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SOLUTION TO BIHARMONIC EQUATION WITH
VANISHING POTENTIAL

WALDEMAR D. BASTOS, OLIMPIO H. MIYAGAKI AND RÔNEI S. VIEIRA

Abstract. We establish a result on the existence of nontriv-
ial solution for the following class of biharmonic elliptic equa-
tion

(P)

{
Δ2u+ V (x)u=K(x)f(u) in RN ,
u �= 0, in RN , u ∈D2,2(RN ),

where Δ2u = Δ(Δu), V and K are nonnegative potentials.
K vanishes at infinity and f has a subcritical growth at infinity.
The technique used here is the variational approach.

1. Introduction

Consider the following biharmonic elliptic equation in RN :

(P)

{
Δ2u+ V (x)u=K(x)f(u) in RN ,
u �= 0, in RN ;u ∈D2,2(RN ),

where Δ2u = Δ(Δu), N ≥ 5, V,K : RN → R are continuous potentials.
K vanishes at infinity and f : R→R is a continuous function with subcritical
growth at infinity. Here D2,2(RN ) is the completion of the C∞

0 (RN ) with the

norm |u|= (
∫
RN |Δu|2 dx) 1

2 .
We assume that V and K satisfies the conditions I and II below:

I.

(K1) V (x),K(x)> 0 in RN and K ∈ L∞(
RN

)
∩L1

(
RN

)
.

II. One of the following conditions occurs:

(K2) K/V ∈ L∞(
RN

)
,
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or

there exists α ∈ (2,2∗), with 2∗ =
4N

N − 4
, such that

(K3) lim
|x|→∞

K(x)

V (x)
2∗−α
2∗−2

= 0.

We denote (V,K) ∈K to express that V and K satisfy I and II.
As an example let V be a positive constant and K given by

K(x) =

{
e−1, if |x| ≤ 1,
e−|x|, if |x|> 1.

It is easily seen that (V,K) ∈K.
We assume that the function f satisfies the following conditions:

III.

(f1) limsup
s→0

f(s)

s2∗−1
= 0.

IV. f has a subcritical growth at infinity, namely,

(f2) limsup
s→∞

f(s)

s2∗−1
= 0.

V. f(s) = 0, for s ≤ 0, s−1f(s) a nondecreasing function in (0,∞) and its
primitive F is superquadratic at infinity, that is,

(f3) limsup
s→∞

F (s)

s2
=∞.

We recall that the condition (f3) is weaker than the Ambrosetti–Rabinowitz
condition, namely, there exists θ > 2 such that

(AR) 0< θF (s)≤ sf(s), for all s ∈R.

For instance, the function f(s) = s(1+ ln s2) satisfies (f3) and does not satisfy
the (AR) condition. The (AR) condition is very important to ensure that the
Euler–Lagrange functional associated to the problem (P) has a mountain pass
geometry and also to guarantee that the corresponding Palais–Smale sequence
is bounded. Since the condition (AR) is very restrictive, many researchers
have tried to drop it. For more information on this subject, we refer to [18]
and references therein.

Also, related to the function f we emphasize that the conditions (f1), (f2)
and (f3) imply the there exists c > 0 such that

(1.1) 0≤ f(s)≤ c|s|2∗−1, for all s ∈R.

Equations with the biharmonic operator in bounded domains arise in the
study of traveling waves in suspension bridges and in the study of the static
deflection of an elastic plate in a fluid (see [23] and references therein). For
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the problem (P), with K ≡ 1 and V constant, in a bounded domain, we cite
for example, [11].

Let us briefly recount some results involving the biharmonic operator on
unbounded regions. It is well known by now that the nonlinear Schrödinger
equation with an additional term containing higher-order derivatives is closely
related the self-focusing of whistler waves in plasmas in the final stage. In
isotropic media, it has the form

i
∂Ψ

∂z
+

1

2
SΔΨ+ λΔ2Ψ+ μ|Ψ|2Ψ= 0,

where the term with Δ2 describes the contribution of the higher-order disper-
sion (see [13]). We recall that fourth order nonlinear Schrödinger equations
have been introduced by Karpman, in [14], and Karpman and Shagalov, in
[15], to take into account the role of small fourth-order dispersion terms in the
propagation of intense laser beams in a bulk medium with Kerr nonlinearity
(see [20]).

