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A NON-COMMUTATIVE WIENER-WINTNER THEOREM

SEMYON LITVINOV

ABSTRACT. For a von Neumann algebra M with a faithful
normal tracial state 7 and a positive ergodic homomorpsism
a: LY(M,7) = LY(M,T) such that T o o =7 and « does not
increase the norm in M, we establish a non-commutative coun-
terpart of the classical Wiener—Wintner ergodic theorem.

1. Introduction and preliminaries

The celebrated Wiener—-Wintner theorem [12] is by far one of the most deep
and fruitful results of the classical ergodic theory. It may be stated as follows.

THEOREM 1.1. Let (Q, 1) be a probability space, and let T : 2 — Q be an er-
godic measure preserving transformation. Then for any function f € L' (Q, i)
there exists a set L1y of full measure such that, given w € Sy, the averages

n—1

an(f,A)(w) = % Z )‘kf(Tkw)
k=0

converge for all A € C with |A\|=1.

The aim of this article is to establish a non-commutative extension of The-
orem 1.1. We follow the path of “simple inequality” as it is outlined in [1].
This means that our argument relies on a non-commutative Van der Corput’s
inequality. Note that such an inequality was established in [10].

Let H be a Hilbert space, B(H) the algebra of all bounded linear operators
in H, || ||co the uniform norm in B(H), I the unit of B(H). Let M C B(H) be
a semifinite von Neumann algebra with a faithful normal semifinite trace 7.
We denote by P(M) the complete lattice of all projections in M and set
et =1 — e whenever e € P(M).
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A densely-defined closed operator = in H is said to be affiliated with the
algebra M if 2’ C xa’ for every 2’ € B(H) such that 'z = z2’ for all z € M.
An operator x affiliated with M is called T-measurable if for each € > 0 there
exists such e € P(M) with 7(el) < ¢ that the subspace eH belongs to the
domain of z. (In this case ze € M.) Let £ = L(M,7) be the set of all 7-
measurable operators affiliated with the algebra M. The topology t, defined
in £ by the family

V(e,8)={z € L:|ze|o <6 for some e € P(M) with 7(e) <e};
€>0,>0

of (closed) neighborhoods of zero is called a measure topology.

THEOREM 1.2 ([11]; see also [9]). (L£,t,) is a complete metrizable topological
*-algebra.

For a positive self-adjoint operator x = fooo Ade) affiliated with M, one can

define . -
7(x) :sup7’</ )\dex> :/ Adr(ey).
n 0 0

If 1 <p < oo, then the non-commutative LP-space associated with (M,7) is
defined as

P =P (M, r)={zeL:||z], = (r(jz]")) /" < o},

where |z| = (z*z)/2, the absolute value of . Naturally, £ = M.

Let a: L' — L' be a positive linear map such that a(x) <T and 7(a(z)) <
7(z) for every x € L1 N M with 0 <z <T (see [13]). Note that, as it is shown
in [3, Proposition 1.1], such an « can be uniquely extended to a positive linear
contraction on M. Therefore, o satisfies the hypotheses of [5, Lemma 1.1]
and as such can be uniquely extended to a positive linear contraction on L?,
1<p<oo.

Let C; ={z€C:|z|=1}. f1<p<oo, z€LP, \€Cy, we denote

) an(x) = L ok (a),
k=0

(2) an(z,A) = % i Neak (z).
k=0

There are several generally distinct types of “pointwise” (or “individual”)
convergence in £ each of which, in the commutative case with finite mea-
sure, reduces to the almost everywhere convergence. We deal with the so-
called almost uniform (a.u.) and bilateral almost uniform (b.a.u.) conver-
gences for which x,, — x a.u. (b.a.u.) means that for every ¢ > 0 there exists
such e € P(M) that 7(et) <e and |[(z — zn)el|ec = 0 (Jle(z — )€l — 0,
respectively). Clearly, a.u. convergence implies b.a.u. convergence.
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In [13] the following non-commutative ergodic theorem was established.

THEOREM 1.3. For every x € L', the ergodic averages (1) converge b.a.u.
to some T € L.

REMARK 1.1. B.a.u. convergence of the averages (2) for x € £ (LP, 1<
p<oo) and a fized X € C; was proved in [4] ([3], respectively).

2. Non-commutative Wiener—Wintner property

Now we turn our attention to a study of the “simultaneous” on C; individ-
ual convergence of the averages (2). We begin with the following definition [7].

