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RELEVANT SAMPLING OF BAND-LIMITED FUNCTIONS

RICHARD F. BASS AND KARLHEINZ GRÖCHENIG

Abstract. We study the random sampling of band-limited func-
tions of several variables. If a band-limited function with band-
width has its essential support on a cube of volume Rd, then

O(Rd logRd) random samples suffice to approximate the func-
tion up to a given error with high probability.

1. Introduction

The nonuniform sampling of band-limited functions of several variables
remains a challenging problem. Whereas in dimension 1 the density of a set
essentially characterizes sets of stable sampling [14], in higher dimensions the
density is no longer a decisive property of sets of stable sampling. Only a few
strong and explicit sufficient conditions are known, for example, [3], [10], [12].

This difficulty is one of the reasons for taking a probabilistic approach to
the sampling problem [2], [20]. At first glance, one would guess that every
reasonably homogeneous set of points in R

d satisfying Landau’s necessary
density condition will generate a set of stable sampling. This intuition is far
from true. To the best of our knowledge, every construction in the literature
of sets of random points in R

d contains either arbitrarily large holes with
positive probability or concentrates near the zero manifold of a band-limited
function. Both properties are incompatible with a sampling inequality. See
[2] for a detailed discussion.

The difficulties with the probabilistic approach lie in the unboundedness
of the configuration space R

d and the infinite dimensionality of the space of
band-limited functions. To resolve this issue, we argued in [2] that usually one
observes only finitely many samples of a band-limited function and that these
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observations are drawn from a bounded subset of Rd. Moreover, since it does
not make sense to sample a given function f in a region where f is small, we
proposed to sample f only on its essential support. Since f is sampled only
in the relevant region, this method might be called the “relevant sampling of
band-limited functions.” In this paper, we continue our investigation of the
random sampling of band-limited functions and settle a question that was left
open in [2], namely how many random samples are required to approximate
a band-limited function locally to within a given accuracy?

To fix terms, recall that the space of band-limited functions is defined to
be

B =
{
f ∈ L2

(
R

d
)
: supp f̂ ⊆ [−1/2,1/2]d

}
,

where we have normalized the spectrum to be the unit cube and the Fourier

transform is normalized as f̂(ξ) =
∫
Rd f(x)e

−2πix·ξ dx. A set {xj : j ∈ J} ⊆R
d

is called a set of stable sampling or simply a set of sampling [7], if there exist
constants A,B > 0, such that a sampling inequality holds:

(1) A‖f‖22 ≤
∑
j

∣∣f(xj)
∣∣2 ≤B‖f‖22, ∀f ∈ B.

Next, we sample only on the essential support of f . Therefore, we let
CR = [−R/2,R/2]d and define the subset

B(R,δ) =

{
f ∈ B :

∫
CR

∣∣f(x)∣∣2 dx≥ (1− δ)‖f‖22
}
.

As a continuation of [2], we will prove the following sampling theorem.

Theorem 1. Let {xj : j ∈N} be a sequence of independent and identically
distributed random variables that are uniformly distributed in CR. Suppose
that R≥ 2, that δ ∈ (0,1) and ν ∈ (0,1/2) are small enough, and that 0< ε< 1.
There exists a constant κ so that if the number of samples r satisfies

(2) r ≥ 2Rd 1 + ν/3

ν2
log

2Rd

ε
,

then the sampling inequality

r

Rd

(
1

2
− δ − ν − 12δκ

)
‖f‖22(3)

≤
r∑

j=1

∣∣f(xj)
∣∣2 ≤ r‖f‖22 for all f ∈ B(R,δ)

holds with probability at least 1−ε. The constant κ can be taken to be κ= edπ .

The formulation of Theorem 1 is similar to [2, Theorem 3.1]. The main
point is that only O(Rd logRd) samples are required for a sampling inequality
to hold with high probability. In [2], we used a metric entropy argument to
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show that O(R2d) samples suffice. We expect that the order O(Rd logRd) is
optimal. We point out that in addition all constants are now explicit.

