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A NON-COMMUTATIVE WIENER–WINTNER THEOREM

SEMYON LITVINOV

Abstract. For a von Neumann algebra M with a faithful
normal tracial state τ and a positive ergodic homomorpsism

α : L1(M, τ) → L1(M, τ) such that τ ◦ α = τ and α does not

increase the norm in M, we establish a non-commutative coun-
terpart of the classical Wiener–Wintner ergodic theorem.

1. Introduction and preliminaries

The celebrated Wiener–Wintner theorem [12] is by far one of the most deep
and fruitful results of the classical ergodic theory. It may be stated as follows.

Theorem 1.1. Let (Ω, μ) be a probability space, and let T : Ω→Ω be an er-
godic measure preserving transformation. Then for any function f ∈ L1(Ω, μ)
there exists a set Ωf of full measure such that, given ω ∈Ωf , the averages

an(f,λ)(ω) =
1

n

n−1∑
k=0

λkf
(
T kω

)
converge for all λ ∈C with |λ|= 1.

The aim of this article is to establish a non-commutative extension of The-
orem 1.1. We follow the path of “simple inequality” as it is outlined in [1].
This means that our argument relies on a non-commutative Van der Corput’s
inequality. Note that such an inequality was established in [10].

Let H be a Hilbert space, B(H) the algebra of all bounded linear operators
in H , ‖·‖∞ the uniform norm in B(H), I the unit of B(H). Let M⊂B(H) be
a semifinite von Neumann algebra with a faithful normal semifinite trace τ .
We denote by P (M) the complete lattice of all projections in M and set
e⊥ = I− e whenever e ∈ P (M).
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A densely-defined closed operator x in H is said to be affiliated with the
algebra M if x′x⊂ xx′ for every x′ ∈B(H) such that x′x= xx′ for all x ∈M.
An operator x affiliated with M is called τ -measurable if for each ε > 0 there
exists such e ∈ P (M) with τ(e⊥) ≤ ε that the subspace eH belongs to the
domain of x. (In this case xe ∈ M.) Let L = L(M, τ) be the set of all τ -
measurable operators affiliated with the algebra M. The topology tτ defined
in L by the family

V (ε, δ) =
{
x ∈ L : ‖xe‖∞ ≤ δ for some e ∈ P (M) with τ

(
e⊥

)
≤ ε

}
;

ε > 0, δ > 0

of (closed) neighborhoods of zero is called a measure topology.

Theorem 1.2 ([11]; see also [9]). (L, tτ ) is a complete metrizable topological
∗-algebra.

For a positive self-adjoint operator x=
∫ ∞
0

λdeλ affiliated with M, one can
define

τ(x) = sup
n

τ

(∫ n

0

λdeλ

)
=

∫ ∞

0

λdτ(eλ).

If 1≤ p <∞, then the non-commutative Lp-space associated with (M, τ) is
defined as

Lp = Lp(M, τ) =
{
x ∈ L : ‖x‖p =

(
τ
(
|x|p

))1/p
<∞

}
,

where |x|= (x∗x)1/2, the absolute value of x. Naturally, L∞ =M.
Let α : L1 →L1 be a positive linear map such that α(x)≤ I and τ(α(x))≤

τ(x) for every x ∈ L1 ∩M with 0≤ x≤ I (see [13]). Note that, as it is shown
in [3, Proposition 1.1], such an α can be uniquely extended to a positive linear
contraction on M. Therefore, α satisfies the hypotheses of [5, Lemma 1.1]
and as such can be uniquely extended to a positive linear contraction on Lp,
1≤ p <∞.

Let C1 = {z ∈C : |z|= 1}. If 1≤ p≤∞, x ∈ Lp, λ ∈C1, we denote

an(x) =
1

n

n−1∑
k=0

αk(x),(1)

an(x,λ) =
1

n

n−1∑
k=0

λkαk(x).(2)

There are several generally distinct types of “pointwise” (or “individual”)
convergence in L each of which, in the commutative case with finite mea-
sure, reduces to the almost everywhere convergence. We deal with the so-
called almost uniform (a.u.) and bilateral almost uniform (b.a.u.) conver-
gences for which xn → x a.u. (b.a.u.) means that for every ε > 0 there exists
such e ∈ P (M) that τ(e⊥) ≤ ε and ‖(x− xn)e‖∞ → 0 (‖e(x− xn)e‖∞ → 0,
respectively). Clearly, a.u. convergence implies b.a.u. convergence.
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In [13] the following non-commutative ergodic theorem was established.

