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BOUNDARY VALUE PROBLEMS FOR A FAMILY OF
DOMAINS IN THE SIERPINSKI GASKET

ZIJIAN GUO, RACHEL KOGAN, HUA QIU AND ROBERT S. STRICHARTZ

Abstract. For a family of domains in the Sierpinski gasket, we
study harmonic functions of finite energy, characterizing them in

terms of their boundary values, and study their normal deriva-
tives on the boundary. We characterize those domains for which

there is an extension operator for functions of finite energy. We

give an explicit construction of the Green’s function for these
domains.

1. Introduction

Consider the domain Ωx in the Sierpinski gasket (SG) consisting of all
points above the horizontal line Lx at the distance x from the top vertex q0,
for 0< x≤ 1. See Figure 1.

Let S(x) = SG ∩ Lx. For x not a dyadic rational, this is a Cantor set.
The boundary of Ωx consists of S(x) together with q0. By general principles,
harmonic functions on Ωx are determined by their boundary values, where
harmonic functions are defined to be solutions of �h = 0 on the interior of
Ωx, where � is the Kigami Laplacian on SG. The study of such harmonic
functions was initiated in [S1], and continued in [OS] for the special case
x = 1. In this paper, we extend the results in [OS] to the general case. In
Section 2, we give an explicit description of the analog of the Poisson kernel
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Figure 1. The domain Ωx.

to recover the harmonic function from its boundary values, in terms of the
Haar series expansion of the boundary values on S(x), and we characterize the
boundary values that correspond to harmonic functions of finite energy. In
Section 3, we define normal derivatives on the boundary and give a description
of the Dirichlet-to-Neumann map as a multiplier transform on the Haar series
expansion.

In Section 4, we study the extension problem for functions of finite energy
on Ωx to functions of finite energy on SG. We are able to characterize the
values of x for which such extensions are possible. In particular, the value
x= 1 studied in [OS] does not admit such extensions. This may be regarded
as the first of a family of Sobolev extension problems, based on Sobolev spaces
on SG discussed in [S2]. We leave these as open problems for future research.
Related problems are studied in [LS] and [LRSU].

In Section 5, we give a construction of a Green’s function on Ωx to solve the
Dirichlet problem −�u= F on Ωx, u|∂Ωx = 0 via an integral transform of F .
The construction of the Green’s function is analogous to Kigami’s construction
on SG.

The reader is referred to the books [Ki] and [S3] for a description of the
theory of the Laplacian on SG, and related fractals. It would be interesting
to extend the results of this paper to other domains in SG, and to domains in
other fractals. In this regard, we offer the following cautionary tale. Consider
the fractal SG3, defined similarly to SG but by subdivisions of the sides of
triangles into three rather than two pieces (see Figure 2).

We may consider domains Ωx defined as before, with the boundary S(x)
modeled as a Cantor set with divisions into three pieces. There is a natural
analog of Haar functions on S(x), with two generators as shown in Figure 3.

Because the second generator is symmetric rather than skew-symmetric,
we cannot glue to zero at the top, so the analog of Lemma 2.3 does not hold.
It is not clear how to overcome this difficulty.
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Figure 2. The level-3 Sierpinski gasket.

Figure 3. Haar generators.

2. Harmonic functions on Ωx

For 0< x≤ 1, there is a unique representation

(2.1) x=
∞∑
k=1

2−nk

for a sequence

(2.2) 0< n1 < n2 < · · ·
of increasing positive integers. We will approximate Ωx by the increasing

sequence of domains Ω
(m)
x where each Ω

(m)
x is the closure of Ωx[m]

where

(2.3) x[m] =
m∑

k=1

2−nk

is the partial sum of (2.1). (Note that (2.3) is not the representation of x[m]

of the form (2.1) since it is a finite binary representation.) The domain Ω
(m)
x

is a finite union of cells, specifically 1 n1-cell, 2 n2-cells, 4 n3-cells, . . . ,2
m−1
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Figure 4. Some examples of Ω
(m)
x for m= 1,2,3.

nm-cells. Figure 4 illustrates Ω
(m)
x for m = 1,2,3 for two choices of x. The

boundary of Ω
(m)
x consists of the top vertex q0 together with the 2m bottom

vertices of the nm-cells.
Following [S1], we define

(2.4) Rx=

∞∑
k=2

2−nk = x− 2−n1

and the function α0(x) by the identity

(2.5) α0(x) =
1

1+ 2( 53 )
n2−n1(1− α0(Rx))

which is easily solved to obtain a variant of a continued fraction representation

(2.6) α0(x) = lim
k→∞

α
(k)
0 (x)

for

(2.7) α
(k)
0 =

1

1+ 2( 53 )
n2−n1(1− 1

1+2( 5
3 )

n3−n2 (1− 1

... 1

1+2( 5
3
)
nk−nk−1

.

See Figure 5 for the graph of α0(x) on (0,1].
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Figure 5. The graph of α0(x).

We also define

(2.8) α1(x) =
1− α0(x)

2

2α0(x) + 1
, α2(x) =

α0(x)− α0(x)
2

2α0(x) + 1
.

Note that

(2.9) α0(x) + α1(x) + α2(x) = 1.

These functions enable us to describe harmonic functions in Ωx. The
boundary of Ωx consists of the top vertex q0 and S(x) = Lx ∩ SG. If x is
not a dyadic rational, then S(x) is a Cantor set. We will assume this holds.
Then a harmonic function is determined by the value h(q0) and the expansion
of h|SG in a Haar basis.