Our idea is to replace the sampling of band-limited function in B(R,δ)
by a finite-dimensional problem, namely the sampling of the corresponding
span of prolate spheroidal functions on the cube [−R/2,R/2]d and then use
error estimates. For the probability estimates we use a new tool, namely
the powerful matrix Bernstein inequality of Ahlswede and Winter [1] in the
optimized version of Tropp [22].

The remainder of the paper contains the analysis of a related finite-dimen-
sional problem for prolate spheroidal functions in Section 2 and transition
to the infinite-dimensional problem in B(R,δ) with the necessary error esti-
mates in Section 3. The Appendix contains an elementary estimate for the
constant κ.

2. Finite-dimensional subspaces of B
We first study a sampling problem in a finite-dimensional subspace related

to the set B(R,δ).

Prolate spheroidal functions. Let PR and Q be the projection operators
defined by

(4) PRf = χCR
f and Qf =F−1(χ[−1/2,1/2]d f̂),

where F−1 is the inverse Fourier transform. The composition of these orthog-
onal projections

(5) AR =QPRQ

is the operator of time and frequency limiting. This operator arises frequently
in the context of band-limited functions and uncertainty principles. The lo-
calization operator AR is a compact positive operator of trace class, and by
results of Landau, Slepian, Pollak and Widom [8], [9], [17], [18], [19], [24]
the eigenvalue distribution spectrum is precisely known. We summarize the
properties of the spectrum that we will need.

Let A
(1)
R denote the operator of time-frequency limiting in dimension d= 1.

This operator can be defined explicitly on L2(R) by the formula(
A

(1)
R f

)̂
(ξ) =

∫ 1/2

−1/2

sinπR(ξ − η)

π(ξ − η)
f̂(η)dη for |ξ| ≤ 1/2.

The eigenfunctions of A
(1)
R are the prolate spheroidal functions, and let the

corresponding eigenvalues μk = μk(R) be arranged in decreasing order. Ac-
cording to [6], they satisfy

0< μk(R)< 1 ∀k ∈N,

μ[R]+1(R)≤ 1/2≤ μ[R]−1(R).
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As a consequence any function with spectrum [−1/2,1/2] and “essential”
support on [−R/2,R/2] is close to the span of the first R prolate spheroidal
functions. In particular, we may think of B(R,δ) as, roughly, almost a subset
of a finite-dimensional space of dimension R.

The time-frequency limiting operator AR on L2(Rd) is the d-fold tensor

product of A
(1)
R , AR =A

(1)
R ⊗ · · · ⊗A

(1)
R . Consequently, σ(AR), the spectrum

of AR, is

σ(AR) =

{
λ ∈ (0,1) : λ=

d∏
j=1

μkj , μkj ∈ σ
(
A

(1)
R

)}
.

Since 0< μk < 1, AR possesses at most Rd eigenvalues greater than or equal
to 1/2. Again we arrange the eigenvalues of AR by magnitude 1> λ1 ≥ λ2 ≥
λ3 ≥ · · · ≥ λn ≥ λn+1 ≥ · · · > 0. Let φj be the eigenfunction corresponding
to λj .

We fix R “large” and δ ∈ (0,1). Let

PN = span{φj : j = 1, . . . ,N}
be the span of the first N eigenfunctions of the time-frequency limiting oper-
ator AR (one might call functions in PN “multivariate prolate polynomials”).
For properly chosen N , PN consists of functions in B(R,δ). See Lemma 5.