Theorem 1.3. For every x ∈ L1, the ergodic averages (1) converge b.a.u.
to some x̂ ∈ L1.

Remark 1.1. B.a.u. convergence of the averages (2) for x ∈ L1 (Lp, 1 <
p<∞) and a fixed λ ∈C1 was proved in [4] ([3], respectively).

2. Non-commutative Wiener–Wintner property

Now we turn our attention to a study of the “simultaneous” on C1 individ-
ual convergence of the averages (2). We begin with the following definition [7].

Definition 2.1. Let (X,‖ · ‖) be a normed space. A sequence an :X →
L of additive maps is called bilaterally uniformly equicontinuous in measure
(b.u.e.m.) at 0 ∈X if for every ε > 0, δ > 0 there exists γ > 0 such that for
every x ∈X with ‖x‖< γ there is ex ∈ P (M) for which

τ
(
e⊥x

)
≤ ε and sup

n

∥∥exan(x)ex∥∥
∞ ≤ δ.

A proof of the next fact can be found in [7].

Proposition 2.1. For any 1≤ p <∞, the sequence {an} given by (1) is
b.u.e.m. at 0 ∈ Lp.

Lemma 2.1. If 1≤ p <∞, then, given ε > 0, δ > 0, there exists γ > 0 such
that for every x ∈ Lp with ‖x‖p ≤ γ there is e ∈ P (M) satisfying

τ
(
e⊥

)
≤ ε and sup

n

∥∥ean(x,λ)e∥∥∞ ≤ δ for all λ ∈C1.

Proof. Fix ε > 0, δ > 0. By Proposition 2.1, there exists γ > 0 such that
for each ‖x‖p < γ it is possible to find e ∈ P (M) such that

τ
(
e⊥

)
≤ ε

4
and sup

n

∥∥ean(x)e∥∥∞ ≤ δ

24
.

Fix x ∈ Lp with ‖x‖p < γ. We have x= (x1 −x2)+ i(x3 −x4), where xj ∈ Lp
+

and ‖xj‖p ≤ ‖x‖p for each j = 1,2,3,4.
If 1≤ j ≤ 4, then ‖xj‖p < γ, so there is ej ∈ P (M) satisfying

τ
(
e⊥j

)
≤ ε

4
and sup

n

∥∥ejan(xj)ej
∥∥
∞ ≤ δ

24
.

Let e=
∧4

j=1 ej . Then we have

τ
(
e⊥

)
≤ ε and sup

n

∥∥ean(xj)e
∥∥
∞ ≤ δ

24
, j = 1,2,3,4.
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Now, fix λ ∈C1. For 1≤ j ≤ 4 denote

a(R)
n (xj , λ) =

1

n

n−1∑
k=0

Re
(
λk

)
αk(xj) + an(xj) =

1

n

n−1∑
k=0

(
Re

(
λk

)
+ 1

)
αk(xj),

a(I)n (xj , λ) =
1

n

n−1∑
k=0

Im
(
λk

)
αk(xj) + an(xj) =

1

n

n−1∑
k=0

(
Im

(
λk

)
+ 1

)
αk(xj).

Then 0≤Re(λk) + 1≤ 2 and αk(xj)≥ 0 for every k entail

0≤ ea(R)
n (xj , λ)e≤ 2ean(xj)e for all n.

Therefore

sup
n

∥∥ea(R)
n (xj , λ)e

∥∥
∞ ≤ δ

12

and, similarly,

sup
n

∥∥ea(I)n (xj , λ)e
∥∥
∞ ≤ δ

12
.