Definition 2.1. The harmonic function h0 satisfies

(2.10) h0(q0) = 1, h0|S(x) = 0.

The harmonic function h1 satisfies

h1(q0) = 0, h1|S(x)∩F
n1−1
0 F1(SG) = 1,

h1|S(x)∩F
n1−1
0 F2(SG) =−1.

(2.11)

We write hx
0 and hx

1 when we need to explicitly show the dependence on x.
Note that 1− h0 satisfies

(2.12) (1− h0)(q0) = 0, (1− h0)|S(x) = 1,
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so that 1−h0 and h1 vanish at q0 and give the first two Haar functions when
restricted to S(x). Also it is shown in [S1] that

(2.13) h0

(
Fn1−1
0 F1q0

)
= h0

(
Fn1−1
0 F2q0

)
= α0(x)

and

(2.14) h1

(
Fn1−1
0 F1q0

)
=−h1

(
Fn1−1
0 F2q0

)
= α1(x)− α2(x).

Lemma 2.2. Let y = 2n1Rx. Then

(2.15) hx
0 ◦

(
Fn1−1
0 F1

)
= hx

0 ◦
(
Fn1−1
0 F2

)
= α0(x)h

y
0

and

(2.16) hx
1 ◦

(
Fn1−1
0 F1

)
=−hx

1

(
Fn1−1
0 F2

)
= 1+

(
α1(x)− α2(x)− 1

)
hy
0.

Proof. The function α0(x)h
y
0 is a harmonic function on Ωy with boundary

values α0(x) at q0 and zero on S(y). Note that Fn1−1
0 F1(S(y)) = S(x), so

hx
0 ◦ (Fn1−1

0 F1) is also a harmonic function on Ωy vanishing on S(y), and
it assume the value α0(x) at q0 by (2.13). Thus, (2.15) holds. A similar
argument shows that (2.14) implies (2.16). �

Next, we consider the general Haar basis functions on L2(S(x)). Let ω =
(ω1, . . . , ωm) be a word of length |ω|=m, with each ωj = 1 or 2. Then

(2.17) Sω(x) = S(x)∩ Fn1−1
0 Fω1F

n2−n1−1
0 Fω2 · · ·F

nm−nm−1−1
0 Fωm(SG)

describe the dyadic pieces of S(x). In particular,

(2.18) S(x) =
⋃

|ω|=m

Sω(x).

The Cantor measure μ on S(x) assigns measure 2−m to each piece Sω(x).
The Haar function ψω is supported on Sω(x) and satisfies

(2.19) ψω|Sω1(x) = 2m/2 and ψω|Sω2(x) =−2m/2.

Then 1∪{ψω} is an orthonormal basis for L2(S(x), dμ). We define hx
ω to be the

harmonic function on Ωx with boundary values hx
ω(q0) = 0 and hx

ω|S(x) = ψω .

Lemma 2.3. Let ym = 2nmRmx. Then hx
ω is supported in

Ωx ∩ Fn1−1
0 Fω1F

n2−n1−1
0 Fω2 · · ·F

nm−nm−1−1
0 Fωm(SG)

and

(2.20) hx
ω ◦

(
Fn1−1
0 Fω1F

n2−n1−1
0 Fω2 · · ·F

nm−nm−1−1
0 Fωm

)
= 2m/2hym

1 .

Proof. The key observation is that, because of skew-symmetry, the function
h1 not only vanishes at q0 but also has normal derivative vanishing at q0.
Thus, we may glue the function defined by (2.20) to zero outside this cell
and still have a harmonic function. This function clearly has the required
boundary values for hx

ω . �
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Theorem 2.4. The energies are given by

E
(
hx
0

)
=
(
1− α0(x)

)2 ∞∑
j=1

22−j

(
5

3

)2n1−nj

,(2.21)

E
(
hx
1

)
= 6

(
1− α0(x)

2α0(x) + 1

)2(
5

3

)n1

+ 2

(
3α0(x)

2α0(x) + 1

)2(
5

3

)n1

E
(
hy
0

)
,(2.22)

and

(2.23) E
(
hx
ω

)
= 2m

(
5

3

)nm

E
(
hym

1

)
,

where m= |ω|. Moreover, there exist positive constants C1 and C2, indepen-
dent of x, such that

(2.24) C12
m

(
5

3

)nm+1

≤ E
(
hx
ω

)
≤C22

m

(
5

3

)nm+1

.

Proof. We compute the energy of hx
0 on the top cell Fn1

0 (SG) using (2.13)
to be ( 53 )

n12(α0(x) − 1)2, since there are two edges where the difference of

hx
0 is α0(x)− 1. On the remaining cells Fn1−1

0 F1(SG) and Fn1−1
0 F2(SG) the

function hx
0 is equal to α0(x)h

y
0 ◦ (Fn1−1

0 F1)
−1 and α0(x)h

y
0 ◦ (Fn1−1

0 F2)
−1 by

(2.15). These each have energy α0(x)
2( 53 )

n1E(hy
0), so

(2.25) E
(
hx
0

)
= 2

(
5

3

)n1((
α0(x)− 1

)2
+ α0(x)

2E
(
hy
0

))
.

Before iterating this identity, we observe that

(2.26)
(
1− α0(y)

)
α0(x) =

1

2

(
5

3

)n1−n2(
1− α0(x)

)
.