By Plancherel’s theorem,

〈Qf, g〉= 〈χ[−1/2,1/2]d f̂ , ĝ〉= 〈f̂ , χ[−1/2,1/2]d ĝ〉= 〈f,Qg〉.
Then for f ∈ B we have Qf = f , and so

(6) 〈ARf, f〉= 〈PRQf,Qf〉= 〈PRf, f〉=
∫
CR

∣∣f(x)∣∣2 dx.
We first study random sampling in the finite-dimensional space PN . In the

following ‖f‖2,R denotes the normalized L2-norm of f restricted to the cube
CR = [−R/2,R/2]d:

‖f‖22,R =

∫
CR

∣∣f(x)∣∣2 dx.
Proposition 2. Let {xj : j ∈ N} be a sequence of independent and iden-

tically distributed random variables that are uniformly distributed in [−R/2,
R/2]d. Then

P

(
inf

f∈PN ,‖f‖2=1

1

r

r∑
j=1

(∣∣f(xj)
∣∣2 − 1

Rd
‖f‖22,R

)
≤− ν

Rd

)
(7)

≤N exp

(
− ν2r/2

Rd(1 + ν/3)

)
for r ∈N and ν ≥ 0.
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Proof. We prove the proposition in several steps. First, since PN is finite-
dimensional, the sampling inequality for PN amounts to a statement about
the spectrum of an underlying (random) matrix.

Let f = 〈c,φ〉 =
∑N

k=1 ckφk ∈ PN , so that |f(xj)|2 =
∑N

k,l=1 ckclφk(xj)×
φl(xj). Now define the N × N matrix Tj of rank one by letting the (k, l)
entry be

(8) (Tj)kl = φk(xj)φl(xj).

Then |f(xj)|2 = 〈c,Tjc〉. Since each random variable xj is uniformly dis-
tributed over CR and φk is the kth eigenfunction of the localization operator
AR, using (6) the expectation of the klth entry is

E
(
(Tj)kl

)
=

1

Rd

∫
CR

φk(x)φl(x)dx(9)

=
1

Rd
〈ARφk, φl〉

=
1

Rd
λkδkl, k, l= 1, . . . ,N,

where δkl is Kronecker’s delta. Consequently the expectation of Tj is the
diagonal matrix

(10) E(Tj) =
1

Rd
diag(λk) =:

1

Rd
Δ.

We may now rewrite the expression in (7) as

inf
f∈PN ,‖f‖2=1

1

r

r∑
j=1

(∣∣f(xj)
∣∣2 − 1

Rd
‖f‖22,R

)
(11)

= inf
‖c‖2=1

1

r

r∑
j=1

(
〈c,Tjc〉 −

〈
c,E(Tj)c

〉)
= λmin

(
1

r

N∑
j=1

(
Tj −E(Tj)

))
,

where we use λmin(U) for the smallest eigenvalue of a self-adjoint matrix U .
Consequently, we have to estimate a probability for the matrix norm of a

sum of random matrices. We do this using a matrix Bernstein inequality due
to Tropp [22]. Let λmax(A) be the largest singular value of a matrix A so that
‖A‖= λmax(A

∗A)1/2 is the operator norm (with respect to the 
2-norm).

Theorem 3 (Tropp). Let Xj be a sequence of independent, random self-
adjoint N ×N -matrices. Suppose that

EXj = 0 and ‖Xj‖ ≤B a.s.
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and let

σ2 =

∥∥∥∥∥
r∑

j=1

E
(
X2

j

)∥∥∥∥∥.
Then for all t≥ 0,

(12) P

(
λmax

(
r∑

j=1

Xj

)
≥ t

)
≤N exp

(
− t2/2

σ2 +Bt/3

)
.

To apply the matrix Bernstein inequality, we set Xj = Tj −E(Tj). We need
to calculate ‖Xj‖ and ‖

∑
j E(X

2
j )‖. Clearly E(Xj) = 0.

Lemma 4. Under the conditions stated above, we have

‖Xj‖ ≤ 1,

E
(
X2

j

)
≤R−dΔ

and

σ2 =

∥∥∥∥∥
r∑

j=1

E
(
X2

j

)∥∥∥∥∥ ≤ r

Rd
.