Now we turn out our attention for the biharmonic Schrödinger equation
with potentials, in unbounded domains. To begin with, we cite the work [19]
where it was considered V ≡ 0, nonnegative K and radial potential vanishing
at infinity. In [19], the authors obtained the existence of positive radial so-

lutions. Alves, do Ó and Miyagaki, in [3], took the potential V nonegative
and the nonlinearity with two nonnegative potentials. Assuming periodic-
ity of the potentials, the authors obtained existence of solutions. In [3] it
was also considered small perturbations of the potentials and existence of
solutions was obtained. The same authors, in [2], used a potential V that

changes sign with some points of singularities. Chabrowski and do Ó, in [9],
assumed that K is a continuous bounded potential varying in sign and V
is a nonpositive potential. In [9] it was obtained existence of two solutions.
Gazzola and Grunau, in [12], considered K ≡ 1 and V ≡ 0 to investigate exis-
tence, uniqueness, asymptotic behaviour and futher qualitative properties of
radial solutions. Wang and Shen, in [22], assumed the potential V ≡ 0 and
the nonlinearity with a nonnegative potential in the subcritical growth and a
nonnegative potential that vanishes at infinity in the critical growth. Under a
improved Hardy–Rellich’s inequality, in [22] the authors studied the existence
of multiple and sign-changing solutions by the minimax method and linking
theorem. Carrião, Demarque and Miyagaki, in [8], considered K ≡ 1 and V
radial and vanishing at infinity to get existence of radial solutions results. Fi-
nally, Pimenta and Soares, in [21], studied a phenomena of concentration for
the problem (P) with K ≡ 1 and V satisfying the following proprety: there
exists a bounded domain Ω⊂RN such that

0< V (x0) = V0 = inf
RN

V < inf
∂Ω

V.
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As the discussion above shows, the types of potential affect the existence
and features of solutions. In the present work, we consider the problem (P)
under more general hypothesis on the potentials V andK, besides nonlinearity
in a wider class. In fact, our result extends that of Demarque and Miyagaki,
in [10] for nonradial potentials V and K. It also extends the result of Alves

and do Ó, in [1], for more general potentials and nonlinearity. In addition,
our result extends in part, or it complements the result of Alves and Souto,
in [5], for the biharmonic operator.

In this work, we use a technique analogous to that used by Alves and Souto,
in [5]. In fact, in order to obtain the mountain pass geometry, in addition
to a specific condition about the primitive F , we used subcriticals growth
conditions of type Hardy–Sobolev on f . We also imposed some convenient
conditions on V and K to get an inequality of the Hardy type and, with
this, we got a strong convergence in the whole space. In fact, we assume the
conditions (K2) and (K3) to get the compact embedding of E ⊂D2,2(RN ) in
Lq
K(RN ) with 2< q < 2∗. The spaces E and Lq

K(RN ) will be defined below.
With this tool, we could overcome the lack of compactness in the Sobolev’s
embedding in the whole space, which is one of the great difficulties for this
type of problem.

Before stating the main result, it should be noted that here we use the
notion of ground state solution of the problem (P) as defined in [4], that is,
a function u ∈E verifying J ′(u) = 0 and J(u) = c∗. J is the Euler–Lagrange
functional associated to (P) and c∗ is the mountain pass minimax level, both
to be defined later.

Theorem 1.1. Suppose (V,K) ∈K, (f1), (f2) and (f3). Then the problem
(P) has a ground state solution.

