ψ where ψ is plurisubharmonic on C
k.

Proof. There are two cases to consider:

Case 1: Let φn(z)≤ 1. Since ηn+1 = ηdn,

φn+1(z)≤max
{
φn(z)

d + |ηn+1|, |ηn+1|
}
≤ 2φn(z)

d.

Case 2: Let φn(z)> 1. Then

φn+1(z)≤max
{
φn(z)

d + |ηn+1|φn(z), |ηn+1|
}
≤ 2φn(z)

d.

Thus, for every z ∈C
k

1

dn+1
logφn+1(z)≤ 1

dn+1
log 2 +

1

dn
logφn(z).

Now define

Φn(z) =
1

dn
logφn(z) +

∑
j≥n

1

dj+1
log 2.

Then Φn is a monotonically decreasing sequence of plurisubharmonic func-
tions and hence its limit will be plurisubharmonic. But note that Φn → ψ and
hence the proof. �

Lemma 3.3. Ω{Fn} = {z ∈Ck : ψ(z)< 0}.
Proof. Suppose ψ(z) < 0, that is, for large n > 0 there exists s < 0 such

that
1

dn
logφn(z)< s.

This implies that |fn
j (z)|< ed

ns for 1≤ j ≤ k and n sufficiently large or equiv-
alently F (n)(z)→ 0 as n→∞. Thus, Ω{Fn} ⊂ {ψ < 0}. For the other inclusion
suppose, z ∈ Ω{Fn}. Then ψn(z)< 0 for n large which implies that ψ(z)≤ 0.
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Suppose z(n0) = F (n0)
−1(0). Then φn(z(n0)) = |ηn| for every n ≥ n0. Then

for sufficiently large n,

ψ
(
z(n0)

)
≤ 1

dn
logφn

(
z(n0)

)
+

∑
j≥n

1

dj+1
log 2

=
1

dn
log ηn +

∑
j≥n

1

dj+1
log 2

< loga+
∑
j≥n

1

dj+1
log 2< 0.

Since ψ is plurisubharmonic and there exists z(n0) ∈ Ω{Fn} such that
ψ(z(n0)) < 0 and ψ(z) ≤ 0 for every z ∈ Ω{Fn}, the subaveraging property
of plurisubharmonic functions shows that ψ(z)< 0 in Ω{Fn}. �

We will need the following observations about the sequence {Fn}:
(i) Except the first one every component of Fn is of the form zd + ηnw.
(ii) For z,w ∈C, there exists R> 0 such that if |w| ≤ |z| and |z| ≥R> 1+ a

then for every n > 0

(3.1)
∣∣zd + ηnw

∣∣ > |z|d − |ηn||w|> |z|
(
|z|d−1 − |ηn|

)
> |z| ≥R.

(iii) Each function Fn is a (k− 1)-composition of (k− 1)-shift maps, that is,

Fn = Sn
k−1 ◦ · · · ◦ Sn

1︸ ︷︷ ︸
(k−1)-compositions

,

where, for 1≤ i≤ k− 2

Sn
i (z1, . . . , zk) =

(
z2, z3, . . . , zk−1, ηnz1 + zd2

)
and

Sn
k−1(z1, . . . , zk) =

(
ηknz2, z3, . . . , zk−1, ηnz1 + zd2

)
.

We will show that the filtration properties of shift-like maps in C
k that were

proved in [4], extend to our case as well.

Let V =Δk(0;R) and

Vi =
{
z ∈C

k : ‖z‖∞ = |zi| ≥R
}

for 1≤ i≤ k. Also let

V + =

k⋃
i=2

Vi and V − = V1.

Observe that V +, V − and V form a disjoint collection where union is all
of Ck.

Lemma 3.4. Fn(V
+)⊂ V + for every n≥ 1.
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Proof. Let z ∈ V +. Then z ∈ Vi for some 2≤ i≤ k. By (3.1)∣∣πi ◦ Fn(z)
∣∣ = ∣∣zdi + ηnzi−1

∣∣ > |zi| ≥R.

Now ∣∣π1 ◦ Fn(z)
∣∣ = |ηn||zk|< |zk| ≤ |zi|<

∣∣πi ◦ Fn(z)
∣∣.

Hence, Fn(z) is not contained in V − or V , that is, Fn(z) ∈ V +. �

Also from the above proof, if z ∈ V +, then (F (n))(z) ∈ Vin for every n≥ 0
and 2≤ in ≤ k, that is, ‖F (n)(z)‖ ≥R. Hence, V + ∩Ω{Fn} = ∅ which proves

that Ω{Fn} is not all of Ck.
Now we will show that ψ is non-constant. Suppose not. Let ψ ≡ α < 0 on all

of Ω{Fn}. Pick a point z0 ∈Ω{Fn}. Choose r > 0 such that Bk(z0, r)⊂Ω{Fn}
and ∂Bk(z0; r)∩ ∂Ω{Fn} 
= ∅. Let p ∈ ∂B(z0; r)∩ ∂Ω{Fn}. Since p /∈Ω{Fn} we
know that ψ(p)≥ 0.

Now for sufficiently small ε > 0, the value of ψ(p) should be bounded above
by its average on the ball Bk(p; ε). But now ψ ≡ α < 0 on Bk(p; ε) ∩ Ω{Fn}
and since ψ is upper semicontinuous, that is,

max
z∈Bk(p;ε)

ψ(z)<ψ(p)− α

that is,

ψ(p) ≤ 1

m(Bk(p; ε))

{
m

(
Bk(p; ε)∩Ω{Fn}

)
α(3.2)

+
(
ψ(p)− α

)
m

(
Bk(p; ε) \Ω{Fn}

)}
,

where m(Bk(p; ε)) is the 2k-dimensional Lebesgue measure of Bk(p; ε). Now
as Bk(z0; r)⊂Ω{Fn} and p ∈ ∂Bk(z0; r), for εi → 0

m(Bk(p; εi)∩Bk(z0; r))

m(Bk(p; εi))
→ 1

2
.

Choose ε > 0 such that

1

2
− ρ≤ m(Bk(p; ε)∩Bk(z0; r))

m(Bk(p; ε))
≤ 1

2
+ ρ,

where 0< ρ< 1/2. As ψ(p)− α > 0, (3.2) reduces to

ψ(p)≤ 1

m(Bk(p; ε))

{
m

(
Bk(p; ε)∩Ω{Fn}

)
α

+
(
ψ(p)− α

)
m

(
Bk(p; ε) \Ω{Fn}

)}
≤ 1

m(Bk(p; ε))

{
m

(
Bk(p; ε)∩Bk(z0; r)

)
α

+
(
ψ(p)− α

)
m

(
Bk(p; ε) \Bk(z0; r)

)}
≤

(
1

2
+ ρ

)
α+

(
1

2
+ ρ

)(
ψ(p)− α

)
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≤ ψ(p)

(
1

2
+ ρ

)
<ψ(p).

This is a contradiction and hence ψ is non-constant on Ω{Fn}. �

Thus we have proved that the non-autonomous basin of attraction at the
origin of the sequence {Fn} is a Short C

k.
Now Theorem 1.3 follows as an application of Theorem 3.1 and Lemma 3.4.

Proof of Theorem 1.3. By Theorem 3.1, there exists a positive real number
R> 0 and a Short Ck, say Ω such that Ω is properly contained in VR∪int(V −

R ),
i.e., for every z = (z1, z2, . . . , zk) ∈Ω either

|zi| ≤R for every 1≤ i≤ k or |zk|>max
{
R, |zi| : 1≤ i≤ k− 1

}
.

For 1≤ i≤ k− 1, let φi be the involution which interchanges the kth coordi-
nate and the ith coordinate and fixes all others, that is,

φi(z1, . . . , zi, . . . , zk) = (z1, . . . , zk, . . . , zi).

Let

Ω̃i = φi(Ω).

Note that each Ω̃i is a Short C
k and Ω̃i ⊂ VR ∪ int(Vi). Also, for a given

constant C ∈C, let AC denote the affine map of Ck given by

AC(z1, z2, . . . , zk) = (z1, z2, . . . , zk−1, zk +C).

For every 1≤ i≤ k− 1, define Ωi as

Ωi =A3(i−1)R(Ω̃i).

Claim. For every 1≤ α,β ≤ k− 1 and α 
= β, Ωα ∩Ωβ = ∅.

Suppose Ωα∩Ωβ 
= ∅. Pick z ∈Ωα∩Ωβ . As α 
= β, without loss of generality
one can assume that α> β.

Since z ∈ Ωα ∩ Ωβ , it follows that A−1
3(α−1)R(z) ∈ VR ∪ int(Vα) and

A−1
3(β−1)R(z) ∈ VR ∪ int(Vβ).