This follows from (2.5) and the observation, from (2.7), that α0(x) de-
pends only on the sequence of differences nk − nk−1 and therefore α0(y) =
α0(2

n1Rx) = α0(Rx). Thus,

E
(
hx
0

)
=
(
1− α0(x)

)2(
2

(
5

3

)n1

+

(
5

3

)2n1−n2
)

+ 4

(
5

3

)n2

α0(x)
2α0(y)

2E
(
hy2

0

)
and by iterating we obtain (2.21).

Similarly, we use (2.14) to compute the energy of hx
1 on the top cell Fn1

0 (SG)
to be (53 )

n16(α2(x) − α1(x))
2 = ( 53 )

n16( 1−α0(x)
2α0(x)+1 )

2 by (2.8). Then by using

(2.16) we compute the energy in each of the other cells to be (53 )
n1(α1(x)−

α2(x) − 1)2E(hy
0) = ( 53 )

n1( 3α0(x)
2α0(x)+1 )

2E(hy
0), and by adding we obtain (2.22).

Then (2.23) follows by Lemma 2.3.
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To obtain the estimate (2.24), we observe that since 0 ≤ α0(x) ≤ 3
10 it

follows from (2.7) that α0(x) is bounded above and below by multiples of
(53 )

n1−n2 . It follows from (2.21) that E(hx
0) is bounded above and below by

multiples of ( 53 )
n1 since the infinite series is dominated by its first term. We

get the same estimate for E(hx
1) using (2.22) since the second summand is

bounded by a multiple of ( 53 )
2(n1−n2)( 53 )

n1( 53 )
n2−n1 . Then (2.24) follows from

this estimate and (2.23). �

Corollary 2.5. Let h be the harmonic function on Ωx with boundary
values h(q0) = a and h|S(x) = f , where

(2.27) f = b+
∑
ω

cωψω

for

(2.28) cω =

∫
S(x)

fψω dμ.

Then E(h) is bounded above and below by multiples of

(2.29)

(
5

3

)n1

(a− b)2 +

∞∑
m=0

∑
|ω|=m

2m
(
5

3

)nm+1

|cω|2.

In particular, h has finite energy if and only if (2.29) is finite.

Proof. By subtracting a constant we may assume without loss of generality
that a= 0 (this does not change cω). Then from (2.27) we have

(2.30) h= b(1− h0) +

∞∑
m=0

∑
|ω|=m

cωhω,

and the functions h0 ∪ {hω} are orthogonal in energy by symmetry consider-
ations. Thus,

(2.31) E(h) = b2E(1− h0) +

∞∑
m=0

∑
|ω|=m

|cω|2E(hω)

and the result follows by the estimates (2.24). �

We are also interested in the corresponding result for the L2 norm of h.
Using similar reasoning, we can show that ‖h‖22 is bounded above and below
by multiples of

(2.32)

(
1

3

)n1(
a2 + b2

)
+

∞∑
m=0

∑
|ω|=m

2m
(
1

3

)nm+1

|cω|2.

Of course this allows the coefficients to grow so that
∑

ω |cω|2 is infinite,
meaning that the boundary values f on S(x) may not be in L2(S(x)).
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3. Normal derivatives

We follow the general outline from [OS] to define a normal derivative on
S(x). We define

(3.1) ∂nu|S(x) = lim
m→∞

2m
∑

|ω|=m

(
−∂nu(F̃ωq0)

)
χS(x)∩F̃ω(SG)

if the limit exists, where

(3.2) F̃ω = Fn1−1
0 Fω1F

n2−n1−1
0 Fω2 · · ·F

nm−nm−1−1
0 Fωm .

The cells F̃ω(SG) for |ω|=m cover S(x), and F̃ωq0 is the top vertex. Since

∂nu(F̃ωq0) is outer directed, upward, we insert the minus sign to get an outer
directed normal across S(x).

Lemma 3.1. ∂nh
x
0 is the constant function on S(x) with value −2(53 )

n1 ×
(1− α0(x)).

Proof. We compute ∂nh
x
0(q0) = 2( 53 )

n1(1− α0(x)) from the cell Fn1
0 (SG).

Next, consider the cell Fn1−1
0 Fω1F

n2−n1
0 (SG). The top vertex is Fn1−1

0 Fω1q0,

and by symmetry (on the cell Fn1
0 (SG)), ∂nhx

0(F
n1−1
0 Fω1q0) =

1
2∂nh

x
0(q0) for

ω1 = 1,2. Thus 2
∑

|ω|=1(−∂nh
x
0(F̃ωq0))χS(x)∩F̃ω(SG) = −∂nh

x
0(q0)χS(x). By

similar reasoning, there is no change on the right side of (3.1) as m increases.
�

Lemma 3.2. ∂nh
x
ω = 6 · 2m( 53 )

nm+1( 1−α0(ym)
2α0(ym)+1 )ψω .