Hereafter, c is a positive constant which can change value in a sequence
of inequalities. We denote Br = Br(0) the ball in RN centered in the origin
with radius r. on(1) denotes a term that tends to zero as n→∞. The weak
(⇀) and strong (→) convergences are always taken as n→∞. The weighted
Lp spaces are denoted by Lp

Q(A) = {u : A → R :
∫
A
Q(x)|u|p dx < ∞}, for

1≤ p≤∞ and measurable set A⊂RN .

2. Preliminary results

Aiming to solve the problem (P) with the variational method, we consider
its Euler–Lagrange functional:

J(u) =
1

2

∫
RN

(
|Δu|2 + V (x)|u|2

)
dx−

∫
RN

K(x)F (u)dx,

defined on space E, given by

E =E
(
RN

)
=

{
u ∈D2,2

(
RN

)
:

∫
RN

V |u|2 dx <∞
}
,
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with the norm

‖u‖=
(∫

RN

(
|Δu|2 + V (x)|u|2

)
dx

) 1
2

.

Here F (s) =
∫ s

0
f(t)dt. From the assumptions on f , it follows that J is C1

with Gâteaux derivative given by

J ′(u)v =

∫
RN

(
ΔuΔv+ V (x)uv

)
dx−

∫
RN

K(x)f(u)v dx, v ∈E.

Lemma 2.1. If the conditions (K1), (f1) and (f3) are satisfied then the
functional J satisfies the mountain pass geometry, namely,

1. There are r, ρ > 0 such that J(u)≥ ρ, for ‖u‖= r.
2. There exists e ∈E such that ‖e‖ ≥ r and J(e)≤ 0.

Proof.
Step 1. Combining (K1), the growth condition of f , given by inequality

(1.1) and the inequality

(2.1)

(∫
RN

|u|2∗ dx
) 1

2∗
≤ S

(∫
RN

|Δu|2 dx
) 1

2

,

(see [11, Theorem 2.1]), we have

(2.2)

∫
RN

K(x)F (u)dx≤ c

(
S

∫
RN

|Δu|2 dx
) 2∗

2

≤ c‖u‖2∗ .

Hence,

J(u) =
1

2
‖u‖2 −

∫
RN

K(x)F (u)dx≥ 1

2
‖u‖2 − c‖u‖2∗ .

Thus, we have J(u)≥ ρ := 1
2r

2 − cr2∗ > 0, for ‖u‖= r, small enough.
Step 2. By (f3) it follows that, for all M > 0, there exists sM > 0, such

that

F (s)≥Ms2, for all |s|> sM .

By setting CM = sup|s|≤sM F (s) we have 0<CM <∞. Thus, we have

(2.3) F (s)≥Ms2 −CM , for all s ∈R.

Fixed u ∈E and using (2.3) we obtain

J(tu) =
1

2
‖tu‖2 −

∫
RN

K(x)F (tu)dx

≤ t2
[
‖u‖2
2

−M

∫
RN

K(x)u2 dx

]
+ c.

Taking M big enough, J(tu)→−∞ as t→∞, which finishes the proof. �
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Since J satisfies mountain pass geometry we conclude, by Mountain Pass
theorem ([7, Theorem 2.2]), that there exists a Palais–Smale sequence, ((PS)
sequence for short), (un) ⊂ E for J , that is, (un) satisfies J(un) → c∗ and
J ′(un)→ 0, where c∗, is the mountain pass level, given by

c∗ = inf
γ∈Γ

max
t∈[0,1]

J
(
γ(t)

)
,

with Γ = {γ ∈C([0,1],E) : γ(0) = 0 and J(γ(1))≤ 0}.

Proposition 2.2. Assume that (V,K) ∈K. Then

1. If (K2) holds, E is compactly embedded in Lq
K(RN ), for all q ∈ (2,2∗).

2. If (K3) holds, E is compactly embedded in Lα
K(RN ), with α as in the

hypothesis (K3).

Proof.
Part 1. We assume (K2) and vn ⇀v to show that vn → v in Lq

K(RN ), for
q ∈ (2,2∗).