Case 1: If A−1
3(α−1)R(z) ∈ VR, then

|zi| ≤R and
∣∣zk − 3(α− 1)R

∣∣ ≤R.

In particular, |zβ | ≤R and∣∣zk − 3(α− 1)R
∣∣ = ∣∣zk − 3(β − 1)R+ 3(α− β)R

∣∣ ≤R.

As α> β, we have that∣∣zk − 3(β − 1)R
∣∣ ≥ ∣∣∣∣zk − 3(α− 1)R

∣∣− 3(α− β)R
∣∣ >R.
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Hence A−1
3(β−1)R(z) /∈ VR, that is, A−1

3(β−1)R(z) ∈ int(Vβ). But this means

|zβ |>max
{
R, |zi|,

∣∣zk − 3(β − 1)R
∣∣ : 1≤ i≤ k− 1, i 
= β

}
which is a contradiction. Therefore, A−1

3(α−1)R(z) /∈ VR.

Case 2: If A−1
3(α−1)R(z) ∈ int(Vα), then

|zα|>max
{
R, |zi|,

∣∣zk − 3(α− 1)R
∣∣ : 1≤ i≤ k− 1, i 
= α

}
.

Now if A−1
3(β−1)R(z) ∈ VR then |zα| ≤ R which is a contradiction. Hence,

A−1
3(β−1)R(z) ∈ int(Vβ). But that will mean

|zα|> |zβ | and |zβ |> |zα|
which is again a contradiction. Thus, the claim follows and this completes the
proof. �

4. Properties of shift-like maps and proof of Theorem 1.4

For z ∈C
k, let z′ = (z1, z2) and z′′ = (z3, . . . , zk). Let Ṽ be be an algebraic

variety of codimension 2 in C
k, k ≥ 3. For ε > 0, let

Aε =
{
z ∈C

k :
∥∥z′∥∥∞ < ε

}
and

Bε =
{
z ∈C

k :
∥∥z′∥∥∞ < ε

∥∥z′′∥∥∞
}
.

Being algebraic there exists (see [5], [6]) a complex linear map Lε such that

Lε(Ṽ )⊂Aε ∪Bε.

Proposition 4.1. Let Ṽ ⊂ C
k, k ≥ 3 be an an algebraic variety of codi-

mension 2. Then there exists a short Ck that avoids Ṽ .

Proof. Let V , V +, V − and R � 1 be as obtained in the proof of Theo-

rem 3.1. There exists a change of coordinates Lε such that Lε(Ṽ )⊂Aε ∪Bε

with 0< ε<R−1. Now we further compose this map with an affine map

AR(z1, z2, . . . , zk) = (z1, z2, . . . , zk) + (0,2R,0, . . . ,0).

Claim. AR ◦Lε(Ṽ )⊂ V +.

It is enough to show that AR(Aε ∪Bε)⊂ V +. Pick z ∈AR(Aε ∪Bε). Then

(z1, z2 − 2R, . . . , zk) ∈Aε ∪Bε

and for this point z′ = (z1, z2 − 2R) and z′′ = (z3, . . . , zk).

Case 1: If z′ ∈Aε then

|z2 − 2R| ≤ ε and |z1| ≤ ε,

i.e., |z1|< |z2| and |z2|>R. Hence, z ∈ V +.
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Case 2: If z ∈Bε, then two cases arise. Either |z′′| ≤R, i.e., |z′|< 1 and a
similar analysis as above shows that z ∈ V +. Otherwise, for some 3≤ i≤ k if
|zi|>R, then

|z1| ≤ ε|zi|< |zi|.
Hence, z /∈ V ∪ V −, that is, z ∈ V +.

Thus for k ≥ 3, L−1
ε ◦ A−1

R (Ω{Fn}) is a Short Ck which does not intersect

the algebraic variety Ṽ . �

Remark 4.2. Note that Proposition 4.1 does not apriori ensure that the
Short Ck contains a Fatou–Bieberbach domain. The known technique to con-
struct a Short C2 containing a Fatou–Bieberbach domain is to look at sub-level
sets of the positive Green’s function of a Hénon map with an attracting fixed
point.

To prove Theorem 1.4, we will study some properties of sub-level sets of
Green’s function associated with a shift-like maps.

Let S :Ck →C
k be a polynomial shift-like map of degree d and type ν. From

[4], we know that the positive Green’s Function associated to S is defined as:

G+(z) = lim
n→∞

1

dn
log+

∥∥Sνn(z)
∥∥

and the negative Green’s Function associated to S is

G−(z) = lim
n→∞

1

dn
log+

∥∥S−(k−ν)n(z)
∥∥.

Recall from [4] that

VR =Δk(0;R), V +
R =

k⋃
i=k−ν+1

Vi and V −
R =

k−ν⋃
i=1

Vi

is a filtration and the set of zeros of the positive Green’s function is contained
in the union of VR and V +

R , that is,{
z ∈C

k :G+(z) = 0
}
=

{
z ∈C

k : Sn(z) is bounded as n→∞
}
⊂ VR ∪ V −

R .

Proposition 4.3. Let

S(z1, z2, . . . , zk) =
(
z2, . . . , zk, δ

(
zdk−ν+1 − z1

))
be a shift-like automorphism of Ck of type ν and degree d≥ 2 where δ ∈ C

∗.
Then for every c > 0 there exists R> 0 such that for every z ∈ V +

R , G+(z)≥ c,
i.e., {

z ∈C
k :G+(z)< c

}
⊂ VR ∪ V −

R .

Proof. The (k− ν)th iterate of S is:

Sk−ν(z1, z2, . . . , zk) =
(
zν+1, . . . , zk, δ

(
zdk−ν+1 − z1

)
, . . . , δ

(
zdk − zν

))
.
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Suppose z ∈ V +. Then z ∈ Vi0 for k − ν + 1 ≤ i0 ≤ k. For sufficiently large
R> 0, ∣∣πi0

(
Sk−ν(z)

)∣∣ = |δ|
(
|zi0 |d − |zi0−1|

)
≥ |δ|

(
|zi0 |d − |zi0 |

)
(4.1)

≥ |δ|
2
|zi0 |d > |zi0 |d−1 > ‖z‖∞ >R.

This can be rewritten as

(4.2)
∥∥Sk−ν(z)

∥∥
∞ ≥

∣∣πi0

(
Sk−ν(z)

)∣∣ ≥ |δ|
2
‖z‖d∞.

Claim. For every n≥ 1

(4.3)
∥∥Sn(k−ν)(z)

∥∥
∞ ≥

(
|δ|
2

)∑n−1
i=0 di

‖z‖dn

∞ .

It is clear from the above calculations that the claim is true when n= 1.
Now assume that (4.3) is true for some n. We will show that it is true for

n+ 1. Since R|δ|
2 > 1 and ‖z‖∞ >R,

∥∥Sn(k−ν)(z)
∥∥
∞ ≥

(
|δ|
2

)∑n−1
i=0 di

‖z‖dn

∞ > ‖z‖∞ >R

that is, Sn(k−ν)(z) ∈ Vin for some 1≤ in ≤ k. But now for every 1≤ j ≤ k− ν∣∣πj ◦ Sn(k−ν)(z)
∣∣ ≤ ∥∥S(n−1)(k−ν)(z)

∥∥
∞

whereas from (4.1) and (4.2), it follows that∥∥Sn(k−ν)(z)
∥∥
∞ >

∥∥S(n−1)(k−ν)(z)
∥∥
∞,

hence Sn(k−ν)(z) ∈ Vin for some k− ν + 1≤ in ≤ k. Now from (4.1),∣∣πin

(
S(n+1)(k−ν)(z)

)∣∣ ≥ (
|δ|
2

)∣∣πin

(
Sn(k−ν)(z)

)∣∣d
≥

(
|δ|
2

){(
|δ|
2

)∑n−1
i=0 di

‖z‖dn

∞

}d

≥
(
|δ|
2

)∑n
i=0 di

‖z‖dn+1

∞ .

Hence, the claim is true.
Now there exists 0< δ̃ ≤ 1 such that (4.3) can be further modified as

(4.4)
∣∣πin

(
Sn(k−ν)(z)

)∣∣ ≥ δ̃(
∑n−1

i=0 di)‖z‖dn

∞ .

Since
∑n−1

i=0 di < dn for every n≥ 1 and 0< δ̃ ≤ 1, (4.4) can be modified as

(4.5)
∥∥Sn(k−1)(z)

∥∥
∞ >

(
δ̃‖z‖∞

)dn

.
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It follows from (4.5) that

G+(z) = lim
n→∞

1

dn
log+

∥∥S(k−1)n(z)
∥∥ ≥ δ̃‖z‖∞.