This implies that, given 1≤ j ≤ 4, we have

sup
n

∥∥ean(xj , λ)e
∥∥
∞

= sup
n

∥∥e(a(R)
n (xj , λ) + ia(I)n (xj , λ)− an(xj)− ian(xj)

)
e
∥∥
∞ ≤ δ

4
,

and we conclude that

sup
n

∥∥ean(x,λ)e∥∥∞

= sup
n

∥∥e(an(x1, λ)− an(x2, λ) + ian(x3, λ)− ian(x4, λ)
)
e
∥∥
∞ ≤ δ

for every λ ∈C1. �

Definition 2.2. Let 1 ≤ p < ∞. We say that x ∈ Lp satisfies Wiener–
Wintner (bilaterally Wiener–Wintner) property and we write x ∈WW (x ∈
bWW , respectively) if, given ε > 0, there exists a projection e ∈ P (M) with
τ(e⊥)≤ ε such that the sequence{

an(x,λ)e
} ({

ean(x,λ)e
}
, respectively

)
converges in M for all λ ∈C1.

Note that WW ⊂ bWW , while in the commutative case these sets coinside.
Let (Ω, μ) be a probability space, and let T : Ω→Ω be a measure preserving

transformation. Then f ∈ L1(Ω, μ) ∩WW would imply that for every m ∈N

there exists Ωm with μ(Ω \ Ωm) ≤ 1
m such that the averages an(f,λ)(ω) =

1
n

∑n−1
k=0 λ

kf(T kω) converge for all ω ∈ Ωm and λ ∈ C1. Then, with Ωf =⋃∞
m=1Ωm, we have μ(Ωf ) = 1, while the averages an(f,λ)(ω) converge for all

ω ∈Ωf and λ ∈C1.



A NON-COMMUTATIVE WIENER–WINTNER THEOREM 701

Therefore Definition 2.2 presents a proper generalization of the classical
Wiener–Wintner property; see [1, p. 28]. In an attempt to clarify what hap-
pens in the non-commutative situation without imposing any additional con-
ditions on τ and α, we suggest the following.

Proposition 2.2. Let 1 ≤ p < ∞ and x ∈ Lp ∩ WW (x ∈ Lp ∩ bWW ).
Then

(1) for every λ ∈C1 there is such xλ ∈ Lp that

an(x,λ)→ xλ a.u.
(
an(x,λ)→ xλ b.a.u., respectively

)
,

(2) if e ∈ P (M) is such that {an(x,λ)e} ({ean(x,λ)e}) converges in M for
all λ ∈C1, then, given λ ∈C1 and ν > 0, there is a projection eλ ∈ P (M)
such that eλ ≤ p, τ(e− eλ)≤ ν, and∥∥(
an(x,λ)− xλ

)
eλ

∥∥
∞ → 0

(∥∥eλ(
an(x,λ)− xλ

)
eλ

∥∥
∞ → 0, respectively

)
.

Proof. We will provide a proof for the b.a.u. convergence. Same argument
is applicable in the case of a.u. convergence.

(1) Let x ∈ Lp ∩ bWW and λ ∈ C1. Then for every ε > 0 there exists
e ∈ P (M) with τ(e⊥)≤ ε for which∥∥e(am(x,λ)− an(x,λ)

)
e
∥∥
∞ → 0 as m,n→∞.

Then, as it is noticed in [2, Proposition 1.3], an(x,λ)→ xλ b.a.u. for some xλ ∈
L, which clearly implies that an(x,λ)→ xλ bilaterally in measure, meaning
that, given ε > 0, δ > 0, there exists N ∈ N such that for every n ≥ N there
is en ∈ P (M) with τ(e⊥n ) ≤ ε satisfying ‖en(an(x,λ) − xλ)en‖∞ ≤ δ. Since
the measure topology coincides with the bilateral measure topology on L (see
[4, Theorem 2.2]), an(x,λ)→ xλ in measure. Then, as ‖an(x,λ)‖p ≤ ‖x‖p for
all n, [4, Theorem 1.2] implies that xλ ∈ Lp.