Given ε > 0, from 2< q, there exists s0 > 0 such that |s|q ≤ ε|s|2, in |s| ≤ s0.
Since K/V ∈ L∞(RN ), there exists c > 0 such that

K(x)|s|q ≤ εcV (x)|s|2, for |s| ≤ s0 and x ∈RN .

Given ε > 0, from K ∈ L∞(RN ) and by q < 2∗, we can take s1 > 0 such
that

K(x)|s|q ≤ εc|s|2∗ , for |s| ≥ s1 and x ∈RN .

By the continuity of the functions involved, we see that there exists c > 0
such that

K(x)|s|q ≤ cK(x)χ[s0,s1]

(
|s|

)
|s|2∗ , for s0 ≤ |s| ≤ s1 and x ∈RN .

Here χ[s0,s1] is the characteristic function in the interval [s0, s1].
Thus, fixed q ∈ (2,2∗) and given ε > 0, there are c > 0 and 0< s0 < s1 such

that, for all s ∈R and x ∈RN , we have

(2.4) K(x)|s|q ≤ εc
(
V (x)|s|2 + |s|2∗

)
+ cK(x)χ[s0,s1]

(
|s|

)
|s|2∗ .

For a given r > 0 and u ∈E, the equation (2.4) give us∫
Bc

r

K(x)|u|q dx(2.5)

≤ εc

(∫
Bc

r

V (x)|u|2 dx+

∫
Bc

r

|u|2∗ dx
)

+ c

∫
Bc

r

K(x)χ[s0,s1]

(
|u|

)
|u|2∗ dx

≤ εcQ(u) + c

∫
A∩Bc

r

K(x)dx,
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being

(2.6) Q(u) =

∫
RN

V (x)|u|2 dx+

∫
RN

|u|2∗ dx

and A= {x ∈RN : s0 ≤ |u(x)| ≤ s1}.
Since vn ⇀v in E, the sequence (vn) is bounded in E. Then, for all n we

have
∫
RN V (x)|vn|2 dx≤ c, and, using (2.1) we get

∫
RN |vn|2∗ dx≤ c, for all n,

so that

(2.7) Q(vn)≤ c, for all n.

Hereafter, we will refer to inequality (2.7) as “the boundedness of (Q(vn))”.
From (K1), we can take r1 > 0 such that∫

An∩Bc
r1

K(x)dx≤ ε.(2.8)

From the inequalities (2.5), (2.7) and (2.8), we have

(2.9)

∫
Bc

r1

K(x)|vn|q dx≤ ε, for all n.

Considering the particular case in which vn = v, for all n, we see that (2.9)
allow us to choose a r2 ≥ r1 such that

(2.10)

∫
Bc

r2

K(x)|v|q dx≤ ε,

which, along with (2.9), give us

(2.11)

∫
Bc

r2

K(x)|vn|q dx→
∫
Bc

r2

K(x)|v|q dx.

Notice that D2,2(RN ) is the completion of the C∞
0 (RN ) with the norm |u|=

(
∫
RN |Δu|2 dx) 1

2 . Thus, if u ∈D2,2(RN ), by [16, p. 164] we have ‖D2u‖2,RN =

(
∫
RN |D2u|2 dx) 1

2 <∞, so that D2u ∈ L2(Br2). By using [17, Corollary, p. 8],

we have that Dαu ∈ L2(Br2), with |α|= 0,1. Then u ∈H2(Br2). Since K is a
continuous function and q ∈ (2,2∗), it follows from usual Sobolev embeddings
and Dominated Convergence theorem that

(2.12)

∫
Br2

K(x)|vn|q dx→
∫
Br2

K(x)|v|q dx.

By (2.11) and (2.12), we get∫
RN

K(x)|vn|q dx→
∫
RN

K(x)|v|q dx, for all q ∈ (2,2∗),

so that E is compactly embedded in Lq
K(RN ), for all q ∈ (2,2∗).