Now R can be appropriately modified such that δ̃‖z‖∞ > c (here c is the given
constant) for every z ∈ V +

R , that is,{
z ∈G+(z)> c

}
⊃ V +

R

or equivalently {
z ∈G+(z)< c

}
⊂ VR ∪ V −

R . �

As a corollary of Proposition 4.3, Proposition 4.1 we prove the following
result.

Theorem 4.4. For k ≥ 3, let

S(z1, . . . , zk) =
(
z2, . . . , zk, δ

(
zd2 − z1

))
be a shift-like automorphisms of type k− 1 in C

k for some δ ∈C
∗ and d≥ 2.

For a given c > 0 and an algebraic variety Ṽ of codimension 2, there exists an
appropriate change of coordinates such that the c-sublevel set of the positive
Green’s function, i.e., {

z ∈C
k :G+(z)< c

}
does not intersect Ṽ in the new coordinate system.

Lemma 4.5. Let {Fn} be the sequence of automorphisms as in Theorem 3.1.
If there exists M > 1 such that |ηn+1|<M |ηn|d, where |Mη0|< 1, then Ω{Fn}
is a Short Ck.

Proof. Let M |η0|= α < 1. Note that |η0|<M |η0| and |η1| ≤M |η0|d.

Induction statement. For every n≥ 1, |ηn| ≤M (1+d+···+dn−1)|η0|d
n

.

The above statement is true for n = 1. So assume it is true for some n.
Then

|ηn+1| ≤M |ηn|d ≤M
(
M1+d+···+dn−1 |η0|d

n)d ≤M1+d+···+dn |η0|d
n+1

.

From the induction statement it follows that

|ηn|<
(
M |η0|

)dn

= αdn

.

Hence from Theorem 3.1, it follows that Ω{Fn} is a Short Ck. �

Now we can complete the proof of Theorem 1.4.

Proof of Theorem 1.4. Choose 0< a< 1 and let Fn be a sequence of auto-
morphisms of Ck defined as follows:

Fn(z1, z2, . . . , zk) =
(
ηnzk, z

2
2 + ηnz1, . . . , z

2
k + ηnzk−1

)
,
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where ηn = a2
n+1. Then

ηn+1 =
1

a
η2n and

1

a
η0 = a < 1.

From Lemma 4.5, it follows that Ω{Fn} is a Short Ck. Moreover from Propo-
sition 4.1, for a given algebraic variety V of codimension 2, there exists an
appropriate linear change of coordinates (say L) of Ck such that L(Ω{Fn})
does not intersect V .

Claim. Ω{Fn} contains a Fatou–Bieberbach domain.

Consider the (k− 1)-shift-like automorphism of Ck given by

F (z1, z2, . . . , zk) =
(
azk, z

2
2 + az1, . . . , z

2
k + azk−1

)
.

Clearly the basin of attraction of F at the origin (say ΩF ) is a Fatou–
Bieberbach domain by Rosay–Rudin [17].

For a given constant C 
= 0, let lC denote the linear map from Ck to Ck

given by

lC(z1, z2, . . . , zk) = (Cz1,Cz2, . . . ,Czk).

Note that

Fn(z1, z2, . . . , zk) = la2n+1 ◦ F ◦ la−2n (z1, z2, . . . , zk).

Then for z ∈ la(ΩF ), there exists n sufficiently large such that ‖F (n)(z)‖ <
a2

n+1

, that is,

ψ(z)< loga < 0.

Thus, la(ΩF ) is a Fatou–Bieberbach domain contained in Ω{Fn}. The Short

C
k and Fatou–Bieberbach domain claimed in Theorem 1.4 are then L(Ω{Fn})

and L(la(ΩF )), respectively. �

5. Controlling the boundary of a Short C
k on a fixed polydisk

In this section, we will construct a Short Ck, k ≥ 3 with some control on its
boundary on a fixed polydisk. Theorem 5.10 is the main statement here—it
shows the existence of a Short C

k, whose boundary is very close to (k − 1)-
faces of the polydisk. In addition, this Short Ck is almost a cylinder along the
remaining direction. We will use some ideas from [12], [13] and [7].

First, recall the following lemma from [13] and [7].

Lemma 5.1. For a given R� 1, ε > 0 and l ≥ 1, there exists α0(ε,R)> 0
such that if 0≤ α≤ α0, then{

(z,w) ∈C
2 :

∣∣z2 + αw
∣∣ = 1, |w| ≤R

}
=

{(
φα(ξ,w)ξ,w

)
: ξ ∈ ∂Δ, φα ∈Cl

(
∂Δ×Δ(0;R)

)}
,

where φα ∈Cl(∂Δ×Δ(0;R)). Moreover, ‖φα − 1‖Cl(∂Δ×Δ(0;R)) < ε.
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A proof of this for l = 1 can be found in [13]. For l > 1, this was observed
in [7]—See Lemma 5.3.4 therein.

It follows that if 0<α≤ α0(ε,R), then{
(z,w) ∈C

2 : |z2 + αw| ≤ 1, |w| ≤R
}

=
{(

tφα(ξ,w)ξ,w
)
: 0≤ t≤ 1, ξ ∈ ∂Δ, φα ∈Cl

(
∂Δ×Δ(0;R)

)}
.

As in Section 2, let

(5.1) Fα(z1, z2, . . . , zk) =
(
αzk, z

d
2 + αz1, z

d
3 + αz2, . . . , z

d
k + αzk−1

)
which is an automorphism of Ck for any α > 0. For a sequence of automor-
phisms {Fi} of Ck, let F (n) and F (m,n) denote the following maps

F (n)(z) = Fn ◦ · · · ◦ F0(z), F (m,n) = Fm+1 ◦ · · · ◦ Fn = F (m)−1 ◦ F (n),

where 0≤m≤ n. Also for a given ε > 0 and a compact subset (say K) of Ck

we will denote the ε-tube around K by Nε(K), that is,

Nε(K) =
{
z ∈C

k : dist(z,K)< ε
}
.

Lemma 5.2. For a given R� 1, ε > 0 and l ≥ 1 there exists α0(ε,R)> 0

such that for every 0 < α ≤ α0 there exists φα ∈ Cl(∂Δ×Δ(0;R)) with the
following properties:

(i) Let (z1, z2, . . . , zk) ∈ F−1
α (Δk(0; 1)) ∩Δk(0;R). Then for every 2≤ i≤ k,

the value of zi depends on zi−1 recursively in the following way: for every

z1 ∈Δ(0;R) and 2≤ i≤ k

zi = tiφα(ξi, zi−1)ξi,

where ti ∈ [0,1), ξi ∈ ∂Δ.

(ii) F−1
α (∂Δk(0; 1))∩Δk(0;R)⊂Nkε(Δ(0;R)× ∂Δk−1(0; 1)).

Proof. Let α′
0 > 0 such that α′

0R< 1. If 0<α< α′
0 then

F−1
α

(
Δk(0; 1)

)
∩Δk(0;R)(5.2)

=
{
(z1, . . . , zk) ∈Δk(0;R) :

∣∣z2i + αzi−1

∣∣ < 1 for 2≤ i≤ k
}
.

From Lemma 5.1, there exists α′′
0 such that for every 0<α≤min{α′

0, α
′′
0}

zi = tiφα(ξi, zi−1)ξi

if |zi−1| ≤ R for every 2 ≤ i ≤ k. Here ti ∈ [0,1), ξi ∈ ∂Δ, φα ∈ Cl(∂Δ ×
Δ(0;R)) and

‖φα − 1‖Cl(∂Δ×Δ(0;R)) < ε.

Since |z1| ≤R, |zi| ≤ 1 + ε < R for every 2≤ i≤ k. Hence, (i) follows.
For a fixed i, 2≤ i≤ k, define

Hi,α,1 =
{
(z1, . . . , zk) :

∣∣z2i + αzi−1

∣∣ = 1 and∣∣z2j + αzj−1

∣∣≤ 1, |z1| ≤R for 2≤ j ≤ k, j 
= i
}
.
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From (5.2), the set F−1
α (∂Δk(0; 1))∩Δk(0;R) can be realized as

F−1
α

(
∂Δk(0; 1)

)
∩Δk(0;R) =

k⋃
i=2

Hi,α,1.