Proof. On the cell Fn1
0 (SG) we compute (using (2.14))

∂nh
x
1

(
Fn1−1
0 F1q0

)
=−∂nh

x
1

(
Fn1−1
0 F2q0

)
= 3

(
5

3

)n1(
α1(x)− α2(x)

)
,

so we have∑
|ω|=1

2
(
−∂nh

x
1(F̃ωq0)

)
χS(x)∩F̃ω(SG) = 6

(
5

3

)n1(
α1(x)− α2(x)

)
ψ∅,

and by the same reasoning as in Lemma 3.1, this does not change if we instead
sum over |ω| =m for any m ≥ 2. So this gives the correct result for ω = ∅.
We then use Lemma 2.3 to scale the result for general ω. �

Theorem 3.3. Suppose h and f are given as in Corollary 2.5. Then ∂nh
is given by

2(b− a)

(
5

3

)n1(
1− α0(x)

)
(3.3)

+

∞∑
m=0

∑
|ω|=m

6 · 2m
(
5

3

)nm+1
(

1− α0(ym)

2α0(ym) + 1

)
cωψω
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provided the series converges. In other words, the Dirichlet-to-Neumann map
f → ∂nh is a Haar series multiplier map with multiplier 6 · 2m( 53 )

nm+1 ×
( 1−α0(ym)
2α0(ym)+1 ).

Corollary 3.4. Suppose f satisfies

(3.4)

∞∑
m=0

∑
|ω|=m

22m
(
5

3

)2nm+1

|cω|2 <∞.

Then ∂nh is well-defined in L2(S(x)) and ‖∂nh‖22 is bounded above and below by
a multiple of (3.4).

Proof. The theorem follows from Lemma 3.2, and the corollary follows from

the fact that 1−α0(x)
2α0(x)+1 is uniformly bounded above and below independent

of x. �
Note that the finiteness of (3.4) is a stronger condition than the finiteness

of (2.29), so harmonic functions of finite energy do not necessarily satisfy
(3.4), but functions h satisfying the conditions of Corollary 3.4 automatically
have finite energy.

Corollary 3.5. Suppose h is as in Corollary 2.5 with coefficients that
satisfy (3.4), and v is any function of finite energy of Ωx, then the following
Gauss–Green formula holds:

(3.5) E(h, v) = v(q0)∂nh(q0) +

∫
S(x)

v∂nhdμ.

Proof. v is continuous since v is of finite energy, hence has a well-defined
restriction to S(x) that is bounded and thus in L2(μ). Apply the standard

Gauss–Green formula on the domain
⋃

|ω|≤m F̃ω(SG) and take the limit as
m→∞. �

4. Extending functions of finite energy

In this section, we will write Ω+
x for the region above L(x) that was previ-

ously denoted Ωx, and Ω−
x for the region below L(x). Under the assumption

that x is not a dyadic rational, S(x) is the common boundary of Ω+
x and Ω−

x .
For functions u± defined on Ω±

x , we use EΩ±
x
(u±) to denote the energies of

u±, which are naturally defined by taking the graph energy sum with edges
restricted to lie in Ω±

x , and then computing the usual renormalized limit.
Let domEΩ±

x
to denote the collections of functions of finite energy on Ω±

x ,
respectively.

The first issue that we address is under what conditions can we glue to-
gether functions u± of finite energy on Ω±

x to obtain a function of finite energy
on SG. Since functions of finite energy are continuous, u± must have bound-
ary values on S(x) that agree. It turns out that this is the only condition that
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we need to impose. This is not surprising since the same is true for gluing
functions of finite energy on domains that intersect at a finite set of points.

Theorem 4.1. Let u± ∈ domEΩ±
x
, and suppose

(4.1) u+|S(x) = u−|S(x),

the values being defined by continuity. Then

u=

{
u+ on Ω

+

x ,

u− on Ω
−
x ,

(4.2)

belongs to domE in SG and

(4.3) E(u) = EΩ+
x

(
u+

)
+ EΩ−

x

(
u−).

Proof. Let Sm denote the strip of 2m cells of order nm containing S(x),
and let B±

m denote the unions of the cells of order nm contained in Ω±
x . Then

E(nm)(u) = E(nm)

B+
m

(u) + E(nm)

B−
m

(u) + E(nm)
Sm

(u).

Since E(nm)

B±
m

(u)→EΩ±
x
(u±) as m→∞, it suffices to show

(4.4) E(nm)
Sm

(u)→ 0.

Let C denote one of the nm-cells in Sm with boundary points xm ∈Ω+
x and

ym, zm ∈Ω−
x . See Figure 6. We need to estimate(

5

3

)nm[(
u+(xm)− u−(ym)

)2
(4.5)

+
(
u+(xm)− u−(zm)

)2
+
(
u−(ym)− u−(zm)

)2]
.

It suffices to estimate the first two terms in (4.5) since u−(ym)− u−(zm) =
(u+(xm)−u−(zm))− (u+(xm)−u−(ym)), and by symmetry it suffices to esti-
mate the first term. Let S±

m be the portion of Sm above or below S(x). There
will be an infinite sequence of points {xm, xm+1, . . .} in S+

m and {ym, ym+1, . . .}
in S−

m, both converging to the same point p ∈ S(x). Since u+(p) = u−(p) by
(4.1), we may write

u+(xm)− u−(ym) =

∞∑
j=m

(
u+(xj)− u+(xj+1)

)
(4.6)

−
∞∑

j=m

(
u−(yj)− u−(yj+1)

)
.

Now each pair (xj , xj+1) are vertices of a cell Cj of order nj+1 in Ω+
x . Note

that all these cells are essentially disjoint, and C =
⋃

j Cj .
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Figure 6. S(x) and the domains Ω±
x .

So we have the estimate

(4.7)
∣∣u+(xj)− u+(xj+1)

∣∣≤(
3

5

)nj+1/2

ECj

(
u+

)1/2
.