Proof. (i) To estimate the matrix norm of Xj , recall that

(13)
∣∣f(x)∣∣ ≤ ‖f‖2 ∀f ∈ B.

Hence, we obtain

‖Xj‖ = sup
‖f‖2=1

∣∣∣∣∣f(xj)
∣∣2 −R−d‖f‖22,R

∣∣∣
≤ ‖f‖∞ −R−d‖f‖22,R ≤ ‖f‖2 = 1.

(ii) Next, we calculate the matrix E(X2
j ):

E
(
X2

j

)
= E

(
T 2
j

)
−R−d

E(TjΔ)−R−d
E(ΔTj) +R−2dΔ2

= E
(
T 2
j

)
−R−d

E(Tj)Δ−R−dΔE(Tj) +R−2dΔ2

= E
(
T 2
j

)
−R−2dΔ2.

Furthermore, the square of the rank one matrix Tj is the (rank one) matrix

(
T 2
j

)
km

=

N∑
l=1

(Tj)kl(Tj)lm

=
∑
l

φk(xj)φl(xj)φl(xj)φm(xj)

=

(
N∑
l=1

∣∣φl(xj)
∣∣2)(Tj)km.



RELEVANT SAMPLING OF BAND-LIMITED FUNCTIONS 49

Writing m(x) =
∑N

l=1 |φl(x)|2, we obtain

(14) T 2
j =m(xj)Tj .

Let s be the function whose Fourier transform is given by ŝ= χ[−1/2,1/2]d

and let Txf(t) = f(t− x) be the translation operator. Then it is well known
that Txs is the reproducing kernel for B, that is,

f(x) = 〈f,Txs〉.

To see this, by Plancherel’s theorem and the inversion formula for the Fourier
transform, if f ∈ B,

〈f,Txs〉 =
〈
f̂ , e−2πix·ξ ŝ

〉
=

∫
[−1/2,1/2]d

e2πix·ξf̂(ξ)dξ

=

∫
e2πix·ξ f̂(ξ)dξ = f(x).

Since the eigenfunctions φl form an orthonormal basis for B, the factor
m(xj) in (14) is majorized by

m(xj) =

N∑
l=1

∣∣φl(xj)
∣∣2 = N∑

l=1

∣∣〈φl, Txjs〉
∣∣2

≤
∞∑
l=1

∣∣〈φl, Txjs〉
∣∣2 = ‖Txjs‖22 = 1.

Since T 2
j ≤ Tj and the expectation preserves the cone of positive (semi)definite

matrices (see, e.g., [22]), we have E(T 2
j )≤ E(Tj) =R−dΔ, and

E
(
X2

j

)
= E

(
T 2
j

)
−R−2dΔ2 ≤R−dΔ.

(iii) Now the variance of the sum of positive (semi)definite random matrices
is majorized by

σ2 =

∥∥∥∥∥
r∑

j=1

E
(
X2

j

)∥∥∥∥∥ ≤
∥∥∥∥∥

r∑
j=1

E(Tj)

∥∥∥∥∥ =
r

Rd
‖Δ‖ ≤ r

Rd
.

�

End of the proof of Proposition 2. Now we have all information to finish
the proof of Proposition 2. Since λmin(T ) =−λmax(−T ), we substitute these
estimates into the matrix Bernstein inequality with t = rν/Rd, and obtain
that

E

(
λmin

(
r∑

j=1

(
Tj −E(Tj)

))
≤−rν/Rd

)
≤N exp

(
− r2ν2R−2d/2

rR−d + rνR−d/3

)
.

Combined with (11), the proposition is proved. �
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Random matrix theory offers several methods to obtain probability esti-
mates for the spectrum of random matrices. In [2], we used the entropy
method. We also mention the influential work of Rudelson [15] and the recent
papers [11], [16] on random matrices with independent columns. The matrix
Bernstein inequality offers a new approach and makes the probabilistic part
of the argument almost painless. The matrix Bernstein inequality was first
derived in [1] and improved in several subsequent papers, in particular in [13].
The version with the best constants is due to Tropp [22]. Matrix Bernstein
inequalities also simplify many probabilistic arguments in compressed sensing;
see [4] and [23].