Also Δ(0;R)× ∂Δk−1(0; 1) can be written as the union of its faces, that is,

Δ(0;R)× ∂Δk−1(0; 1) =

k⋃
i=2

Di,1,

where

Di,1 =
{
(z1, . . . , zk) : |zi|= 1, |zj | ≤ 1 and |z1| ≤R for 2≤ j ≤ k, j 
= i

}
for a fixed i, 2≤ i≤ k. Now from the bound on φα it follows that the distance
between Hi,α,1 and Di,1 is less than kε. Thus, (ii) follows. �

Remark 5.3. The function φα obtained in Lemma 5.1 is actually a positive
smooth function with

1< φα|∂Δ×Δ(0;R) ≤ 1 + ε.

Remark 5.4. Using this, the conclusion of Lemma 5.2 can be improved
slightly, that is,

F−1
α

(
Δk(0; 1)

)
∩Δk(0;R)⊂

(
Δ(0;R)×Δk−1(0; 1 + kε)

)
.

The next result is Lemma 5.3.5 from [7]. We will include the proof for the
sake of completeness. Before stating the result, we introduce certain notations.
Suppose Fn = Fαn is a sequence of automorphisms as in (5.1). For n≥ 1 and
0< c≤ 1, let

Ωn,c =
{
z ∈C

k : F (n)(z) ∈Δk(0; c)
}

and

Ω=

∞⋃
n=1

Ωn,c for 0< c < 1.

From Theorem 1.4, we know that Ω is a Short Ck if αn+1 ≤ α2
n and 0<α0 < 1

and it is the non-autonomous basin of attraction of the sequence {Fn} at the
origin.

Lemma 5.5. Fix 0< c < 1. For a given compact connected set K and ε > 0,
there exists τ = τ(n, ε,K) > 0 such that if 1 − τ < c < 1 then ∂Ωn,c ∩ K ⊂
Nε(∂Ωn,1 ∩K).

Proof. Let P1 = F (n)(∂Ωn,1) and Vε = F (n)(Nε(∂Ωn,1)). Note that

Vε =
⋃

z∈∂Ωn,1

F (n)
(
Bk(z; ε)

)
,

and that Vε is an open cover of P1. Then for every z ∈ ∂Ωn,1 ∩K there exists
rz > 0 such that Bk(F (n)(z); rz) ∈ Vε. The collection Bk(F (n)(z); rz/k) as z
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varies in Ωn,1 forms an open cover of P1. Since P1 is compact there exists
N0 ≥ 1 such that

P1 ⊂
N0⋃
i=1

Bk
(
F (n)(zi); rzi/k

)
⊂ Vε.

Let τ1 =min{ rzi
k : 1≤ i≤N0}. Let

Pc = F (n)(∂Ωn,c).

If 1− τ1 < c < 1, the distance between Pc and P1 is at most kτ1 <min{rzi :
1≤ i≤N0}. Thus Pc ⊂ Vε and ∂Ωn,c ⊂Nε(∂Ωn,1).

Now by the connectedness of K, there exists τ2 > 0 such that if 1− τ2 <
c < 1, the distance between Pc ∩ F (n)(K) and P1 ∩ F (n)(K) is at most kτ2.
Let τ =min{τ1, τ2}. Hence, for every c such that 1− τ < c < 1,

∂Ωn,c ∩K ⊂Nε(∂Ωn,1 ∩K). �

Let n≥ 0. Suppose there exist (n+1)- real positive constants {αi : 0≤ i≤
n} such that αi+1 ≤ α2

i for every 0≤ i < n. Then this finite collection can be
extended to a infinite sequence {αm} such that αm+1 ≤ α2

m for every m≥ 0.
This extension is evidently not unique. However, the basin of attraction of the
sequence of automorphisms {Fm}, where Fm = Fαm is a Short C

k. Here, we
will show that if there exist (n+1)-automorphisms {Fi : 0≤ i≤ n} such that
we can control the following:

(i) the behaviour of Ωn,1 on a large polydisk,
(ii) the behaviour of Ωi,ci for a collection of increasing real constants {ci :

0≤ i≤ n}, and
(iii) the behaviour of Ω, where Ω is the basin of attraction of the sequence

{Fm} obtained by some appropriate extension of the collection {αi : 0≤
i≤ n},

then the finite collection of automorphisms can be appended with Fn+1 such
that the collection {Fi : 0≤ i≤ n+ 1} will also satisfy the above three prop-
erties. Essentially our target is to show that we can inductively control ap-
propriate these domains. This phenomenon is stated in the following result.

Proposition 5.6. Suppose for some n ∈ N, there exist automorphisms
{Fαi : 0≤ i≤ n} of Ck, with the following properties.

(a) For a given R� 1

Ωn,1 ∩Δk(0;R) =
{
(z1, z2, . . . , zk) ∈Δk(0;R) :

∣∣zni ∣∣ < 1 for every 2≤ i≤ k
}
.

(b) For every 0 ≤ i ≤ n, there exist (n + 1)-increasing constants 0 < ci < 1
and (n+ 1)-sequences {αm(i)}m≥n+1(

i.e.,
{
αn+1+j(0)

}∞
j=0

,
{
αn+1+j(1)

}∞
j=0

, . . . ,
{
αn+1+j(n)

}∞
j=0

)
,
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such that if Fm = Fαm where

0<αm ≤min
{
αm(i), α2

m−1 : 0≤ i≤ n
}

for m≥ n+ 1, then

Ωi,ci ⊂Ωi+1,ci+1 ⊂Ωm,cn ⊂Ω for 0≤ i≤ n− 1,

where Ω is the basin of attraction of {Fj}∞j=0 at the origin.

Then for a given ε > 0, there exists 0< cn+1(ε)< 1 and α′
n+1 > 0 such that:

(i) For Fn+1 = Fαn+1 where 0<αn+1 <α′
n+1,

Ωn+1,1 ∩Δk(0;R)

=
{
(z1, z2, . . . , zk) ∈Δk(0;R) :

∣∣zn+1
i

∣∣ < 1 for every 2≤ i≤ k
}

and
∂Ωn+1,1 ∩Δk(0;R)⊂Nε

(
∂Ωn,1 ∩Δk(0;R)

)
.

(ii) ∂Ωn+1,cn+1 ∩Δk(0;R) is contained in the ε-neighbourhood of ∂Ωn+1,1 ∩
Δk(0;R), i.e.,

∂Ωn+1,cn+1 ∩Δk(0;R)⊂Nε

(
∂Ωn+1,1 ∩Δk(0;R)

)
and cn+1 ≥ cn.

(iii) There exists a sequence of positive real numbers {αm(n+1)}m≥n+2 such
that if Fm = Fαm for every m≥ n+ 2 where

0<αm ≤min
{
α2
m−1, αm(i) : 0≤ i≤ n+ 1

}
and Ω is the basin of attraction of {Fj}∞j=0 at the origin, then

Ωi,ci ⊂Ωi+1,ci+1 ⊂Ωm,cn+1 ⊂Ω for every 0≤ i≤ n.

Proof. Fix Rn > 1 such that F (n)(Δk(0;R))⊂⊂Δk(0;Rn). By continuity

of F (n)−1, for ε > 0 there exists δ > 0 such that for z, z′ ∈Δk(0;Rn),∥∥F (n)−1(z)− F (n)−1
(
z′

)∥∥ < ε

whenever ‖z − z′‖< δ/k.
By Lemma 5.2, there exists α′

n+1 = α′
n+1(δ,Rn) such that if 0 < αn+1 ≤

α′
n+1 and Fn+1 = Fαn+1 , then

F−1
n+1

(
Δk(0; 1)

)
∩Δk(0;Rn)

=
{
(z1, . . . , zk) ∈Δk(0;Rn) :

∣∣z2i + αn+1zi−1

∣∣< 1 for 2≤ i≤ k, |z1| ≤Rn

}
and

(5.3) F−1
n+1

(
∂Δk(0; 1)

)
∩Δk(0;Rn)⊂Nδ

(
Δ(0;Rn)× ∂Δk−1(0; 1)

)
.

Looking at the proof of the above fact, we see that the δ-neighbourhood is
obtained by keeping the z1-coordinate fixed. Hence, (5.3) can be rewritten as

F−1
n+1

(
∂Δk(0; 1)

)
∩ F (n)

(
Δk(0;R)

)
(5.4)

⊂Nδ

(
π1 ◦ F (n)

(
Δk(0;R)

)
× ∂Δk−1(0; 1)

)
.
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This exactly means that

Ωn+1,1 ∩Δk(0;R)

=
{
(z1, z2, . . . , zk) ∈Δk(0;R) :

∣∣zn+1
i

∣∣ < 1 for every 2≤ i≤ k
}
.