(2) Let e ∈ P (M) be such that the sequence {ean(x,λ)e} converges in M
for all λ ∈C1. By part (1), given λ ∈C1 and ν > 0, there is fλ ∈ P (M) with
τ(f⊥

λ )≤ ν such that ‖fλ(an(x,λ)−xλ)fλ‖∞ → 0 as n→∞. Then eλ = e∧ fλ
satisfies the required conditions. �

Remark 2.1. It is desirable to have the following: if x ∈ WW (x ∈
bWW ), then, given ε > 0, there exists such e ∈ P (M) with τ(e⊥) ≤ ε that
‖(an(x,λ) − xλ)e‖∞ → 0 (‖e(an(x,λ) − xλ)e‖∞ → 0, respectively) for all
λ ∈C1; see Remark 5.1 below.

Theorem 2.1. For each 1≤ p <∞ the set X = Lp∩ bWW is closed in Lp.

Proof. Take x in the ‖ · ‖p-closure of X and fix ε > 0. By Lemma 2.1, one
can find sequences {xm} ⊂X and {fm} ⊂ P (M) in such a way that

τ
(
f⊥
m

)
≤ ε

3 · 2m and sup
n

∥∥fman(x− xm, λ)fm
∥∥
∞ ≤ 1

m
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for all m ∈N and λ ∈C1. If we let f =
∧∞

m=1 fm, then

τ
(
f⊥)

≤ ε

3
and sup

n

∥∥fan(x− xm, λ)f
∥∥
∞ ≤ 1

m
,

m ∈ N, λ ∈ C1. Also, since {xm} ⊂ bWW , one can construct g ∈ P (M) such
that

τ
(
g⊥

)
≤ ε

3
and

{
gan(xm, λ)g

}
converges in M for all m ∈N, λ ∈C1.

Next, there exists h ∈ P (M) with τ(h⊥)≤ ε
3 for which {αk(x)h}∞k=0 ⊂M so

that {han(x,λ)h} ⊂M for all λ ∈ C1. Now, if e = f ∧ g ∧ h, then we have
τ(e⊥)≤ ε,

sup
n

∥∥ean(x− xm, λ)e
∥∥
∞ ≤ 1

m
,{

ean(xm, λ)e
}

converges in M, and
{
ean(x,λ)e

}
⊂M

for all m ∈N and λ ∈C1.
It remains to show that, for a fixed λ ∈ C1, the sequence {ean(x,λ)e}

converges in M. So, fix δ > 0 and pick m0 such that 1
m0

≤ δ
3 . Since the

sequence {ean(xm0 , λ)e} converges in M, there exists N such that∥∥e(an1(xm0 , λ)− an2(xm0 , λ)
)
e
∥∥
∞ ≤ δ

3

whenever n1, n2 ≥N . Therefore, given n1, n2 ≥N , we can write∥∥e(an1(x,λ)− an2(x,λ)
)
e
∥∥
∞

≤
∥∥ean1(x− xm0 , λ)e

∥∥
∞ +

∥∥ean2(x− xm0 , λ)e
∥∥
∞

+
∥∥e(an1(xm0 , λ)− an2(xm0 , λ)

)
e
∥∥
∞

≤ δ.

This implies that the sequence {ean(x,λ)e} converges in M for all λ ∈ C1,
hence x ∈X and X is closed in Lp. �

Let K be the ‖ · ‖2-closure of the linear span of the set

(3) E =
{
x ∈ L2 : α(x) = μx for some μ ∈C1

}
.

Proposition 2.3. K⊂ bWW .

Proof. By Theorem 2.1, it is sufficient to show that
∑m

j=1 ajxj ∈ bWW
whenever aj ∈ C and xj ∈ E, 1 ≤ j ≤m. For this, one will verify that E ⊂
WW .

If x ∈ E, then α(x) = μx, μ ∈ C1. Fix ε > 0 and find e ∈ P (M) with
τ(e⊥)≤ ε such that xe ∈M. Then, given λ ∈C1, we have

an(x,λ) = xe
1

n

n−1∑
k=0

(λμ)k.
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Therefore, since the averages 1
n

∑n−1
k=0(λμ)

k converge, we conclude that the
sequence {an(x,λ)e} converges in M, whence x ∈WW . �

3. Spectral characterization of K⊥

The space L2 equipped with the inner product (x, y)τ = τ(x∗y) is a Hilbert

space such that ‖x‖2 = ‖x‖τ = (x,x)
1/2
τ , x ∈ L2.