By the Cauchy–Schwarz inequality, we obtain

∞∑
j=m

∣∣u+(xj)− u+(xj+1)
∣∣ ≤

( ∞∑
j=m

(
3

5

)nj+1
)1/2( ∞∑

j=m

ECj

(
u+

))1/2

(4.8)

≤ c

(
3

5

)nm/2

EC∩S+
m

(
u+

)1/2
.

By similar reasoning, we obtain the same estimate with |u−(yj)− u−(yj+1)|,
so by (4.6) we have

(4.9)

(
5

3

)nm∣∣u+(xm)− u−(ym)
∣∣2 ≤ cEC∩S+

m

(
u+

)
+ cEC∩S−

m

(
u−).

Summing (4.9) over all the 2m cells C yields

(4.10) E(nm)
Sm

(u)≤ cES+
m

(
u+

)
+ cES−

m

(
u−)

and ES±
m
(u±)→ 0 because

⋂
m S±

m = S(x) and S(x) has measure zero in the

Kusuoka measure (this follows easily from Theorem 5.1 of [AHS]). �
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It is easy to characterize the restrictions to S(x) of functions of finite energy
on Ω+

x .

Theorem 4.2. A function f on S(x) is the restriction to S(x) of a function
u+ of finite energy on Ω+

x if and only if f has a Haar series expansion (2.27)
with (2.29) finite (here a= 0), and (2.29) is bounded by a multiple of EΩ+

x
(u+).

Proof. Let h be the harmonic function on Ω+
x with the same boundary

values f . Since harmonic functions minimize energy, EΩ+
x
(h)≤ EΩ+

x
(u+), and

the result follows from Corollary 2.5. �

However, there is no such simple result for Ω−
x . We pose the following

extension problem.

Problem 4.3. Does there exist a bounded linear extension operator (mean-
ing Tu|Ω+

x
= u) T : domΩ+

x
(E)→ domSG(E)?

There is a simple obstruction to solving this problem.

Definition 4.4. x satisfies the nonconsecutive condition with bound N if
there are no N consecutive integers in the sequence {nm}. If there is some N
for which this holds then x is said to satisfy the nonconsecutive condition.

Note that a generic value of x will not satisfy this condition. However,
there are uncountably many (of Hausdorff dimension 1) values of x that do
satisfy the condition. Perhaps the simplest choice has nm = 2m − 1, with
N = 2.

Theorem 4.5. Let E denote the collection of x satisfying the nonconsec-
utive condition. Then the Hausdorff dimension of E is 1.

Proof. Let EN denote the collection of x satisfying the nonconsecutive
condition with bound N . Then E =

⋃
N≥2EN and

(4.11) E2 ⊂E3 ⊂ · · · ⊂EN ⊂ · · · .

We will first prove that the Hausdorff dimension of EN is the unique positive
root of the equation

(4.12) 2− 2s − 2−Ns = 0.

Consider the set EN . We divide it into the disjoint union EN =
⋃

k≥1EN,k

where EN,k is the set of x in EN whose n1-digit is k. Obviously, for each
k, EN,k is a similar copy of EN,1 with contraction ratio 21−k. Since the
Hausdorff dimension is stable for countable unions, we just need to compute
the dimension of EN,1. For this set, by the nonconsecutive condition, we can



510 Z. GUO ET AL.

write

EN,1 =

(⋃
j≥3

(
2−1 +EN,j

))
∪ · · ·(4.13)

∪
( ⋃

j≥N+1

(
2−1 + · · ·+ 2−(N−1) +EN,j

))
.

Since |EN,j | ≤ 1/2j , it is easy to check that the above union is disjoint. More-
over, (4.13) is essentially a self-similar identity for the set EN,1 with contrac-
tion ratios,

2−2,2−3, . . . ; 2−3,2−4, . . . ; 2−N ,2−(N+1), . . . ,

satisfying the open set condition (with the open set (2−1,1)). (See [M] for the
theory of infinitely generated self-similar sets.) Hence the Hausdorff dimension
of EN,1 is the solution of the equation

(4.14) 1 =
N∑

k=2

∑
j≥k

(
2−s

)j
=

N∑
k=2

(2−s)k

1− 2−s
=

2−2s − 2−s(N+1)

(1− 2−s)2
,

which simplifies to (4.12). So we get the Hausdorff dimension of EN .
Using (4.11), an easy calculation will show that the Hausdorff dimension

of E is 1. �

If x fails to satisfy the nonconsecutive condition, then there are pairs of
points in Ω+

x that are much closer to each other in SG than in Ω+
x . For

example, if nj = j for j ≤N then the points F1F
N−1
2 q0 and F2F

N−1
1 q0 in Ω+

x

are distance on the order of ( 35 )
N apart in the resistance metric on SG, but are

far apart in Ω+
x . Note that h

x
1(F1F

N−1
2 q0)−hx

1(F2F
N−1
1 q0) = 2hx

1(F1F
N−1
0 q0)

and E(hx
1) is bounded. The estimate analogous to (4.7) shows

c≤
(
3

5

)N/2

E(u)1/2

for any extension u of hx
1 to SG, hence E(u) ≥ c(53 )

N . This means that the
bound on the operator T , if it exists, would be bounded below by a multiple
of ( 53 )

N/2.
The same reasoning applies locally if {nm} has a consecutive string of N

integers. Thus if such strings exist for all N then T cannot be bounded. On
the other hand, it is easy to see that if the nonconsecutive condition holds
for x then distances in Ω+

x and SG are comparable. Note that this is very
reminiscent of the type of condition that appears in the work of Peter Jones
in the Sobolev extension problem in domains in Euclidean space ([J], [R]).