Since the automorphisms {Fi}ni=0 satisfy condition (a),

F (n)−1
(
C×Δk−1(0; 1)

)
∩Δk(0;R) = Ωn,1 ∩Δk(0;R)

that is,

F (n)−1
(
C× ∂Δk−1(0; 1)

)
∩Δk(0;R) = ∂Ωn,1 ∩Δk(0;R).

As Δk(0;R) = F (n)−1 ◦F (n)(Δk(0;R)), the above expression further simpli-
fies as

F (n)−1
(
C× ∂Δk−1(0; 1)∩ F (n)

(
Δk(0;R)

))
= ∂Ωn,1 ∩Δk(0;R).

Now by continuity of F (n), we have

F (n)−1
(
Nδ

(
C× ∂Δk−1(0; 1)

)
∩ F (n)

(
Δk(0;R)

))
⊂Nε

(
∂Ωn,1 ∩Δk(0;R)

)
,

which using (5.4) says that

∂Ωn+1,1 ∩Δk(0;R)⊂ F (n)−1
(
Nδ

(
C× ∂Δk−1(0; 1)

)
∩ F (n)

(
Δk(0;R)

))
⊂Nε

(
∂Ωn,1 ∩Δk(0;R)

)
.

This completes the proof of (i).
From Lemma 5.5, there exists 0< c̃n+1 < 1 such that for every c̃n+1 ≤ c < 1

∂Ωn+1,c ∩Δk(0;R)⊂Nε

(
∂Ωn+1,1 ∩Δk(0;R)

)
.

Thus for cn+1 =max{ci, c̃n+1 : 0≤ i≤ n}, property (ii) is proved.
Now as in the proof of Theorem 3.1, note that if the αm’s are chosen

sufficiently small, that is, αm ≤ αm(n + 1) for every m ≥ n + 2, then there
exists cn+1 < c′n+1 < 1 such that

F (m)F (n+ 1)−1
(
Δk(0; cn+1)

)
⊂Δk

(
0; cn+1

(
c′n+1

)m−n−1)
.

So for m≥ n+ 2, if

αm ≤min
{
α2
m−1, αm(i) : 0≤ i≤ n+ 1

}
,

then

Ωn+1,cn+1 ⊂Ωm,cn+1 ⊂Ω and Ωn,cn ⊂Ωn+1,cn ⊂Ωn+1,cn+1 .

This proves property (iii). �

Remark 5.7. Note that the proof of Proposition 5.6 ensures that if 0 <
cn+1 < c < 1, then

∂Ωn+1,c ∩Δk(0;R)⊂Nε

(
∂Ωn+1,1 ∩Δk(0;R)

)
also.
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Let us recall the following definitions from [12]. For a given R� 1 and for
every 1≤ j ≤ k, let

Pj(R) =
{
z ∈C

k : |zj |= 1, |zi| ≤R, i 
= j
}
.

Definition 5.8. Fix j ≤ k. For a given l≥ 1 and φ ∈Cl(Pj(R)), let

Γj
φ(R) =

{
z ∈C

k : zj = φ(z1, . . . , zj , ξ, zj+1, . . . , zk)ξ, ξ ∈ ∂Δ, |zi| ≤R, i 
= j
}
.

We will refer to this as the Cl-graph over Pj(R) given by φ.

Definition 5.9. Fix j ≤ k. For a given l≥ 1 and φ ∈Cl(Pj(R)), let

Gj
φ(R) =

{
z ∈C

k : zj = tφ(z1, . . . , zj , ξ, zj+1, . . . , zk)ξ,

0≤ t≤ 1, ξ ∈ ∂Δ, |zi| ≤R, i 
= j
}
.

This is called the standard domain over Pj(R) given by φ.

Fix j ≤ k. For a given ε > 0, l≥ 1 and φ ∈Cl(Pj(R)) the ε-neighbourhood
of φ is the collection of all Cl-smooth functions ψ ∈ Pj(R) such that

‖φ−ψ‖Cl(Pj(R)) < ε.

Now using the above results appropriately it is possible to control the bound-
ary of a Short Ck on a large enough polydisk. This is stated as follows.

Theorem 5.10. For given R � 1 and an 0 < ε < 1, there exists a Short
C

k, say Ω such that:

(i) For every 2≤ j ≤ k, there exists rj ∈C∞(Pj(R)) such that Γj
rj (R) is an

ε-small C∞-perturbation of Pj(R).

(ii) For every 2≤ j ≤ k, Ω∩Δk(0;R) is the intersection of standard domains
over Pj(R) given by rj ’s, i.e.,

Ω∩Δk(0;R) =

k⋂
j=2

Gj
rj (R).

(iii) ∂Ω∩Δk(0;R) is contained in an ε-perturbation of Δ(0;R)×∂Δk−1(0; 1),
i.e.,

Δ(0;R)×Δk−1(0; 1)⊂Ω∩Δk(0;R)⊂Δ(0;R)×Δk−1(0; 1 + ε).

Proof. For every 2≤ j ≤ k, let r−1
j denote the constant function 1 on Pj(R),

i.e.,

Γj

r−1
j

(R) = Pj(R).

and ε0n = ε/k2n+1 for every n≥ 0.

Induction statement. For a given n ≥ 0, there exist (n + 1)-auto-
morphisms of Ck, say Fi (0≤ i≤ n) such that:

(i) Fi = Fαi where αi+1 ≤ α2
i for 0≤ i≤ n− 1.
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(ii) For every 2≤ j ≤ k and 0≤ i≤ n,

Sj =
{
z ∈Δk(0;R) :

∣∣πj ◦ F (i)(z)
∣∣ = 1

}
is given by the graph of rij ∈C∞(Pj(R)) where

∥∥rij − ri−1
j

∥∥
Ci(Pj(R))

< ε0i and Ωi,1 ∩Δk(0;R) =

k⋂
j=2

Gj
rij
(R).

(iii) For every 0≤ i≤ n and 2≤ j ≤ k, rij ∈C∞(Pj(R)) is increasing, that is,

0< ri−1
j (x)< rij(x) for every x ∈ Pj(R) and Gri−1

j
(R)⊂Grij

(R).

(iv) There exist {ci}ni=0 such that 0< ci < 1 and for every 0≤ i≤ n,

∂Ωi,ci ∩Δk(0;R)⊂Nε0i

(
∂Ωi,1 ∩Δk(0;R)

)
.

(v) For every 0 ≤ i ≤ n, there exist (n + 1)-sequences {αm(i)}m≥i+1 such
that for every m≥ n+ 1, if Fm = Fαm where

αm ≤min
{
αm(i), α2

m−1 : 0≤ i≤ n
}

and Ω is the basin of attraction of the sequence {Fj}∞j=0, then

Ωi,ci ⊂Ωm,cn ⊂Ω and Ωi,ci ⊂Ωi+1,ci+1 for 0≤ i≤ n− 1.

Initial case. This corresponds to n= 0.

Note that by Lemmas 5.2 and 5.5, there exist α0 and c0 such that F0 = Fα0

satisfies properties (i), (ii) and (iv) above. Also, from Remark 5.3, F0 satisfies
property (iii) as well.

Now using the same arguments as in the proof of property (iii) of Proposi-
tion 5.6, there exists a sequence {αm(0)}m≥1 such that if Fm = Fαm for every
m≥ 1, where αm ≤min{αm(0), α2

m−1} and Ω is the basin of attraction of the
sequence {Fp}∞p=0, then

Ω0,c0 ⊂Ω and Ωm,c0 ⊂Ω

for every m≥ 1.
So we may assume that the above conditions are true for some n0 ≥ 0.

General case. Let Rn0 > 0 be such that

F (n0)
(
Δk(0;R)

)
⊂⊂Δk(0;Rn0).

Recall Lemma 2.1 from [12].

Lemma 5.11. Let l≥ 1 and r0 > 0. Let Φ be a holomorphic automorphism
of Ck and let R0 > 1 be so large that

Φ
(
Δk(0; r0)

)
⊂⊂Δk(0;R0).

Let S = {z ∈ Δk(0;R0) : |zj | = 1} and assume that Φ−1(S) ∩ Δk(0; r0) is a
Cl-graph over Pi(r0). Then for a given ε > 0, there exists a δ > 0 such that
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if T is a Cl-graph over Pj(R0) in the δ-neighbourhood of S, then Φ−1(T ) ∩
Δk(0; r0) is Cl-smooth graph over Pi(r0) belonging to the ε-neighbourhood of

Φ−1(S)∩Δk(0; r0).

For 2 ≤ j ≤ k, let Sj = {z ∈ Δk(0;Rn0) : |zj | = 1}. By assumption, each
F (n0)

−1(Sj) is a graph over Pj(R). Then for ε0n0+1, there exists δ > 0 such
that Lemma 5.11 is true for the automorphism F (n0) with l= n0 + 1.