DEFINITION 2.1. Let (X, |- ||) be a normed space. A sequence a, : X —
L of additive maps is called bilaterally uniformly equicontinuous in measure
(b.u.e.m.) at 0 € X if for every € >0, § > 0 there exists v > 0 such that for
every x € X with ||z|| <+ there is e, € P(M) for which

T(ei‘)SE and Sup||ezan($)er||oo§5'
n

A proof of the next fact can be found in [7].

PROPOSITION 2.1. For any 1 <p < oo, the sequence {a,} given by (1) is
b.u.eem. at 0 € LP.

LEMMA 2.1. If1<p< oo, then, given € >0, § >0, there exists v >0 such
that for every x € LP with ||z||, <~ there is e € P(M) satisfying

T(CL) <e and supHean(:B,)\)eHoo <0 forall e Cy.

Proof. Fix € >0, § > 0. By Proposition 2.1, there exists v > 0 such that
for each ||z||, < it is possible to find e € P(M) such that

]
H) < < —.
() = ~ S5
Fix x € £P with ||z||, <. We have x = (1 — x2) +i(x3 — x4), where x; € L1}

and ||lz;||, <||z||, for each j=1,2,3,4.
If 1 <j <4, then [|z;||, <, so there is e; € P(M) satisfying

and  sup||ean(z)el|
n

1 ™

)
7(e; )<Z and supHeJan zj)e;|| . < YR
Let e= /\;l‘:1 e;j. Then we have
T(el) <e and supHean(J:j)eHoo < 2%1, Jj=1,2,3,4.
n
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Now, fix A € Cy. For 1 < j <4 denote

I
-

n n—1

aB®(x,\) = % Re(A\F)a® (z;) + an(z;) = % Z(Re()\k) +1)a¥(z;)),
k=0 k=0

a5 = £ 3 ()0 (a,) + anfey) = £ 30 (Im () + 1)k (zy)
k=0 k=0

Then 0 < Re(A\*) +1<2 and oF(z;) > 0 for every k entail

0 <eal (z;,\)e < 2ean(x;)e for all n.

Therefore

sup’|ea$lR)(xj,)\)e}|oo < %
and, similarly,

sup||ea£f)(;vj,)\)e’|oo < %

This implies that, given 1 < j <4, we have

Sup”ean(xj,)\)eHoo
n

ST

= supHe(aﬁLR)(ij\) +ialD (2, \) — an(z;) — z'an(xj))eH <

00 ’

and we conclude that

sup”ean(x,)\)euoo

=sup||e(an(21,\) = an (w2, A) + ian(x3,\) — ian(m,)\))eHoo <94
for every A € C;. O

DEFINITION 2.2. Let 1 <p < oco. We say that x € LP satisfies Wiener—
Wintner (bilaterally Wiener—Wintner) property and we write x € WW (z €
bW W, respectively) if, given € > 0, there exists a projection e € P(M) with
7(et) < e such that the sequence

{an(z,Ne}  ({ean(z, e}, respectively) converges in M for all A € C;.

Note that WW C bW W, while in the commutative case these sets coinside.

Let (€, 1) be a probability space, and let T : Q — Q be a measure preserving
transformation. Then f € L*(2, 1) N WW would imply that for every m € N
there exists Q,, with p(Q2\ Q) < L such that the averages a,(f,\)(w) =
%Zz;é M f(TRw) converge for all w € Q,,, and A € C;. Then, with Q; =
U>>_; Qn, we have () =1, while the averages a,(f,\)(w) converge for all
weyand A eC;y.



A NON-COMMUTATIVE WIENER-WINTNER THEOREM 701

Therefore Definition 2.2 presents a proper generalization of the classical
Wiener—Wintner property; see [1, p. 28]. In an attempt to clarify what hap-
pens in the non-commutative situation without imposing any additional con-
ditions on 7 and «, we suggest the following.

PROPOSITION 2.2. Let 1<p<oo and x € LLNWW (xz € LPL NOWW).
Then

(1) for every X € Cy there is such xy € LP that
an(z,A) =2y au. (an(x,)\) —xy b.a.u., respectively),

(2) if e€ P(M) is such that {an(z, e} ({ean(z,N)e}) converges in M for
all A € Cq, then, given A € Cy and v >0, there is a projection ey € P(M)
such that ey <p, 7(e —ey) <v, and

H(an(x,)\) — xk)e)\Hoo —0 (’|e>\(an(x7)\) — xA)eAHOO -0, respectively).