Part 2. We consider (K3) and vn ⇀ v to show that vn → v in Lα
K(RN )

with α as in the hypothesis (K3).
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Fixed x ∈RN , the function of s > 0 given by g(s) = V (x)s2−α+ s2∗−α, has
a minimum value given by

mαV (x)
2∗−α
2∗−2 , being mα =

(
2∗ − 2

2∗ − α

)(
α− 2

2∗ − 2

) 2−α
2∗−2

.

Thus, we get

(2.13) mαV (x)
2∗−α
2∗−2 ≤ V (x)|s|2−α + |s|2∗−α, for s ∈R∗ and x ∈RN .

By (K3), for a given ε > 0, there exists r1 > 0, such that

(2.14) K(x)≤ εmαV (x)
2∗−α
2∗−2 , for |x| ≥ r1.

From (2.13) and (2.14), we have

(2.15) K(x)≤ ε
(
V (x)|s|2−α + |s|2∗−α

)
, for s ∈R∗ and |x| ≥ r1.

Thus, we get

K(x)|s|α ≤ ε
(
V (x)|s|2 + |s|2∗

)
, for s ∈R and |x| ≥ r1,

which, along with (2.6), yields

(2.16)

∫
Bc

r1

K(x)|u|α dx≤
∫
Bc

r1

ε
(
V (x)|u|2 + |u|2∗

)
dx≤ εQ(u).

Taking u= vn in (2.16) and using the boundedness of (Q(vn)), we have∫
Bc

r1

K(x)|vn|α dx≤ ε, for all n.

Since α ∈ (2,2∗), from (2.10) we can choose r2 ≥ r1 > 0 such that

(2.17)

∫
Bc

r2

K(x)|v|α dx≤ ε.

Proceeding as in the previous part, we have∫
RN

K(x)|vn|α dx→
∫
RN

K(x)|v|α dx,

so that E is compactly embedded in Lα
K(RN ), with α as in the hypothesis

(K3). �

Lemma 2.3. Suppose (V,K) ∈ K, (f1) and (f2). Let (vn) be a sequence
such that vn ⇀v in E. Then∫

RN

K(x)G(vn)dx→
∫
RN

K(x)G(v)dx,

for G(vn) = F (vn),G(vn) = f(vn)vn and G(vn) = f(vn)v.
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Proof.
Part 1. We consider (K2) and we start with the case G(vn) = F (vn).
Given ε > 0, from (f1) and by K/V ∈ L∞(RN ), we conclude that there

exists s0 > 0 such that

K(x)F (s)≤ εcV (x)|s|2, for |s| ≤ s0 and x ∈RN .

Given ε > 0, from K ∈ L∞(RN ) and by (f2), we can take s1 > 0 such that

K(x)F (s)≤ εc|s|2∗ , for |s| ≥ s1 and x ∈RN .

By the continuity of the functions involved, we see that there exists c > 0
such that

K(x)F (s)≤ cK(x)|s|q, for s0 ≤ |s| ≤ s1 and x ∈RN .

Thus, fixed q ∈ (2,2∗) and given ε > 0, there exists c > 0 such that, for all
s ∈R and x ∈RN , we have

(2.18) K(x)F (s)≤ εc
(
V (x)|s|2 + |s|2∗

)
+ cK(x)|s|q.

By the boundedness of (Q(vn)) and from the previous inequality, we get∫
Bc

r

K(x)F (vn)dx(2.19)

≤
∫
Bc

r

εc
(
V (x)|vn|2 + |vn|2∗

)
dx+

∫
Bc

r

K(x)|vn|q dx

≤ εcQ(vn) +

∫
Bc

r

K(x)|vn|q dx≤ εc+

∫
Bc

r

K(x)|vn|q dx,

for all n and r > 0.
From Proposition 2.2, we have

(2.20)

∫
RN

K(x)|vn|q dx→
∫
RN

K(x)|v|q dx, for all q ∈ (2,2∗),

so that we can take r1 > 0 for which we have∫
Bc

r1

K(x)|vn|q dx≤ ε, for all n.