From now on we shall assume that τ and α satisfy the following additional
conditions: τ is a state, α is a homomorphism, and τ ◦ α = τ . Notice that
then ‖α(x)‖2 = ‖x‖2 and |τ(x)| ≤ ‖x‖2 for every x ∈ L2.

Proposition 3.1. If x ∈ L2, then the sequence {γx(l)}∞−∞ given by

γx(l) =

{
τ(x∗αl(x)), if l≥ 0,

τ(x∗α−l(x)), if l < 0

is positive definite.

Proof. If μ0, . . . , μm ∈ C, then, taking into account that positivity of α
implies that α(y)∗ = α(y∗), y ∈ L2, we have

0 ≤
∥∥∥∥∥

m∑
k=0

μkα
k(x)

∥∥∥∥∥
2

2

=

(
m∑
j=0

μjα
j(x),

m∑
i=0

μiα
i(x)

)
τ

=

m∑
i,j=0

μiμ̄jτ
(
αj

(
x∗)αi(x)

)
.

If i≥ j, we can write

τ
(
αj

(
x∗)αi(x)

)
= τ

(
αj

(
x∗αi−j(x)

))
= τ

(
x∗αi−j(x)

)
= γx(i− j),

and if i < j, we have

τ
(
αj

(
x∗)αi(x)

)
= τ

(
αi

(
x∗

)
αj(x)

)
= τ

(
x∗αj−i(x)

)
= γx(i− j).

Therefore
m∑

i,j=0

γx(i− j)μiμ̄j ≥ 0

for any μ0, . . . , μm ∈C, hence {γx(l)} is positive definite. �

Consequently, given x ∈ L2, by Herglotz–Bochner theorem, there exists a
positive finite Borel measure σx on C1 such that

(4) τ
(
x∗αl(x)

)
= γx(l) = σ̂x(l) =

∫
C1

e2πilt dσx(t), l= 1,2, . . . .

Lemma 3.1. α(K⊥)⊂K⊥.
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Proof. Since α : L2 → L2 is an isometry, we have ‖α‖ = 1. Therefore,
‖α∗‖= 1 as well, so that ‖α∗(x)‖2 ≤ ‖x‖2, x ∈ L2.

Let x ∈E, that is, x ∈ L2 and α(x) = μx for some μ ∈C1. Then we have∥∥α∗(x)− μ̄x
∥∥2

2
=

∥∥α∗(x)
∥∥2

2
− μ̄

(
α∗(x), x

)
τ
− μ

(
x,α∗(x)

)
τ
+ ‖x‖22 ≤ 0,

and it follows that α∗(x) = μ̄x.
Now, if y ∈K⊥, then (α(y), x)τ = (y,α∗(x))τ = μ̄(y,x)τ = 0, which implies

that α(y)⊥E, hence α(y) ∈K⊥. �

Proposition 3.2. If x ∈K⊥, then the measure σx is continuous.

Proof. We need to show that σx({t}) = 0 for every t ∈ C1. It is known [6,
p. 42] that

σx

(
{t}

)
= lim

n→∞
1

n

n∑
l=1

e2πiltσ̂x(t),

which is equal to

lim
n→∞

1

n

n∑
l=1

e2πiltτ
(
x∗αl(x)

)
= lim

n→∞
τ

(
x∗

(
1

n

n∑
l=1

e2πiltαl(x)

))
.

Therefore, it is sufficient to verify that

(5) lim
n→∞

∥∥∥∥∥ 1

n

n∑
l=1

e2πiltαl(x)

∥∥∥∥∥
2

= 0.

By the Mean Ergodic theorem applied to α̃ : L2 → L2 given by α̃(x) =
e2πitα(x), we conclude that

1

n

n∑
l=1

e2πiltαl(x)→ x̄ in L2.