Proof. We will provide a proof for the b.a.u. convergence. Same argument
is applicable in the case of a.u. convergence.

(1) Let z € LPNbOWW and A € C;. Then for every € > 0 there exists
e € P(M) with 7(et) < ¢ for which

|| (am(x)\ fanz)\) H —0 asm,n— o0.

Then, as it is noticed in [2, Proposition 1.3], a, (2, A) — x b.a.u. for some z €
L, which clearly implies that a,(x,\) — x bilaterally in measure, meaning
that, given € >0, J > 0, there exists IV € N such that for every n > N there
is e, € P(M) with 7(el) < e satisfying ||e,(an(7,\) — Z))en|loo < J. Since
the measure topology 001n01des with the bilateral measure topology on L (see
[4, Theorem 2.2]), a,(x,\) = x in measure. Then, as ||a,(z, A)||, < ||z||, for
all n, [4, Theorem 1.2] implies that x) € LP.

(2) Let e € P(M) be such that the sequence {ea, (z,\)e} converges in M
for all A € C;. By part (1), given A € C; and v > 0, there is f\ € P(M) with
7(ff) < v such that || fr(an(z,A) —21) frllec — 0 as n — co. Then ey = e A fy
satisfies the required conditions. O

REMARK 2.1. It is desirable to have the following: if x € WW (x €
bWW), then, given € > 0, there exists such e € P(M) with 7(et) < ¢ that
l(an(z,A) — zr)ellooc = 0 (|le(an(z,A) — zr)e|loc — 0, respectively) for all
A € Cq; see Remark 5.1 below.

THEOREM 2.1. For each 1 < p < oo the set X = LPNOWW is closed in LP.

Proof. Take x in the || - ||p-closure of X and fix € > 0. By Lemma 2.1, one
can find sequences {xm} C X and {fp} C P(M) in such a way that

1

L

H(4) < g and s fne — N < 2
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for allm e N and A€ Cy. If we let f= A ~_; fm, then

T(fi)gg and supran(SE—mma)\)fHooS_

meN, A€ Cy. Also, since {z,,} CbWW, one can construct g € P(M) such
that

I\ _ €

< —

7(97) < 3
Next, there exists h € P(M) with 7(h*) < § for which {o*(z)h}2 ) C M so

that {ha,(x,A)h} C M for all A € C;. Now, if e= f A g A h, then we have
r(et) <e,

and  {gan(wm,A)g} converges in M for all m € N, X € Cy.

1
n - 4my A S ]
Sl:LpHG(l (r—= )eHOO —
{ean(zm, e}  convergesin M, and {ean(z,\)e} C M
for all m € N and \ € C;.
It remains to show that, for a fixed A € Cq, the sequence {ean(z,N)e}
converges in M. So, fix 6 > 0 and pick mg such that — < 5. Since the

sequence {ean(Tm,,A)e} converges in M, there exists N such that

He(am(xmo,)\) ny (T, A ) ||oo— 3

whenever ni,ne > N. Therefore, given ny,ns > N, we can write
lle(an, (2, ) = an, (z, X)) e H

< ||eam(x—:vm0, || + Hean,z fosmO,)\)eH

+’|e(a"1(xmo7)‘) Qpy xmm )H
<.

o0

This implies that the sequence {ea, (z,A)e} converges in M for all A € Cq,
hence x € X and X is closed in L?. d

Let K be the || - ||2-closure of the linear span of the set
(3) E={z€L?: a(z) = px for some p € Cy}.
ProPOSITION 2.3. K COWW.

Proof. By Theorem 2.1, it is sufficient to show that Z;n:l ajr; € bWW
whenever a; € C and z; € F, 1 <j <m. For this, one will verify that E C
WW.

If z € E, then a(x) = px, p € C;. Fix £ >0 and find e € P(M) with
7(et) < e such that xe € M. Then, given \ € C;, we have

n—1

an(z,\) = xe% Z(/\u)k.

k=0
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Therefore, since the averages %ZZ;&()\M)’“ converge, we conclude that the
sequence {a,(x,\)e} converges in M, whence x € WIV. O

3. Spectral characterization of X+

The space £2 equipped with the inner product (x,y), = 7(z*y) is a Hilbert
space such that ||z]|s = ||lz|» = (z,2)¥?, z € £2.