3. From sampling of prolate spheroidal functions to relevant
sampling of bandlimited functions

Let α be the value of the N th eigenvalue of AR, that is, α= λN , let E =EN

be the orthogonal projections from B onto PN , and let F = FN = I − EN .
Intuitively, since f ∈ B(R,δ) is essentially supported on the cube CR, it should
be close to the span of the largest eigenfunctions of AR and thus Ff should
be small. The following lemma gives a precise estimate. Compare also with
the proof of [9, Theorem 3].

Lemma 5. If f ∈ B(R,δ), then

‖Ef‖22 ≥
(
1− δ

1− α

)
‖f‖22,

‖Ef‖22,R ≥ α

(
1− δ

1− α

)
‖f‖22,

‖Ff‖22 ≤
δ

1− α
‖f‖22.

Proof. Expand f ∈ B with respect to the prolate spheroidal functions as
f =

∑∞
j=1 cjφj . Without loss of generality, we may assume that ‖f‖2 =

‖c‖2 = 1. Since f ∈ B(R,δ), we have that

1− δ ≤ ‖f‖22,R =

∫
CR

∣∣f(t)∣∣2 dt= 〈ARf, f〉=
∞∑
j=1

|cj |2λj .

Set

A= ‖Ef‖22 =
N∑
j=1

|cj |2
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and B =
∑

j>N |cj |2 = 1 − A = ‖Ff‖22. Since λj ≤ λN = α for j > N , we

estimate A= ‖Ef‖22 as follows:

A=

N∑
j=1

|cj |2 ≥
N∑
j=1

|cj |2λj

=
∞∑
j=1

|cj |2λj −
∞∑

j=N+1

|cj |2λj

≥ 1− δ− λN

∞∑
j=N+1

|cj |2

= 1− δ− α(1−A).

The inequality A≥ 1− δ − α(1−A) implies that ‖Ef‖22 = A≥ 1− δ
1−α and

using the orthogonal decomposition f =Ef + Ff ,

B = ‖Ff‖22 ≤
δ

1− α
.

Finally, ‖Ef‖22,R =
∑N

j=1 λj |cj |2 ≥ αA≥ α(1− δ
1−α ), as claimed. �

Remark (due to J.-L. Romero). As mentioned in [2], if f ∈ B(R,δ) and
f(xj) = 0 for sufficiently many samples xj ∈CR, then f ≡ 0. However, f can-
not be completely determined by samples in CR alone. This is a consequence
of the fact that B(R,δ) is not a linear space. Given a finite subset S ⊆ CR,
consider the finite-dimensional subspace H0 of B spanned by the reproducing
kernels Txs, x ∈ S. If φ ∈ H⊥

0 , then φ(x) = 〈φ,Txs〉 = 0 for x ∈ S. Thus by
adding a function in H⊥

0 of sufficiently small norm to f ∈ B(R,δ), one obtains
a different function with the same samples. More precisely, let f ∈ B(R,δ)
with ‖f‖2 = 1 and

∫
CR

|f(x)|2 dx = γ > 1 − δ and φ ∈ H⊥
0 with ‖φ‖2 = 1.

Then f(x)+ εφ(x) = f(x) for x ∈ S and f + εφ ∈ B(R,δ) for sufficiently small
ε > 0.

Despite this non-uniqueness, one can approximate f from the samples up
to an accuracy δ, as is shown by the next lemma.