Since x ∈ K⊥, by Lemma 3.1, we have αl(x) ∈ K⊥ for each l, which implies
that x̄ ∈K⊥. Besides,

α(x̄) = ‖ · ‖2 − lim
n→∞

1

n

n∑
l=1

e2πiltαl+1(x) = e−2πitx̄,

so that x̄ ∈K. Therefore x̄= 0, and (5) follows. �

4. Non-commutative Van der Corput’s inequality

It was shown in [10] that the extremely useful Van der Corput’s “Funda-
mental Inequality” (see [1]) can be fully extended to any ∗-algebra:
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Theorem 4.1 ([10]). If n ≥ 1, 0 ≤ m ≤ n − 1 are integers and a0, . . . ,
an−1+m are elements of a ∗-algebra such that an = · · ·= an−1+m = 0, then(

n−1∑
k=0

a∗k

)(
n−1∑
k=0

ak

)
≤ n− 1 +m

m+ 1

n−1∑
k=0

a∗kak

+
2(n− 1 +m)

m+ 1

m∑
l=1

m− l+ 1

m+ 1
Re

n−1∑
k=0

a∗kak+l.

Corollary 4.1. If in Theorem 4.1, a0, . . . , an−1+m are elements of a C∗-
algebra with the norm ‖ · ‖, then∥∥∥∥∥
n−1∑
k=0

ak

∥∥∥∥∥
2

≤ n− 1 +m

m+ 1

∥∥∥∥∥
n−1∑
k=0

a∗kak

∥∥∥∥∥+ 2(n− 1 +m)

m+ 1

m∑
l=1

m− l+ 1

m+ 1

∥∥∥∥∥
n−1∑
k=0

a∗kak+l

∥∥∥∥∥,
which implies that∥∥∥∥∥ 1

n

n−1∑
k=0

ak

∥∥∥∥∥
2

≤ n− 1 +m

(m+ 1)n

∥∥∥∥∥ 1

n

n−1∑
k=0

a∗kak

∥∥∥∥∥
+

2(n− 1 +m)

(m+ 1)n

m∑
l=1

m− l+ 1

m+ 1

∥∥∥∥∥ 1

n

n−1∑
k=0

a∗kak+l

∥∥∥∥∥,
and further

(6)

∥∥∥∥∥ 1

n

n−1∑
k=0

ak

∥∥∥∥∥
2

<
2

m+ 1

∥∥∥∥∥ 1

n

n−1∑
k=0

a∗kak

∥∥∥∥∥+
4

m+ 1

m∑
l=1

∥∥∥∥∥ 1

n

n−1∑
k=0

a∗kak+l

∥∥∥∥∥.
5. Proof of the main result

We will assume now that α is ergodic on L2, that is, α(x) = x, x ∈ L2,
implies that x= c · I, c ∈C.

Proposition 5.1. If x ∈ L2, then an(x)→ τ(x) · I a.u.

Proof. By the Mean Ergodic theorem, an(x) → x̄ in L2. Therefore,
α(an(x)) → α(x̄) in L2, so α(x̄) = x̄, and the ergodicity of α implies that
x̄ = c(x) · I. Then, since τ is also continuous in L2, we have τ(an(x)) →
τ(x̄) = c(x), hence c(x) = τ(x) because τ(an(x)) = τ(x) for each n. It is
known ([5], [7]) that an(x) → x̂ ∈ L2 a.u., which implies that an(x) → x̂ in
measure. Since ‖ · ‖2-convergence entails convergence in measure, we con-
clude that x̂= x̄= τ(x) · I. �

Lemma 5.1. If a, b ∈ L and e ∈ P (M) are such that ae, be ∈M, then

(ae)∗be= ea∗be.
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Proof. We have(
(ae)∗be

)∗
= (be)∗ae⊂ (be)∗

(
ea∗

)∗ ⊂ (
ea∗be

)∗
,

which, since ((ae)∗be)∗ ∈B(H), implies that ((ae)∗be)∗ = (ea∗be)∗, hence the
required equality. �

Now we can prove our main result, a non-commutative Wiener–Wintner
theorem.