Theorem 4.6. The extension Problem 4.3 has a positive solution if and
only if x satisfies the nonconsecutive condition, in which case the bound on T
is O(( 103 )N/2).
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Proof. We need to construct an extension operator T under the assumption
that x satisfies the nonconsecutive condition. In view of our previous results,
it suffices to solve the extension problem for the functions hω (and also 1−h0),

say Thω = h̃ω where the functions h̃ω are orthogonal in energy and

(4.15) E(h̃ω)≤C(N)2m
(
5

3

)nm+1

.

Suppose first that N = 2. Consider first 1−h0 and h∅. Assume for simplic-
ity that n1 = 1. Then n2 ≥ 3. Then S(x) passes through the cells F1F0(SG)
and F2F0(SG). We will extend 1− h0 to be identically 1 on the bottom por-
tions of these cells, and h∅ to be 1 on F1F0(SG) and −1 on F2F0(SG). On the
remaining four cells of level 2, we make the extension harmonic with boundary
values 0 on the bottom vertices (see Figures 7 and 8).

Note that the added energy of these extensions is exactly 8( 53 )
2. Also,

since one extension is symmetric and one is skew-symmetric with respect
to the vertical reflection, they are orthogonal in energy. If n1 > 1, we may

Figure 7. The location of S(x).

Figure 8. A N = 2 case.
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repeat the same process on Fn1−1
0 (SG) and then continue the extension to

be identically zero on the complement of Fn1−1
0 (SG). The added energy is

exactly 8( 53 )
n1+1, but the energy of the original functions was also a multiple

of (53 )
n1 , so this is consistent with (4.15) with m = 0 and gives a uniform

bound on the extension operator.
For the extension of hω , we just have to repeat the same procedure minia-

turized. If |ω|=m then hω is supported on a cell of order nm+1− 1 and since
nm+2 ≥ nm+1 + 2 the right side of Figure 8 describes hω and its extension
(except for a factor of 2m/2) to that cell, and then we may glue this to zero
in the complement of the cell. Thus, we get an extension with the same en-
ergy bound. For words ω with |ω|=m, the extended function have disjoint
support, so the energies are orthogonal. Comparing extensions for words of
different length with overlapping support, we again have a symmetry/skew-
symmetry dichotomy with respect to the local reflection in the vertical axis
of the smaller supporting cell (this is the overlap of the supports) and so we
again have energy orthogonality. This completes the proof for N = 2.

For general N , the argument is simlar. In Figure 9, we show the extension
of h∅ when N = 3 and n1 = 1, n2 = 2, n3 ≥ 4.

Here we have 2N cells of order N contributing to the energy, and this multi-
plies the energy by O((103 )N ). Since the norm of the extension is measured in

terms of the square root of the energy, we obtain the O((103 )N/2) bound. �

Figure 9. A N = 3 case.
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The optimal extension operator would produce functions that are harmonic
on Ω−

x . In particular, it would be interesting to have an explicit description
of the functions h−

ω that are harmonic on Ω−
x and are equal to ψω on S(x),

again under the nonconsecutive condition.
We may regard Theorem 4.2 as a trace theorem and Theorem 4.6 as an

extension theorem for domE regarded as a Sobolev space, and then we should
ask if there are analogous results for other Sobolev spaces. In [S2], the
spaces domL2(Δk) on SG are considered as Sobolev spaces (domL2(Δk) =
{u ∈ L2(SG) : Δju ∈ L2(SG) for all j ≤ k}). Similarly for the space {u ∈
domL2(Δk) : E(Δku) < ∞}. These spaces are easily characterized in terms
of expansions in eigenfunctions of the Laplacian. A complete theory of the
eigenspaces of the Laplacian on Ω1 is given in [Q].

Problem 4.7. For each of these Sobolev spaces, characterize the space
of traces on S(x) and restrictions to Ω+

x , for x satisfying the nonconsecutive
condition.

It seems plausible that the trace problem may have a solution with a condi-
tion similar to (2.29) for the Haar expansion (2.27) with different multiples of
|cω|2 depending on the Sobolev space. The restriction problem is likely to be
more challenging. It is clear that restrictions of functions in domL2(Δk) must
satisfy Δju ∈ L2(Ω+

x ) for j ≤ k, but that is not sufficient because all harmonic
functions automatically have Δju= 0. It would seem that the characteriza-
tion of restriction Sobolev spaces would also have to involve conditions on
traces on S(x). Related problems are discussed in [LS] and [LRSU].

5. Green’s function

For a given k, let Vk denote the set of vertices on the k-level graph approx-
imation of SG. For a point z ∈ Vk \ V0, let φ

k
z denote the piecewise harmonic

spline of level k satisfying φk
z(t) = δzt for t ∈ Vk and extended harmonically on

SG. Notice that φk
z ∈ dom0 E because z /∈ V0, and it is supported in the two k-

cells meeting at z. Recall that in the standard theory (see the books [Ki] and
[S3]), the Green’s function G(s, t) to solve the Dirichlet problem −Δu = F
on SG, subject to the boundary condition u|V0 = 0 via an integral transform∫
SG G(s, t)F (t)dt, has the following explicit formula,

(5.1) G(s, t) = lim
M→∞

GM (s, t) (uniform limit)

with

(5.2) GM (s, t) =

M∑
k=1

∑
z,z′∈Vk\Vk−1

g(z, z′)φk
z(s)φ

k
z′(t),
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Figure 10. The support of φnm
z .

where

(5.3) g
(
z, z′

)
=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

3
10 (

3
5 )

k for z = z′ ∈ Vk \ Vk−1,
1
10 (

3
5 )

k for z �= z′ ∈ Vk \ Vk−1,

contained in the same (k− 1)-cell,

0, otherwise.