We will require a standard estimate for sampled 2-norms, a so-called
Plancherel–Polya–Nikolskij inequality [21]. Assume that X = {xj} ⊆ R

d is
relatively separated, that is, the “covering index”

max
k∈Zd

#X ∩
(
k+ [−1/2,1/2]d

)
=:N0 <∞

is finite. Then there exists a constant κ > 0, such that

(15)
∞∑
j=1

∣∣f(xj)
∣∣2 ≤ κN0‖f‖22 for all f ∈ B.
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The constant κ can be chosen as κ = edπ . Since the standard proof in [21]
uses a maximal inequality with an non-explicit constant, we will give a simple
argument using Taylor series in the Appendix.

Lemma 6. Let {xj : j = 1, . . . , r} be a finite subset of CR with covering
index N0. Then the solution to the least square problem

(16) popt = argmin
p∈PN

{
r∑

j=1

∣∣f(xj)− p(xj)
∣∣2}

satisfies the error estimate

(17)

r∑
j=1

∣∣f(xj)− popt(xj)
∣∣2 ≤N0κ

δ

1− α
‖f‖22 for all f ∈ B(R,δ).

Proof. We combine Lemma 5 with (15).
r∑

j=1

∣∣f(xj)− popt(xj)
∣∣2 ≤ r∑

j=1

∣∣f(xj)−Ef(xj)
∣∣2

=

r∑
j=1

∣∣Ff(xj)
∣∣2 ≤ κN0‖Ff‖22

≤ κN0
δ

1− α
‖f‖22. �

Next, we compare sampling inequalities for the space of prolate polynomials
PN to sampling inequalities for functions in B(R,δ).

Lemma 7. Let {xj : j = 1, . . . , r} be a finite subset of CR with covering
index N0.

If the inequality

(18)
1

r

r∑
j=1

(∣∣p(xj)
∣∣2 −R−d‖p‖22,R

)
≥− ν

Rd
‖p‖22

holds for all p ∈ PN , then the inequality

(19)

r∑
j=1

∣∣f(xj)
∣∣2 ≥A‖f‖22

holds for all f ∈ B(R,δ) with a constant

A=
r

Rd

(
α− αδ

1− α
− ν

)
− 2κN0

δ

1− α
.

Remark. For A to be positive, we need

r ≥Rd
2κN0

δ
1−α

α− αδ
1−α − ν

.
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Proof of Lemma 7. Using the triangle inequality and the orthogonal de-
composition f =Ef + Ff , we estimate(

r∑
j=1

∣∣f(xj)
∣∣2)1/2

≥
(

r∑
j=1

∣∣Ef(xj)
∣∣2)1/2

−
(

r∑
j=1

∣∣Ff(xj)
∣∣2)1/2

.

Taking squares and using (15) on Ef and Ff in the cross product term, we
continue as

r∑
j=1

∣∣f(xj)
∣∣2 ≥ r∑

j=1

∣∣Ef(xj)
∣∣2 − 2

(
r∑

j=1

∣∣Ef(xj)
∣∣2)1/2( r∑

j=1

∣∣Ff(xj)
∣∣2)1/2

+

r∑
j=1

∣∣Ff(xj)
∣∣2

≥
r∑

j=1

∣∣Ef(xj)
∣∣2 − 2κN0‖Ef‖2‖Ff‖2

≥
r∑

j=1

∣∣Ef(xj)
∣∣2 − 2κN0

δ

1− α
‖f‖22,

since by Lemma 5, ‖Ff‖22 ≤ δ
1−α‖f‖22 and ‖Ef‖2 ≤ ‖f‖2. Now we make use

of hypothesis (18) and Lemma 5 and obtain

r∑
j=1

∣∣f(xj)
∣∣2 ≥ r∑

j=1

∣∣Ef(xj)
∣∣2 − 2κN0

δ

1− α
‖f‖22

≥ r

Rd
‖Ef‖22,R − νr

Rd
‖Ef‖22 − 2κN0

δ

1− α
‖f‖22

≥ αr

Rd

(
1− δ

1− α

)
‖f‖22 −

νr

Rd
‖f‖22 − 2κN0

δ

1− α
‖f‖22.