Now choose 0< εn0+1 ≤min{ε0n0+1, δ}.
By applying Lemma 5.2 on Δk(0;Rn0), there exists α′

n0+1 such that if
Fn0+1 = Fαn0+1 where 0<αn0+1 ≤ α′

n0+1, then for every 2≤ j ≤ k

Tj =
{
z ∈Δk(0;Rn0) :

∣∣πj ◦ Fn0+1(z)
∣∣ = 1

}
is in the εn0+1-neighbourhood of Sj . Also from Proposition 5.6, there exists
α′′
n0+1 such that if Fn0+1 = Fαn0+1 , where 0 < αn0+1 ≤ α′′

n0+1, there exists
cn0 ≤ cn0+1 < 1 such that

Ωn0+1 ∩Δk(0;R)(5.5)

=
{
(z1, z2, . . . , zk) ∈Δk(0;R) :

∣∣zn0+1
j

∣∣< 1 for every 2≤ j ≤ k
}

and

(5.6) ∂Ωn0+1,cn0+1 ∩Δk(0;R)⊂Nε0n0+1

(
∂Ωn0+1,1 ∩Δk(0;R)

)
.

Choose 0<αn0+1 ≤min{α′
n0+1, α

′′
n0+1, α

2
n0
, αn0+1(i) : 0≤ i≤ n0}.

By assumption, F (n0)
−1(Sj) ∩ Δk(0;R) is actually a C∞-smooth graph

over Pj(R), that is, in particular a Cn0+1-smooth graph over Pj(R). Hence

by Lemma 5.11, F (n0)
−1(Tj)∩Δk(0;R) is a Cn0+1-smooth graph over Pj(R).

Let rn0+1
j denote the function for this graph and by the choice of εn0+1, it is

assured that for every 2≤ j ≤ k,∥∥rn0
j −rn0+1

j

∥∥
Cn0+1(Pj(R))

≤ ε0n0+1 and Ωn0+1,1∩Δk(0;R) =

k⋂
j=2

Gj

r
n0+1
j

(R).

Observe that for every 2 ≤ j ≤ k, by Remark 5.3, Tj is a smooth graph in

Pj(Rn0). Also F (n0)
−1(Tj) ∩Δk(0;R) is a graph over Pj(R) and F (n0)

−1 is

a smooth function. Hence, rn0+1
j ∈C∞(Pj(R)).

Note that by construction Ωn0+1 satisfies condition (5.5) and (5.6), for
cn0+1. So {Fi}n0+1

i=0 satisfies properties (i), (ii) and (iv) of the induction state-
ment.

From Remark 5.3, it follows that for every 2≤ j ≤ k,{
z ∈Δk(0;Rn0) : |zj | ≤ 1

}
⊂

{
z ∈Δk(0;Rn0) :

∣∣πj ◦ Fn0+1(z)
∣∣ ≤ 1

}
.

Hence property (iii) is also satisfied, that is, for every 0≤ i≤ n0 + 1

ri−1
j < rij and Gj

ri−1
j

⊂Gj
rij
.
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Now as observed in the proof of Proposition 5.6, the sequence {αm(n0 +
1)}m≥n0+2 can be appropriately chosen such that if Fm = Fαm for every m≥
n0 + 2, where

αm ≤min
{
αm(i), α2

m−1 : 0≤ i≤ n0 + 1
}

and Ω is the basin of attraction of the sequence {Fj}∞j=0 at the origin, then

Ωi,ci ⊂Ωi+1,ci+1 ⊂Ωm,cn0+1 ⊂Ω for 0≤ i≤ n0.

Thus the induction statement is true for every n≥ 0.
So we have a sequence of automorphisms {Fp}p≥0 such that the following

is true for every p≥ 0:

• The basin of attraction of {Fp}p≥0 at the origin, that is, Ω is a Short Ck.
• There exists an increasing sequence {cp}p≥0 such that 0< cp < 1 and

Ωp,cp ⊂Ωp+1,cp+1 ⊂Ω.

• By Remark 5.7,

∂Ωp,c ∩Δk(0;R)⊂Nε0p

(
∂Ωp,1 ∩Δk(0;R)

)
for every p≥ 0, if 0< cp ≤ c < 1.

• For every 2≤ j ≤ k, there exists an increasing sequence of positive functions
rij ∈C∞(Pj(R)) such that

Ωp,1 ∩Δk(0;R) =

k⋂
j=2

Gj
rpj
(R), Ωp,1 ∩Δk(0;R)⊂Ωp+1,1 ∩Δk(0;R)

and ∥∥rp−1
j − rpj

∥∥
Cp(Pj(R))

≤ ε0p.

Case 1: Suppose 0< cn <C < 1 for every n≥ 0. Then from Theorem 3.1,
there exists n0 ≥ 0 such that

Ω =
⋃

n≥n0

Ωn,C and Ωn,C ⊂Ωn+1,C for n≥ n0.

So

∂Ω∩Δk(0;R) = lim
n→∞

∂Ωn,C ∩Δk(0;R).

But

∂Ωn,C ∩Δk(0;R)⊂Nε0n

(
∂Ωn,1 ∩Δk(0;R)

)
and ε0n → 0 as n→∞. Hence,

Ω∩Δk(0;R) = lim
n→∞

Ωn,C ∩Δk(0;R) = lim
n→∞

Ωn,1 ∩Δk(0;R).

Case 2: Suppose cn → 1 as n→∞. In this case, for every n≥ 0

Ωn,cn ⊂Ω and ∂Ωn,cn ∩Δk(0;R)⊂Nε0n

(
∂Ωn,1 ∩Δk(0;R)

)
.
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Notice that by choice c0 ≤ cn < 1 and Ωn,c0 ⊆Ωn,cn . Hence,

Ω =

∞⋃
n=n0

Ωn,c0 ⊂
∞⋃

n=0

Ωn,cn ⊆Ω,

that is,

Ω =

∞⋃
n=0

Ωn,cn and Ωn,cn ⊂Ωn+1,cn+1 .

So

∂Ω∩Δk(0;R) = lim
n→∞

∂Ωn,cn ∩Δk(0;R)

and ε0n → 0 as n→∞. Hence,

Ω∩Δk(0;R) = lim
n→∞

Ωn,cn ∩Δk(0;R) = lim
n→∞

Ωn,1 ∩Δk(0;R).

Now for every 2 ≤ j ≤ k and for a fixed i ≥ 0, the sequence of functions
{rnj }∞n=i is an increasing Cauchy sequence in Ci(Pj(R)). Since Ci(Pj(R)) is a

Banach space and rnj → rj as n→∞, rj ∈Ci(Pj(R)) for every i≥ 0, that is,
rj ∈C∞(Pj(R)) for every 2≤ j ≤ k. Also

‖rj − 1‖Cl(Pj(R)) ≤ ε0,

that is,

1− ε0 ≤ rj(x)≤ 1 + ε0

for every x ∈ Pj(R) and

Ωn,1 ∩Δk(0;R) =

k⋂
j=2

Gj
rnj
(R).

Hence taking limits as n→∞ on both sides,

Ω∩Δk(0;R) =

k⋂
j=2

Gj
rj (R).

But Gj
rj is contained in the ε0-neighbourhood of Pj(R), i.e., in Nε0(Pj(R)),

so we have that

Ω∩Δk(0;R)⊂Δ(0;R)×Δk−1(0; 1 + ε).

Note that by construction, for every n≥ 0,

Δ(0;R)×Δk−1(0; 1)⊂
k⋂

j=2

Gj
rnj
(R),

that is,

Δ(0;R)×Δk−1(0; 1)⊂Ω∩Δk(0;R)

and this completes the proof. �
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Corollary 5.12. There exists a Short Ck, say Ω and a bounded domain
D ⊂C

k−1 which embeds holomorphically in Ω.

Proof. Consider the subspace of Ck given by

H =
{
(z1, z2, . . . , zk) ∈C

k : z1 = 0
}
.

Let Ω be the Short Ck obtained from Theorem 5.10 and let D be the compo-
nent of Ω∩H which contains the origin. From Theorem 5.10, it follows that D
is an ε-perturbation of the unit polydisk Δk−1(0; 1) where ε > 0 is sufficiently
small. �

6. Proof of Theorem 1.5 and Theorem 1.6

The main idea here is to use Theorem 5.10 for polydisks of increasing radii
in C

k, k ≥ 2. We will follow the same notations from Section 4. First, we prove
Theorem 1.5, that is, when k = 2.