To get an analogous Green’s function on Ωx, we should first modify the
definition of those piecewise harmonic splines φk

z whose support intersects the
boundary S(x) of the domain Ωx. More specially, let ω be a word of symbols

{1,2} with |ω| = m and z = F̃ω(q0). We redefine φnm
z to be the piecewise

harmonic spline with value 1 on z, 0 on Vnm ∩ Ωx and S(x), and extended
harmonically on Ωx. See Figure 10. Obviously the support of φnm

z is contained

in two nm-cells meeting at z, with φnm
z = hym

0 ◦ F̃−1
ω on the cell F̃ω(SG) and

with values unchanged on the other cell, denoted by ˜̃Fω(SG), where

(5.4) ˜̃Fω =

⎧⎪⎨
⎪⎩
Fn1−1
0 Fω1F

n2−n1−1
0 Fω2 · · ·

F
nm−1−nm−2−1
0 Fωm−1F

nm−nm−1

0 for m≥ 2,

Fn1
0 for m= 1.

Lemma 5.1. Let z = F̃ω(q0), then

(5.5) EΩx

(
φnm
z , v

)
=

(
5

3

)nm
(
1 + α0(ym−1)

α0(ym−1)
v(z)− v

(
z′
)
− v(w)

)

for any v ∈ dom0 EΩx , where z′ = F̃ω1···ωm−1(3−ωm)(q0) and w = F̃ω1···ωm−1(q0)
are the two nm-neighbors of z (see Figure 10).
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Proof. On the cell F̃ω(SG), by using the localized Gauss–Green formula
(see (3.5)),

EΩx∩F̃ω(SG)
(
φnm
z , v

)
= v(z)∂nφ

nm
z (z)(5.6)

= 2

(
5

3

)nm+1(
1− α0(ym)

)
v(z).

The last equality follows from the same argument as the proof of Lemma 3.1
with suitable scaling.

On the other cell ˜̃Fω(SG), by using the standard theory,

(5.7) E
Ωx∩ ˜̃Fω(SG)

(
φnm
z , v

)
=

(
5

3

)nm(
2v(z)− v

(
z′
)
− v(w)

)
.

Summing the energies on the two cells, we get the desired result by using
(2.5). �

Let Tm
x be the set of vertices in Vnm ∩Ωx which can be expressed as F̃ω(q0)

for some word ω = ω1, . . . , ωm of symbols {1,2}, and Tx =
⋃

m≥1 T
m
x .

Definition 5.2. For fixed m, let

(5.8) Gm
Ωx

(s, t) =

nm∑
k=1

∑
z,z′∈(Vk\Vk−1)∩Ωx

gx
(
z, z′

)
φk
z(s)φ

k
z′(t),

with

gx
(
z, z′

)
(5.9)

=

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

α0(yl−1)+α0(yl−1)
2

2α0(yl−1)+1 ( 35 )
nl for z = z′ ∈ T l

x with l≤m,
α0(yl−1)

2

2α0(yl−1)+1 (
3
5 )

nl for z �= z′ ∈ T l
x, being nl-neighbors,

with l≤m,

g(z, z′) for z, z′ ∈ Vk \ Vk−1 contained in

a (k− 1)-cell in Ωx,

0, otherwise.

Then it is obvious that Gm
Ωx

(s, t) converges uniformly to a function GΩx(s, t)
as m goes to infinity.

Theorem 5.3. GΩx is the Green’s function for Ωx, namely

(5.10) u(s) =

∫
Ωx

GΩx(s, t)F (t)dt

solves the Dirichlet problem −Δu= F on Ωx with u|∂Ωx = 0, for any contin-
uous F.
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Proof. Similar to the SG case, suppose we could prove

(5.11) EΩx

(
Gm

Ωx
(·, t), v

)
=

∑
z∈Vnm∩Ωx

v(z)φnm
z (t)

for any v ∈ dom0 EΩx .

Then just multiply (5.11) by F (t) and integrate, using the standard argu-
ments to interchange the energy and integral, to obtain

(5.12) EΩx(um, v) =

∫
Ωx

F (t)
∑

z∈Vnm∩Ωx

v(z)φnm
z (t)dt

for

(5.13) um(s) =

∫
Ωx

Gm
Ωx

(s, t)F (t)dt.

Since

(5.14)
∑

z∈Vnm∩Ωx

v(z)φnm
z (t)→ v(t)

uniformly as m→∞, the right side of (5.12) converges to
∫
Ωx

F (t)v(t)dt, and

the left-hand side converges to EΩx(u, v) as m goes to ∞. Thus, we have

(5.15) EΩx(u, v) =

∫
Ωx

Fv dt

for any v ∈ dom0 EΩx , which yields that −Δu= F with u|∂Ωx = 0.
Hence, our goal is to prove (5.11). The function Gm

Ωx
(s, t), which we regard

as a function of the single variable s, could be viewed as a linear combination
of terms φk

z(s). Then it is clear that EΩx(G
m
Ωx

(·, t), v) is a linear combination of
v(z) for z ∈ Vnm ∩Ωx. So we need to compute the combination coefficient of
v(z) for each z.