This, along with (2.19), give us

(2.21)

∫
Bc

r1

K(x)F (vn)dx≤ ε, for all n.

Considering the particular case in which vn = v, for all n, it follows from
(2.21) that we can choose r2 ≥ r1 > 0 such that

(2.22)

∫
Bc

r2

K(x)F (v)dx≤ ε.
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From (2.21) and (2.22), it follows that

(2.23)

∫
Bc

r2

K(x)F (vn)dx→
∫
Bc

r2

K(x)F (v)dx.

Since vn ⇀v, we have vn → v in Lq(Br2), for q ∈ (2,2∗), and vn → v a.e. in
Br2 as n→∞. So that by continuity of F , we have F (vn)→ F (v) a.e. in Br2

as n→∞. On the other hand, since (vn) is bounded in E, from inequality

(2.1), we infer that supn
∫
Br2

|vn|2∗ dx <∞. From (f2) we have F (vn)
|vn|2∗ → 0 as

vn →∞. By using the lemma of Strauss [6, Theorem A.I, p. 338] we get

(2.24)

∫
Br2

K(x)F (vn)dx→
∫
Br2

K(x)F (v)dx.

Hence, from equations (2.23) and (2.24), we have∫
RN

K(x)F (vn)dx→
∫
RN

K(x)F (v)dx,

which completes the proof.
The other cases are completely analogous. For the case G(vn) = f(vn)v it

is enough to observe that v ∈ L∞(RN ), since v ∈D2,2(RN ).
Part 2. We assume (K3) and we start with the case G(vn) = F (vn).
Exactly as in the part 2 of Proposition 2.2 we can say that, for a given

ε > 0, by (K3), there exists a r1 > 0, such that

(2.25) K(x)≤ ε
(
V (x)|s|2−α + |s|2∗−α

)
, for s ∈R∗ and |x| ≥ r1.

Then, for all s ∈R and |x| ≥ r1, we have

(2.26) K(x)F (s)≤ ε
(
V (x)F (s)|s|2−α + F (s)|s|2∗−α

)
.

From (f1), for a given ε > 0, there exists 0< s0 such that

(2.27) F (s)≤ c|s|α, for |s| ≤ s0,

which, along with (2.26), yields

(2.28) K(x)F (s)≤ ε
(
V (x)|s|2 + |s|2∗

)
, for |s| ≤ s0 and |x| ≥ r1.

From (f2), for a given ε > 0, we can find s1 > s0 > 0 such that

K(x)F (s)

(V (x)|s|2 + |s|2∗) ≤ ‖K‖∞
F (s)

|s|2∗ ≤ cε, for |s| ≥ s1,

so that,

(2.29) K(x)F (s)≤ εc
(
V (x)|s|2 + |s|2∗

)
, for |s| ≥ s1 and x ∈RN .

Thus, by (2.28) and (2.29), we have

(2.30) K(x)F (s)≤ εc
(
V (x)|s|2 + |s|2∗

)
, for s ∈ I and |x| ≥ r1,

being I = {s ∈R : |s| ≤ s0 or |s| ≥ s1}.
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Using (2.30), the boundedness of (Q(vn)) and An = {x ∈ RN : s0 ≤
|vn(x)| ≤ s1} we get∫

Bc
r1

K(x)F (vn)dx(2.31)

≤
∫
Bc

r1
∩Ac

n

K(x)F (vn)dx+

∫
Bc

r1
∩An

K(x)F (vn)dx

≤
∫
Bc

r1
∩Ac

n

εc
(
V (x)|vn|2 + |vn|2∗

)
dx+ c

∫
Bc

r1
∩An

K(x)dx

≤ cεQ(vn) + c

∫
Bc

r1
∩An

K(x)dx

≤ cε+ c

∫
Bc

r1
∩An

K(x)dx, for all n.

From (K1), we can take r2 ≥ r1 such that

(2.32)

∫
Bc

r2
∩An

K(x)dx≤ ε, for all n.