Proof of Theorem 1.5. Choose 0 < ε < 10 and a sequence of strictly in-
creasing positive real numbers {Rn}n≥0 such that R0 � 1. Let r denote the
constant function 1 on all of C2, then for every R≥ 0,

Γ2
r(R) = P2(R).

Let εn = ε/2n+2 for every n≥ 0.

Induction statement. For a given n ≥ 0, there exist (n + 1)-auto-
morphisms of C2, say Fi (0≤ i≤ n) such that

(i) Fi = Fαi , where αi+1 ≤ α2
i for 0≤ i≤ n− 1.

(ii) There exist (n+ 1)-increasing positive real numbers {R′
i}n+1

i=1 such that

F (i)
(
Δ2(0;Ri+1)

)
⊂⊂Δ2

(
0;R′

i+1

)
and Fi

(
Δ2

(
0;R′

i

))
⊂⊂Δ2

(
0;R′

i+1

)
for every 0≤ i≤ n. Here R′

0 =R1. Also

F−1
i

(
∂Δ2(0; 1)

)
∩Δ2

(
0;R′

i

)
⊂Nεi

(
Δ

(
0;R′

i

)
× ∂Δ(0; 1)

)
.

(iii) For every 0≤ i≤ n and i≤ j ≤ n there exist functions rji ∈C∞(P2(R
′
i+1))

whose graphs over P2(R
′
i+1) are the (n− i+ 1) sets

S(i, j) =
{
z ∈Δ2

(
0;R′

i+1

)
:
∣∣π2 ◦ F (i, j)(z)

∣∣ = 1
}
.

(iv) For every 0≤ i≤ n and i≤ j ≤ n,∥∥rj+1
i − rji

∥∥
Ci(P2(R′

i+1))
< εi/2

j+1−i

and

G2
rji

(
R′

i+1

)
⊂G2

rj+1
i

(
R′

i+1

)
.

Moreover, rii = r, that is, G2
rii
(R′

i+1) = P2(R
′
i+1).
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(v) There exist {ci}ni=0 such that 0 < ci < 1 and for every 0 ≤ i ≤ n and
i≤ j ≤ n,

∂Ωj,cj ∩ F (i)−1
(
Δ2

(
0;R′

i+1

))
⊂Nεj

(
∂Ωj,1 ∩ F (i)−1

(
Δ2

(
0;R′

i+1

)))
.

(vi) For every 0 ≤ i ≤ n, there exist (n + 1)-sequences {αm(i)}m≥i+1 such
that

αm ≤min
{
αm(i), α2

m−1 : 0≤ i≤ n
}

for m ≥ n + 1 and corresponding automorphisms Fm = Fαm with the
property that if Ω is the basin of attraction of the sequence {Fj}j≥0 at
the origin, then

Ωi,ci ⊂Ωi+1,ci+1 ⊂Ωm,cn ⊂Ω for 0≤ i≤ n− 1.

Initial case. Suppose n= 0.

By Lemma 5.2, for R=R′
0 >R0, ε= ε0 and l = 0, there exists 0< α0 < 1

such that F0 = Fα0 satisfies (i) and (ii) above. Let R′
1 > 0 be such that

F0(
(
Δ2(0;R1)

)
⊂⊂Δ2

(
0;R′

1

)
.

But S(0,0) = P2(R
′
1) and hence (iii) holds by definition. Also, (iv) is vacuous,

since r10 is not yet defined. By Lemma 5.5, if K = F−1
0 (Δ2(0;R′

1)), there exists
0< c0 < 1 such that (v) holds.

Finally, as in Theorem 5.10, the same arguments as in the proof of property
(iii) of Proposition 5.6, there exists a sequence {αm(0)}m≥1 such that if Fm =
Fαm for every m ≥ 1, where αm ≤min{αm(0), α2

m−1} and Ω is the basin of
attraction of the sequence {Fp}∞p=0 at the origin, then

Ω0,c0 ⊂Ω and Ωm,c0 ⊂Ω

for every m≥ 1. Hence, F0 satisfies all of (i)–(vi).
By induction, we may assume that the above properties are true for some

n0 ≥ 0.

General case. By the induction hypothesis, there exists R′
n0+1 such that

F (n0)
(
Δ2(0;Rn0+1)

)
⊂⊂Δ2

(
0;R′

n0+1

)
and

Fn0

(
Δ2

(
0;R′

n0

))
⊂⊂Δ2

(
0;R′

n0+1

)
.

By Lemma 5.2, for R = R′
n0+1 > R0, ε = εn0+1 and l = n0, there exists 0 <

α′ < 1 such that if Fn0+1 = Fα where 0<α< α′, the above properties (i) and
(ii) are true. Pick R′

n0+2 > 0 such that

α′R′
n0+1 +R′2

n0+1 <R′
n0+2.

Also for every 0≤ i≤ n0, pick R̃i > 0 such that

F (i, n0)
(
Δ2

(
0;R′

i+1

))
⊂⊂Δ2(0; R̃i).
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Note that S̃i by definition is the graph P2(R̃i). Further, from the induction

hypothesis, F (i, n0)
−1

(S̃i) is a graph over Δ2(0;R′
i+1) for every 0≤ i≤ n0.

For a fixed i, 0≤ i≤ n0, by an application of Lemma 5.11 on Δ2(0; R̃i) for

l= i, there exists a δi > 0 such that if T̃i is a graph over P2(R̃i) which lies in the

δi-neighbourhood of S̃i, then F (i, n0)
−1(T̃i) is a graph on Δ2(0;R′

i+1). More-

over, F (i, n0)
−1(T̃i) lies in the εi/2

n0+1−i-neighbourhood of F (i, n0)
−1(S̃i).

Now applying Lemma 5.2 repeatedly on each Δ2(0; R̃i), there exists α′
i such

that for 0<α≤min{α′
i : 0≤ i≤ n0}, the set∣∣π2 ◦ Fα(z)

∣∣ = 1 for z ∈Δ2(0; R̃i)

is the graph of a smooth function φi
α on P2(R̃i). Also, for every 0≤ i≤ n0∥∥φi

α − 1
∥∥
Ci(P2(R̃i))

< δi.

Let Fn0+1 = Fαn0+1 where

0<αn0+1 <min
{
α′, α′

i, αi(n0 + 1), α2
n0

: 0≤ i≤ n0

}
.

Hence from Lemma 5.11, there exists rn0+1
i ∈C∞(P2(R

′
i+1)) such that

Γ2

r
n0+1
i

(
R′

i+1

)
= F (i, n0)

−1
(
Γ2
φi
αn0+1

(R̃i)
)
∩Δ2

(
0;R′

i+1

)
and ∥∥rn0+1

i − rn0
i

∥∥
Ci(P2(R′

i+1))
≤ εi/2

n0+1−i.

Moreover, by construction

S(i, n0 + 1) = Γ2

r
n0+1
i

(
R′

i+1

)
for 0≤ i≤ n0 and S(n0 + 1, n0 + 1) = P2(R

′
n0+2) which is also a graph. From

Remark 5.3 and the fact that αn0+1 < α′, the sequence {Fi}n0+1
i=0 satisfies all

the properties (i)–(iv).
For properties (v)–(vi), we will use the same arguments as in the proof of

the initial case. Let

K = F (n0 + 1)−1
(
Δ2

(
0;R′

n0+2

))
.

Then by Theorem 5.5, there exists 0 < cn0 ≤ cn0+1 < 1 such that (v) holds.
Finally, by imitating the argument in the proof of Proposition 5.6(iii) there
exists a sequence {αm(n0 +1)}m≥n0+2 such that for m≥ n0 +2 if Fm = Fαm

where
0<αm ≤min

{
αm(i), α2

m−1 : 0≤ i≤ n0 + 1
}

and Ω is the basin of attraction of {Fp}∞p=0 at the origin, then

Ωi,ci ⊂Ωi+1,ci+1 ⊂Ωm,cn0+1 ⊂Ω

for 0≤ i≤ n0. To conclude, the induction statement is true for every n≥ 0.
Therefore, we have a sequence of automorphisms {Fp}p≥0 such that the fol-
lowing is true for every p≥ 0.
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• The basin of attraction of {Fp}p≥0 at the origin, that is, Ω is a Short Ck.
• There exists an increasing sequence {cp}p≥0 such that 0< cp < 1 and

Ωp,cp ⊂Ωp+1,cp+1 ⊂Ω.

• There exists an increasing sequence of compact sets, i.e, Kp = F (p)−1 ×
(Δ2(0;R′

p+1)) such that

C
2 =

⋃
p≥0

Δ2(0;Rp+1)⊂
⋃
p≥0

Kp =C
2.