Let z0 ∈ Vnm ∩ Ωx. If z0 /∈ Tx, it is easy to observe that there exists an
nm-cell containing z0 as an interior point. The terms in Gm

Ωx
that contribute

to the coefficient of v(z0) all have supports away from S(x). Thus, the stan-
dard argument for the SG case shows that the coefficient of v(z0) should be
φnm
z0 (t).

Hence, we only need to consider the case that z0 ∈ Tx. We first do this
when z0 ∈ Tm

x . Let z′0 denote the unique nm-neighbor of z0 in the same
level. Then the only terms in Gm

Ωx
that contribute to the coefficient of v(z0)

are

gx(z0, z0)φ
nm
z0 (s)φnm

z0 (t), gx
(
z0, z

′
0

)
φnm
z0 (s)φnm

z′
0
(t),

gx
(
z′0, z0

)
φnm

z′
0
(s)φnm

z0 (t), gx
(
z′0, z

′
0

)
φnm

z′
0
(s)φnm

z′
0
(t).
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By Lemma 5.1, the total contribution is(
5

3

)nm
(
1 + α0(ym−1)

α0(ym−1)
gx(z0, z0)− gx

(
z′0, z0

))
φnm
z0 (t)(5.16)

+

(
5

3

)nm
(
1 + α0(ym−1)

α0(ym−1)
gx
(
z0, z

′
0

)
− gx

(
z′0, z

′
0

))
φnm

z′
0
(t).

By substituting the value of gx(z0, z0) = gx(z
′
0, z

′
0) =

α0(ym−1)+α0(ym−1)
2

2α0(ym−1)+1 ( 35 )
nm

and gx(z0, z
′
0) = gx(z

′
0, z0) =

α0(ym−1)
2

2α0(ym−1)+1 (
3
5 )

nm into (5.16), it is easy to verify

that

(5.17)

(
5

3

)nm
(
1 + α0(ym−1)

α0(ym−1)
gx(z0, z0)− gx

(
z′0, z0

))
= 1,

and

(5.18)

(
5

3

)nm
(
1 + α0(ym−1)

α0(ym−1)
gx
(
z0, z

′
0

)
− gx

(
z′0, z

′
0

))
= 0.

So the coefficient of v(z0) is φ
nm
z0 (t).

Next, we consider the general case. Suppose z0 = F̃ω(q0) ∈ T l
x with

1 ≤ l < m. We need to compute the coefficient of v(z0). The previ-
ous discussion immediately shows that the contribution of terms in Gl

Ωx

to v(z0) is φnl
z0(t). Now we consider the terms in Gm

Ωx
− Gl

Ωx
. Let z1 =

F̃ω1(q0) and z2 = F̃ω2(q0). Notice that in all the terms in Gm
Ωx

− Gl
Ωx

that contribute to v(z0), only those which contain φ
nl+1
z1 (s) or φ

nl+1
z2 (s)

have supports intersecting the boundary S(x). Moreover, in calculating
the energy EΩx(φ

nl+1
zi , v), only the part φ

nl+1
zi | ˜̃Fωi(SG) is involved in con-

tributing to the coefficient of v(z0), for i = 1,2. Comparing to the stan-
dard SG case, the function φ

nl+1
zi (s) has been redefined, but the restric-

tion of it to ˜̃Fωi(SG) is unchanged. So the total contribution of Gm
Ωx

−
Gl

Ωx
to v(z0) is as same as the standard case, namely φnm

z0 (t) − φnl
z0(t).

Thus, we get that in EΩx(G
m
Ωx

, v), the coefficient of v(z0) is φnm
z0 (t), as re-

quired.
Thus, we have proved (5.11). �

Theorem 5.4. For continuous F , the normal derivative of the solution u
given by (5.10) is continuous on S(x).

Proof. From Theorem 5.3,

(5.19) ∂nu|S(x) =
∑
m≥1

∑
z,z′∈Tm

x

gx(z, z
′)∂nφ

nm
z |S(x)

∫
Ωx

φnm

z′ (t)F (t)dt,

since only those terms containing φk
z whose supports intersect S(x) contribute

to the value of ∂nu|S(x).



518 Z. GUO ET AL.

For fixed m, let z = F̃ω(q0) ∈ Tm
x . Note that on the cell F̃ω(SG), φnm

z =

hym

0 ◦ F̃−1
ω . By Lemma 3.1, we have

(5.20) ∂nφ
nm
z |S(x) =−2

(
5

3

)nm+1(
1− α0(ym)

)
2mχSω(x).

On the other hand, for z, z′ ∈ Tm
x , gx(z, z

′) is bounded above by a multiple
of α0(ym−1)(

3
5 )

nm , hence by a multiple of ( 35 )
nm+1 using (2.7). It is also easy

to see that
∫
Ωx

φnm

z′ (t)F (t)dt is bounded above by a multiple of 1
3nm ‖F‖∞.

Combing these estimates with (5.20), we conclude that |∂nu||S(x) is bounded
above by a multiple of

(5.21)
∑
m≥1

∑
|ω|=m

2m

3nm
‖F‖∞χSω(x).

From (5.21), one can easily verify that ∂nu is continuous on S(x). �
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