Then, from (2.31) and (2.32), we get

(2.33)

∫
Bc

r2

K(x)F (vn)dx≤ cε, for all n.

From now on, following the steps as after (2.21), we conclude the proof of
part 2.

The other cases are completely analogous. For the case G(vn) = f(vn)v it
is enough to observe that v ∈ L∞(RN ), since v ∈D2,2(RN ). �

Lemma 2.4. The (PS) sequence (un) given by Lemma 2.1, is bounded.

Proof. From the proof of Lemma 2.1, we can take tn ∈ [0,1] such that
J(tnun) =maxβ≥0 J(βun).

We claim that the sequence (J(tnun)) is bounded from above.
For tn = 0, we have (J(tnun)) = (J(0)) and, for tn = 1, (J(tnun)) =

(J(un)). In both cases, we have the boundedness, since J(un)→ c∗.
Thus, we can assume tn ∈ (0,1). Since J ′(tnun)tnun = 0 we have

2J(tnun) = 2J(tnun)− J ′(tnun)tnun(2.34)

=

∫
RN

K(x)
[
−2F (tnun) + f(tnun)tnun

]
dx

=

∫
RN

K(x)H(tnun)dx,

being H(s) =−2F (s) + sf(s), for all s ∈R.
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From (f3), H is a nondecreasing function in (0,∞) and we have

2J(tnun) =

∫
RN

K(x)H(tnun)dx≤
∫
RN

K(x)H(un)dx(2.35)

≤ 2J(un)− J ′(un)un = 2J(un) + on(1),

so that (J(tnun)) is bounded from above, since J(un)→ c∗.
We will assume that ‖un‖→∞ to reach a contradiction with the equation

(2.35). For this purpose consider wn = un/‖un‖. Since (wn) is bounded, we
conclude that there exists w ∈E such that wn ⇀w in E.

We claim that w = 0 in RN . We will prove it later.
Proceeding with the proof of the lemma, note that for B > 0 and n big

enough we have B/‖un‖ ∈ [0,1]. Then

J(tnun) = max
β≥0

J
(
βun

)
≥ J

(
Bun/‖un‖

)
= J(Bwn)

=
1

2
‖Bwn‖2 −

∫
RN

K(x)F (Bwn)dx

=
B2

2
−

∫
RN

K(x)F (Bwn)dx.

Since wn ⇀ 0, by Lemma 2.3, we have∫
RN

K(x)F (Bwn)dx→
∫
RN

K(x)F (0)dx= 0.

Thus, for all B > 0, we get

lim inf
n→∞

J(tnun)≥ lim inf
n→∞

(
B2

2
−

∫
RN

K(x)F (Bwn)dx

)
=

B2

2
.

Then, (J(tnun)) is unbounded from above, which contradicts the equation
(2.35). Hence, the (PS) sequence (un) is bounded. �

Proof of claim. First, we consider the sequence (un) bounded in L∞(RN ).
Then wn(x) = un(x)/‖un‖ ≤ c/‖un‖ → 0, for all x ∈ RN , since ‖un‖ → ∞.
From the compact embedding of E in Lq

K(RN ), we have wn(x)→ w(x) a.e.
in RN . Thus,

w ≡ 0, in RN .

Now, consider that there exists a subsequence, renamed by (un), un-
bounded in L∞(RN ) and define Ω = {x ∈ RN : un(x) �= 0} = {x ∈ RN :
wn(x) �= 0}.

Since J(un)→ c∗, we have

1

2
‖un‖2 −

∫
RN

K(x)F (un)dx= c+ on(1),

so that

(2.36) on(1) +
1

2
=

∫
RN

K(x)F (un)

‖un‖2
dx=

∫
Ω

K(x)F (un)

|un|2
|wn|2 dx.
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From (f3), we see that, given τ > 0, there exists M > 0 such that F (s)/s2 ≥
τ , for s≥M . Define ψn and χn, the characteristic functions for {un ≤M}=
{x ∈ Ω : 0< un(x)≤M} and {un >M}= {x ∈ Ω : un(x)>M}, respectively.
Applying this in the equation (2.36), we have

on(1) +
1

2
(2.37)

=

∫
Ω

K(x)F (un)

|un|2
|wn|2 dx

=

∫
Ω

ψn(x)
K(x)F (un)

|un|2
|wn|2 dx+

∫
Ω

χn(x)
K(x)F (un)

|un|2
|wn|2 dx

≥
∫
Ω

ψn(x)
K(x)F (un)

|un|2
|wn|2 dx+ τ

∫
Ω

χn(x)K(x)|wn|2 dx.