So we may choose A to be

A=
r

Rd

(
α− αδ

1− α
− ν

)
− 2κN0

δ

1− α
. �

The final ingredient we need is a deviation inequality for the covering index
N0 =maxk∈Zd{xj} ∩ (k+ [−1/2,1/2]d).

Lemma 8. Suppose R≥ 2 and {xj : j = 1, . . . , r} are independent and iden-
tically distributed random variables that are uniformly distributed over CR.
Let a >R−d. Then

P(N0 > ar)≤ (R+ 2)d exp
(
−r

(
a log

(
aRd

)
−

(
a−R−d

)))
.
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Proof. Let Dk = k + [−1/2,1/2]d for k ∈ Z
d. Note that we need at most

(R+2)d of the Dk’s to cover CR. If N0 > ar, then for at least one k, Dk must
contain at least ar of the xj ’s. Therefore,

(20) P(N0 > ar)≤ (R+ 2)dmax
k∈Zd

P
(
#{xj} ∩Dk > ar

)
.

Fix k ∈ Z
d. For any b > 0, by Chebyshev’s inequality

P
(
#{xj} ∩Dk > ar

)
= P

(
r∑

j=1

χDk
(xj)> ar

)

= P

(
exp

(
b

r∑
j=1

χDk
(xj)

)
> ebar

)

≤ e−bar
E exp

(
b

r∑
j=1

χDk
(xj)

)
.

Since the xj are uniformly distributed over CR, then χDk
(xj) is equal to 1

with probability at most R−d and otherwise equals zero. Therefore, using the
independence,

P
(
#{xj} ∩Dk > ar

)
≤ e−bar

r∏
j=1

EebχDk
(xj)

≤ e−bar
((
1−R−d

)
+ ebR−d

)r
= e−bar(

(
1 +

(
eb − 1

)
R−d

)r
≤ e−bar

(
exp

((
eb − 1

)
R−d

))r
.

With the optimal choice b= log(aRd) the last term is then

exp
(
−r

(
a log(aRd)− (a−R−d)

))
.

Substituting this in (20) proves the lemma. �

By combining the finite-dimensional result of Proposition 2 with the esti-
mates of Lemmas 7 and 8 and the appropriate choice of the free parameters,
we obtain the following theorem.

Theorem 9. Let {xj : j ∈N} be a sequence of independent and identically
distributed random variables that are uniformly distributed in CR. Suppose
R≥ 2,

δ <
1

2(1 + 12κ)

and

ν <
1

2
− δ(1 + 12κ),
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where κ= edπ . Let

(21) A=
r

Rd

(
1

2
− δ − ν − 12δκ

)
.

Then the sampling inequality

(22) A‖f‖22 ≤
r∑

j=1

∣∣f(xj)
∣∣2 ≤ r‖f‖22 for all f ∈ B(R,δ)

holds with probability at least

(23) 1−Rd exp

(
− ν2r/2

Rd(1 + ν/3)

)
− (R+ 2)d exp

(
− r

Rd
(3 log 3− 2)

)
.

Proof. Since |f(x)| ≤ ‖f‖2 for f ∈ B, the right-hand inequality in (22) is
immediate. We take α= 1/2 and N =Rd in Proposition 2 and a= 3R−d in
Lemma 8. Let

V1 =

{
inf

f∈PN ,‖f‖2=1

1

r

r∑
j=1

(∣∣f(xj)
∣∣2 − 1

Rd
‖f‖22,R

)
≤− ν

Rd

}
and let

V2 = {N0 > ar}.
By Proposition 2 and Lemma 8, the probability of (V1 ∪ V2)

c is bounded
below by (23). By Lemma 7,

1

r

r∑
j=1

∣∣f(xj)
∣∣2 ≥A‖f‖22

for all f ∈ B(R,δ) on the set (V1 ∪ V2)
c. With α= 1/2 and N0 = 3R−dr the

lower bound A of Lemma 7 simplifies to A = r
Rd (

1
2 − δ − ν − 12δκ). Our

assumptions on δ and ν guarantee that A> 0. �

The formulation of Theorem 1 now follows. With N = Rd and 0 < ν <
1/2− δ < 1/2, if ε > 0 is given and

r ≥max

(
Rd 1 + ν/3

ν2
log

2Rd

ε
,

Rd

3 log 3− 2
log

2(R+ 2)d

ε

)
(24)

=Rd 1 + ν/3

ν2
log

2Rd

ε
,

then the probability in (23) will be larger than 1− ε.