Theorem 5.1. Let M be a von Neumann algebra, τ a faithful normal
tracial state on M. Let α : L1 →L1 be a positive ergodic homomorphism such
that τ ◦ α = τ and ‖α(x)‖∞ ≤ ‖x‖∞, x ∈M. Then L1 = bWW , that is, for
every x ∈ L1 and ε > 0 there exists such a projection e ∈ P (M) that

τ
(
e⊥

)
≤ ε and

{
ean(x,λ)e

}
converges in M for all λ ∈C1.

Proof. Since L2 is dense in L1, L2 = K ⊕ K⊥, and K ⊂ bWW (Proposi-
tion 2.3), by Theorem 2.1, it remains to show that K⊥ ⊂ bWW . (In fact, we
will show that K⊥ ⊂WW .)

So, let x ∈ K⊥ and fix ε > 0. Since {x∗αl(x)}∞l=0 ⊂ L2, due to Proposi-
tion 5.1, one can construct a projection e ∈ P (M) in such a way that

τ
(
e⊥

)
≤ ε,

{
αk(x)e

}
⊂M for all k,

ean
(
x∗x

)
e→ τ

(
x∗x

)
e= ‖x‖2e in M, and

ean
(
x∗αl(x)

)
e→ τ

(
x∗αl(x)

)
e= σ̂x(l)e in M for every l.

Now, if ak = λkαk(x)e, k = 0,1,2, . . . , then, employing Lemma 5.1, we obtain

a∗kak+l = λleαk
(
x∗αl(x)

)
e, k, l= 0,1,2, . . . .

At this moment we apply inequality (6) to the sequence {ak} ⊂M yielding,
in view of (1) and (2),

sup
λ∈C1

∥∥an(x,λ)e∥∥2

∞ ≤ 2

m+ 1

∥∥ean(
x∗x

)
e
∥∥
∞ +

4

m+ 1

m∑
l=1

∥∥ean(
x∗αl(x)

)
e
∥∥
∞.

Therefore, for a fixed m, we have

limsup
n

sup
λ∈C1

∥∥an(x,λ)e∥∥2

∞ ≤ 2

m+ 1
‖x‖22 +

4

m+ 1

m∑
l=1

∣∣σ̂x(l)
∣∣.

Since the measure σx is continuous by Proposition 3.2, Wiener’s criterion of
continuity of positive finite Borel measure [6, p. 42] yields

lim
m→∞

1

m+ 1

m∑
l=1

∣∣σ̂x(l)
∣∣2 = 0,
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which entails

lim
m→∞

1

m+ 1

m∑
l=1

∣∣σ̂x(l)
∣∣ = 0.

Thus, we conclude that

(7) lim
n→∞

sup
λ∈C1

∥∥an(x,λ)e∥∥∞ = 0,

whence x ∈WW . �

Note that (7) can be referred to as non-commutative Bourgain’s uniform
Wiener–Wintner ergodic theorem.

Remark 5.1. As we have noticed (Proposition 2.2), for a fixed λ ∈C1 and
every x ∈ L1, the averages an(x,λ) converge b.a.u. to some xλ ∈ L1. It can be
verified [8] that xλ is a scalar multiple of I. If we assume additionally that α
is weakly mixing in L2, that is, 1 is its only eigenvalue there, then it is easy to
see that the b.a.u. limit of {an(x,λ)} with x ∈ L2 is zero unless λ= 1. Since
L2 is dense in L1, one can employ an argument similar to that of Theorem 2.1
to show that an(x,λ)→ 0 b.a.u. for every x ∈ L1 if λ �= 1. Therefore if α is
weakly mixing, we can replace, in Theorem 5.1,{

ean(x,λ)e
}

converges in M for all λ ∈C1

by ∥∥ean(x,λ)e∥∥∞ → 0 if λ �= 0 and∥∥e(an(x)− x1

)
e
∥∥
∞ → 0 for some x1 ∈ L1;

see Proposition 2.2 and Remark 2.1.
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