Let Ω− and Ω+ be the sets limit of {un ≤M} and {un >M}, respectively.
Using the same argument of the first paragraph of this proof, we have wn(x)→
0 in {un ≤M}, so that

w ≡ 0, in Ω−.

Moreover, K(x)F (un)/|un|2 is bounded in {un ≤M}, for all n. In fact, when
un(x)→ 0, we use (f1) to get the conclusion. When 0< ε≤ un(x)≤M , we
use the continuity of F and the fact that K ∈ L∞(RN ), which completes
the argument. Thus, from this uniform boundedness with respect to n we
conclude that K(x)F (un)/|un|2 is bounded in Ω−.

Since in Ω− we have wn(x)→ 0 and K(x)F (un)/|un|2 is bounded we con-
clude that

(2.38) lim inf
n→∞

K(x)F (un)

|un|2
|wn|2 = 0, in Ω−,

so that

(2.39) lim inf
n→∞

ψn(x)
K(x)F (un)

|un|2
|wn|2 = 0, in Ω.

Using (2.39) and the Fatou’s lemma in (2.37), we get

1

2
≥ lim inf

n→∞

∫
Ω

ψn(x)
K(x)F (un)

|un|2
|wn|2 dx+ lim inf

n→∞
τ

∫
Ω

χn(x)K(x)|wn|2 dx

≥
∫
Ω

lim inf
n→∞

ψn(x)
K(x)F (un)

|un|2
|wn|2 dx+ τ

∫
Ω+

K(x)|w|2 dx

≥ τ

∫
Ω+

K(x)|w|2 dx.

Thus, we have

1

2
≥ τ

∫
Ω+

K(x)|w|2 dx, for all τ > 0,
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so that ∫
Ω+

K(x)|w|2 dx= 0.

Since K(x)> 0 for all x ∈RN we conclude that

w ≡ 0, in Ω+,

which completes the proof. �

3. Main result: Theorem 1.2

Proof of Theorem 1.2.
Let (un) be the (PS) sequence given by Lemma 2.1. By Lemma 2.4, (un)

is bounded and there exists u ∈E such that, up to a subsequence,

un ⇀u, in E.

From J ′(un)un = on(1), we derive

lim
n→∞

‖un‖2 = lim
n→∞

∫
RN

K(x)f(un)un dx.

By Lemma 2.3, we have∫
RN

K(x)f(un)un dx→
∫
RN

K(x)f(u)udx,

so that

(3.1) ‖un‖2 →
∫
RN

K(x)f(u)udx.

Since J ′(un)u= on(1), we have

(3.2)

∫
RN

ΔunΔu+ V (x)unudx−
∫
RN

K(x)f(un)udx= on(1).

Note that φ(un) =
∫
RN ΔunΔu + V (x)unudx defines a continuous linear

functional. Then∫
RN

ΔunΔu+ V (x)unudx→
∫
RN

|Δu|2 + V (x)|u|2 dx= ‖u‖2.

Using this, Proposition 2.3 and taking the limit in (3.2), we get

(3.3) ‖u‖2 =
∫
RN

K(x)f(u)udx,

which, along with the equation (3.1) give us

‖un‖2 →‖u‖2,
so that we have the convergence

un → u, in E.

Consequently,
J(u) = c∗ and J ′(u) = 0.
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As c∗ > 0 we have u �≡ 0, and hence, u is a nontrivial ground state solution
for the problem (P).
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