• By Remark 5.7,

∂Ωp,c ∩Kp ⊂Nεp(∂Ωp,1 ∩Kp)

for every p≥ 0 if 0< cp ≤ c < 1.
• For every p≥ 0, there exists an increasing sequence of positive functions{

rp+i
p

}
i≥0

⊂C∞(
P2

(
R′

p+1

))
such that

F (p)(Ωp+i,1)∩Δ2
(
0;R′

p+1

)
=G2

rp+i
p

(
R′

p+1

)
,

Ωp,1 ∩Kp ⊂Ωp+1,1 ∩Kp

and ∥∥rp+i+1
p − rp+i

p

∥∥
Cp(P2(R′

p+1))
≤ εp/2

i+1.

To summarize

(6.1) F (p)(∂Ωp+i,1)∩ F (p)(Kp) = Γ2
rp+i
p

(
R′

p+1

)
for a fixed p≥ 0 and for every i≥ 0. Here {rp+i

p }i≥0 is a Cauchy sequence in

Cp(P2(R
′
p+1)). Since C

p(P2(R
′
p+1)) is complete, rp+i

p → rp on P2(R
′
p+1). Now

following the same arguments as in the proof of Theorem 5.10,

lim
i→∞

∂Ωp+i,1 ∩Kp = ∂Ω∩Kp, i.e.,

lim
i→∞

F (p)(∂Ωp+i,1)∩Δ2
(
0;R′

p+1

)
= F (p)(∂Ω)∩Δ2

(
0;R′

p+1

)
for a fixed p. Also from (6.1), it follows that

F (p)(∂Ω)∩Δ2
(
0;R′

p+1

)
=Γ2

rp

(
R′

p+1

)
.

Hence, F (p)−1(Γ2
rp(R

′
p+1)) is a Cp-smooth hypersurface on Kp. But note that

the above arguments are true for every p≥ 0 and Kp is an exhaustion of C2.
Hence, the boundary of Ω is C∞-smooth in C

2. �

By extending these arguments to C
k, k ≥ 3 in exactly the same manner

as in the proof of Theorem 5.10, it is possible to obtain a Short C
k whose

boundary lies in the intersection of smooth hypersurfaces.
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However, to complete the proof of Theorem 1.6, we will need to do a little
more work. Recall the definition of a piecewise smooth pseudoconvex domain
in C

k, k ≥ 2.

Definition 6.1. Let n≥ 1 and Di for 1≤ i≤ n be pseudoconvex domains
in C

k with C∞-boundary in C
k. Let ρi be a C∞-defining function for Di,

that is,

Di =
{
z ∈C

k : ρi(z)< 0
}

such that ∇ρi 
= 0 on ∂Di. Then

D =

n⋂
i=1

Di

is a piecewise smooth pseudoconvex domain if

dρi1 ∧ dρi2 ∧ · · · ∧ dρil 
= 0

on {z ∈ ∂D : ρi1 = ρi2 = · · ·= ρil = 0} for every 1≤ i1 < i2 < · · ·< il ≤ n.

Proof of Theorem 1.6. The proof is divided into three steps.

Step 1: For a given algebraic variety of codimension 2 in C
k, k ≥ 3, Theo-

rem 4.1 shows that for a given ε > 0 and for every 0< ε<R−1,

• There exists an appropriate change of coordinates, say φε such that

φε(Ṽ )⊂ V +
R .

• There exists a sequence of automorphisms of the form {Fαp}p≥0 such that

the non-autonomous basin of attraction at the origin, say Ω is a Short Ck.
Further,

Ω⊂ VR ∪ V −
R and Ω∩ φε(Ṽ ) = ∅.

Here VR, V
−
R and V +

R are as defined in Section 2. Hence to complete the proof,
we only need to construct an appropriate sequence of automorphisms of the
form {Fαp}p≥0.

Step 2: We follow the arguments in Theorem 1.5 in C
k, k ≥ 3 with (k− 1)

intersections of graphs at each stage. The preliminary step will be the same as
in Theorem 5.10. Then it is possible to construct a sequence of automorphisms
{Fαp}p≥0 and an exhaustion of Ck, that is, Ck =

⋃
p≥0Kp such that each

Kp = F (p)−1
(
Δk

(
0;R′

p+1

))
and F (p)(∂Ω)∩Δk

(
0;R′

p+1

)
=

k⋂
i=2

Γi
rip

(
R′

p+1

)
,

where Ω is the basin of attraction of {Fp}p≥0 at the origin, {rip}p≥0 ∈
Cp(Pi(R

′
p+1)) for every 2≤ i≤ k and {R′

p}p≥1 is a strictly increasing sequence
of positive real numbers. But now this observation is true for every p≥ 0 and
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Kp is increasing that is, {rip}p≥0 ∈ C∞(Pi(R
′
p+1)). Hence, the domain Ω is a

Short Ck whose boundary lies in the intersection of smooth hypersurfaces.

Step 3: Recall that Gi
rip
(R′

p+1) is the standard domain of rip over Pi(R
′
p+1).

Let

Gi =

∞⋃
p=0

F (p)−1
(
Gi

rip

(
R′

p+1

))
for each 2≤ i≤ k.

Claim. Gi is a smooth pseudoconvex domain for every 2≤ i≤ k.

Note that for every 2≤ i≤ k and p≥ 0

F (p)
(
Gi ∩Kp

)
=

{
z ∈Δk

(
0;R′

p+1

)
: ρip(z)< 0

}
,

where ρip(z) = |zi| − rip(z1, . . . , ξi, . . . , zk) and ξi = eiArg zi . So locally ρip is a
smooth defining function.

By construction, for a fixed 2≤ i≤ k and for a given arbitrarily small ε > 0,
we have that ∥∥rip − 1

∥∥
Cp(Pi(R′

p+1))
≤ εp = ε/2p.

Case 1: For p≥ 2 when i 
= j, k

(6.2)

∥∥∥∥∂rip∂zj

∥∥∥∥,∥∥∥∥∂rip∂z̄j

∥∥∥∥ ≤ εp and

∥∥∥∥ ∂2rip
∂z̄k∂zj

∥∥∥∥,∥∥∥∥ ∂2rip
∂z̄j∂zk

∥∥∥∥ ≤ εp,

i.e.,

(6.3)

∥∥∥∥∂ρip∂zj

∥∥∥∥,∥∥∥∥∂ρip∂z̄j

∥∥∥∥ ≤ εp and

∥∥∥∥ ∂2ρip
∂z̄k∂zj

∥∥∥∥,∥∥∥∥ ∂2ρip
∂z̄j∂zk

∥∥∥∥ ≤ εp.

Case 2: For p≥ 2

(6.4)

∥∥∥∥∂rip∂θi

∥∥∥∥ ≤ εp, i.e.,

∥∥∥∥∂rip∂zi

∥∥∥∥,∥∥∥∥∂rip∂z̄i

∥∥∥∥ ≤ C̃εp

for some C̃ > 0. When i 
= j by similar computations we see that

(6.5)

∥∥∥∥ ∂2ρip
∂z̄j∂zi

∥∥∥∥,∥∥∥∥ ∂2ρip
∂z̄i∂zj

∥∥∥∥≤ C̃εp and

∥∥∥∥ ∂2rip
∂z̄i∂zi

∥∥∥∥ ≤ C̃εp,

that is, there exists C > 0 such that

(6.6)
∂2ρip
∂z̄i∂zi

>C − C̃εp and

∥∥∥∥∂ρip∂zi

∥∥∥∥,∥∥∥∥∂ρip∂z̄i

∥∥∥∥ >C − C̃εp.

Since εp → 0 as p→∞, it follows that if F (p)−1(w) ∈ ∂Gi ∩Kp, then

k∑
m,n=1

∂2ρip
∂z̄m∂zn

(w)tmtn > 0 whenever

k∑
n=1

∂ρip
∂zn

(w)tn = 0
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from (6.2)–(6.6). Since Kp is an exhaustion of Ck, Gi is a pseudoconvex do-
main.

Observe that the basin of attraction of {Fαp}p≥0 is the intersection of the

domains Gi where 2≤ i≤ k, that is,

Ω =

k⋂
i=2

Gi.

Lastly, by the same arguments as above and from (6.2)–(6.6)

dρi1p ∧ dρi2p ∧ · · · ∧ dρilp 
= 0

on {w ∈ F (p)(∂Ω∩Kp) : ρ
i1
p = ρi2p = · · ·= ρilp = 0} for every 2≤ i1 < i2 < · · ·<

il ≤ k whenever p≥ 0. This completes the proof. �
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