From now on we shall assume that 7 and « satisfy the following additional
conditions: 7 is a state, a is a homomorphism, and 7 o . = 7. Notice that
then ||a(z)|l2 = ||z]|2 and |7(z)| < ||z||2 for every = € L£2.

PROPOSITION 3.1. If x € L2, then the sequence {v,(1)}>,, given by

{T(ar*a%:c)), if 1>0,

Ve =q—
@ T(z*a~t(z)), ifl<0
1s positive definite.

Proof. If pg,...,um € C, then, taking into account that positivity of «
implies that a(y)* = a(y*), y € L2, we have

> mak(@)|| = <Z pied (), Mz‘ai(ﬂi)>
k=0 =0 .

=0
m

— Z ,ui,ajr(aj (a:*)of(x))

i,j=0

2
0<

2

If 1 > j, we can write
(o (z*) o' (z)) = 7(o? (¥ (2)) =7 (2" 0" (2)) = 7.(i — j),
and if 7 < j, we have
7(o? (27)a’(2) = 7(a" (¢*)ad (2)) = 7 (270~ () = 7a (i = ).
Therefore

m
D veli— fpai; =0
i,5=0
for any puo, ..., pm € C, hence {7,(1)} is positive definite. O

Consequently, given x € £2, by Herglotz-Bochner theorem, there exists a
positive finite Borel measure o, on C; such that

(4) T(x*ozl(z))zfyx(l):@c(l):/c il gy (1), 1=1,2,....

LeEMMA 3.1. a(Kt) C KL
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Proof. Since a: £L? — £? is an isometry, we have ||a| = 1. Therefore,
la*]| =1 as well, so that ||a*(z)||2 < ||z|l2, € £2.
Let # € E, that is, x € £? and a(z) = px for some p € C;. Then we have

o (@) = g2 = o @)]]2 = (" (),2), — (.0 @), + all3 <0,

and it follows that o*(z) = jx.
Now, if y € K+, then (a(y),z), = (y,a*(x)), = fi(y, ), = 0, which implies
that a(y) L E, hence a(y) € K*. O

PROPOSITION 3.2. If z € Kt, then the measure o, is continuous.

Proof. We need to show that o, ({t}) =0 for every ¢ € Cy. It is known [6,
p. 42] that

o ({t}) = n11_>r1010 % Z 2 UG (1),

)

=0.

which is equal to

nlLIr;O % Z ™l r (2% ol (2)) = nli_)H;QT (x* (

=1

3|'—'

Therefore, it is sufficient to verify that

1 n

- 2milt 1

- g e al ()
=1

By the Mean Ergodic theorem applied to a : L£2? — £2 given by a(z) =
e?™q(x), we conclude that

1= o .
—E e iltol(z) >z in L2
n

=1

Since x € K+, by Lemma 3.1, we have o!(x) € Kt for each I, which implies
that z € K. Besides,

(5) lim

n—oQ

2

n

1 ) )
04(9_5) = || . ||2 — nhﬁngO E Ze2mltal+1(z) _ 67271%1—77
=1

so that & € K. Therefore =0, and (5) follows. O

4. Non-commutative Van der Corput’s inequality

It was shown in [10] that the extremely useful Van der Corput’s “Funda-
mental Inequality” (see [1]) can be fully extended to any x-algebra:
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THEOREM 4.1 ([10]). If n>1, 0<m <n —1 are integers and ag,...,
Gn—14+m are elements of a x-algebra such that ap, =+ = an_14m =0, then

n—1 n—1
(z ) (z ) <ol
k=0

k=0 k=0

2n—14+m)=m—1+1
+ m+1 Z m+1 ReZakak_H

COROLLARY 4.1. If in Theorem 4.1, ag,...,0n_141m are elements of a C*-
algebra with the norm || - H, then

n—1 2
E ag E akak
k=0

which implies that

n—1+m
T m+1

9

n—l-&-m)i m—1+1
m+1 m+1

E akak-H

Z

n—1—|—m
- m—|—1n

;. A
nZk

2(n—1+m)zm: m—1+1

)

aak+l
n§ k

(m+1)n —~ m+l
and further
1 n—1 2 —
(6) n Z ak Z Z ajak+1
k=0 k=0

5. Proof of the main result

We will assume now that « is ergodic on £2, that is, a(r) =z, x € L2,
implies that z=c- 1, c€ C.