Remark. Observe that the parameters δ and R are not independent. As
mentioned in [2, p. 14], for B(R,δ) to be non-empty, we need δ ≥ 2πd

√
2Re−πR

(up to terms of higher order). Thus for small δ as in Theorem 9, we need to
choose R of order R≈ c log(d/δ).
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Appendix: The Plancherel–Polya inequality

We finish by showing that the constant κ in the Plancherel–Polya inequality
(15) can be chosen explicitly to be κ= edπ . The argument is simple and well
known, see, for example, [5].

Lemma A.1. Let {xj : j ∈N} be a set in R
d with covering index N0. Then

∞∑
j=1

∣∣f(xj)
∣∣2 ≤N0e

dπ‖f‖22.

Proof. Let k ∈ Z
d and xj ∈ k+ [−1/2,1/2] =:Dk. Then ‖xj − k‖∞ ≤ 1/2.

Consider the Taylor expansion of f(xj) at k (with the usual multi-index no-
tation):

∣∣f(xj)
∣∣ = ∣∣∣∣∣∑

α≥0

Dαf(k)

α!
(xj − k)α

∣∣∣∣∣ ≤ ∑
α≥0

|Dαf(k)|
α!

(
1

2

)|α|
.

We now let θ ∈ (0,1) and apply Cauchy–Schwarz:

∣∣f(xj)
∣∣2 ≤ ∑

α≥0

1

α!

(
1

2

)2θ|α| ∑
α≥0

|Dαf(k)|2
α!

(
1

2

)2(1−θ)|α|
(25)

= ed/4
θ ∑
α≥0

|Dαf(k)|2
α!

(
1

2

)2(1−θ)|α|
.

If f ∈ B, then by Shannon’s sampling theorem (or because the reproducing
kernels Tks, k ∈ Z

d, form an orthonormal basis of B) we have∑
k∈Zd

∣∣f(k)∣∣2 = ‖f‖22 ∀f ∈ B.

To estimate the partial derivatives we use Bernstein’s inequality ‖Dαf‖2 ≤
π|α|‖f‖2.

We first assume that N0 = 1, that is, each cube Dk contains at most one
of the xj ’s. Then we obtain, after interchanging the order of summation∑

j∈N

∣∣f(xj)
∣∣2 ≤ ed/4

θ ∑
α≥0

∑
k∈Zd

|Dαf(k)|2
α!

(
1

2

)2(1−θ)|α|
(26)

= ed/4
θ ∑
α≥0

(
1

2

)2(1−θ)|α| ‖Dαf‖22
α!

≤ ed/4
θ ∑
α≥0

(
1

2

)2(1−θ)|α|
π2|α|

α!
‖f‖22 = ed/4

θ

edπ
2/41−θ‖f‖22.
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The choice 4θ = 2/π yields the constant κ= ed/4
θ

edπ
2/41−θ

= edπ . For ar-
bitrary N0 we obtain∑

j∈N

∣∣f(xj)
∣∣2 = ∑

k∈Zd

∑
{j:xj∈Dk}

∣∣f(xj)
2
∣∣≤N0e

dπ‖f‖22,

as claimed. �

Possibly the Plancherel–Polya inequality could be improved to a local es-
timate of the form

∑
xj∈CR

|f(xj |2 ≤ κ̃N0‖f‖22,R, but we did not pursue this

question.
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