PROPOSITION 5.1. If x € L2, then an(z) — 7(x) - T a.u.

Proof. By the Mean Ergodic theorem, a,(x) — Z in £2. Therefore,
a(an(r)) = a(Z) in L2, so a(Z) = Z, and the ergodicity of a implies that
Z =c(x) - 1. Then, since 7 is also continuous in £2, we have 7(a,(z)) —
7(Z) = ¢(x), hence ¢(x) = 7(z) because 7(an(z)) = 7(x) for each n. It is
known ([5], [7]) that a,(z) — Z € £? a.u., which implies that a,(z) — 7 in
measure. Since || - [2-convergence entails convergence in measure, we con-
clude that =z =7(x) - L. O

LEMMA 5.1. Ifa,b€ L and e € P(M) are such that ae,be € M, then
(ae)*be = ea™be.
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Proof. We have
((ae)*be)* = (be)*ae C (be)*(ea*)* C (ea*be)*,
which, since ((ae)*be)* € B(H), implies that ((ae)*be)* = (ea*be)*, hence the
required equality. O

Now we can prove our main result, a non-commutative Wiener—Wintner
theorem.

THEOREM 5.1. Let M be a von Neumann algebra, T a faithful normal
tracial state on M. Let oc: LY — L be a positive ergodic homomorphism such
that Toa =1 and ||a(x)|leo < ||2]|oo, ®* € M. Then LY =bWW, that is, for
every x € L' and £ > 0 there exists such a projection e € P(M) that

T(eL) <e and {ean(a:,)\)e} converges in M for all A € C;.

Proof. Since £? is dense in £!, L2 =K @® K+, and K C bBWW (Proposi-
tion 2.3), by Theorem 2.1, it remains to show that K+ C bWW. (In fact, we
will show that Kt Cc WW.)

So, let € K+ and fix e > 0. Since {z*a!(z)}, C L2, due to Proposi-
tion 5.1, one can construct a projection e € P(M) in such a way that

T(et) <, {aF(z)e} c M for all k,
ean(z*z)e — 7(2*z)e = ||lz]2e in M, and
ean, (x*al(m))e — T(x*al(a:))e =0,()e in M for every I.
Now, if a, = A¥a¥(x)e, k=0,1,2,..., then, employing Lemma 5.1, we obtain
ajapy; = Neak (a:*al(x))e, k,1=0,1,2,....

At this moment we apply inequality (6) to the sequence {a;} C M yielding,
in view of (1) and (2),

sup ||an(:r,)\)e||2

* 4 *
AeCy [e%S) = m+1||ean(:r 1’)€||Oo+m—+1§_:||ean(1’ al(x))euoo'

Therefore, for a fixed m, we have

. 2 2 9 4 K

limsup sup [|an(z, Vel < ——||z||5+ —— ox(l)].
Since the measure o, is continuous by Proposition 3.2, Wiener’s criterion of
continuity of positive finite Borel measure [6, p. 42] yields
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which entails

Thus, we conclude that

(7) lim sup Han(m,)\)enoo =0,

n—00 \eC;,

whence x € WW. g

Note that (7) can be referred to as non-commutative Bourgain’s uniform
Wiener—Wintner ergodic theorem.

REMARK 5.1. As we have noticed (Proposition 2.2), for a fixed A € C; and
every r € L1, the averages a,(x,\) converge b.a.u. to some z € £'. It can be
verified [8] that x is a scalar multiple of I. If we assume additionally that o
is weakly mizing in £2, that is, 1 is its only eigenvalue there, then it is easy to
see that the b.a.u. limit of {a,(z,\)} with = € £ is zero unless A = 1. Since
L2 is dense in £', one can employ an argument similar to that of Theorem 2.1
to show that a,(x,\) = 0 b.a.u. for every z € £! if A # 1. Therefore if « is
weakly mixing, we can replace, in Theorem 5.1,

{ea,(z,\)e} converges in M for all A € C;
by
Hean(ﬂc,)\)eHoo —0 ifA#0 and
He(an(x) — xl)eHoo — 0 for some z7 € L}

see Proposition 2.2 and Remark 2.1.
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