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BACKWARD ITERATION IN THE UNIT BALL

OLENA OSTAPYUK

ABSTRACT. We will consider iteration of an analytic self-map
f of the unit ball in CV. Many facts were established about
such dynamics in the 1-dimensional case (i.e., for self-maps of
the unit disk), and we will generalize some of them in higher
dimensions. In particular, in the case when f is hyperbolic or
elliptic, it will be shown that backward-iteration sequences with
bounded hyperbolic step converge to a point on the boundary.
These points will be called boundary repelling fixed points and
will possess several nice properties. At each isolated boundary
repelling fixed point, we will also construct a (semi) conjugation
of f to an automorphism via an analytic intertwining map. We
will finish with some new examples.

1. Introduction
1.1. One-dimensional case.

1.1.1. Forward iteration. Let f be an analytic self-map of the unit disk D.
Denote f,, = f°™ and consider the sequence of forward iterates z, = f,,(20).
By Schwarz’s lemma, f is a contraction of the pseudo-hyperbolic metric, so
the sequence d(z,, z,+1) is decreasing, where

zZ—w

d(z,w) := T s

' Vz,w € D.

THEOREM 1.1 (Denjoy-Wolff). If f is not an elliptic automorphism, then
there exists a unique point p € D (called the Denjoy—Wolff point of f) such
that the sequence of iterates { f,,} converges to p uniformly on compact subsets
of D.
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F1GURE 1. Julia’s lemma at the Denjoy—Wolff point p € ID.

Consider first the case p € 9D. It can be shown that f(p) =p and f'(p) =
¢ € (0,1] in the sense of non-tangential limits, and the point p can thus be
called “attracting”. More geometrically, Julia’s lemma holds for the point p,
that is,

(1.1) VR >0 f(H(p,R)) C H(p,cR),

where H(p, R) is a horocycle at p € 9D of radius R (see Figure 1),

._ lp—2P
H(p,R) := {zE]D. P <R}.

Here ¢ = f/(p) is the smallest ¢ such that (1.1) holds. We will call it the
multiplier or the dilatation coefficient and we will distinguish the hyperbolic
(¢ < 1) and parabolic (¢=1) cases.

In the hyperbolic case, Valiron [22] showed that there is an analytic map
¥ : D — H (where H is the right half-plane) with some regularity properties,
which solves the Schroder equation:

(1.2) ¢Of=%%

and so ¥ conjugates f to multiplication in H.

In the parabolic case, f can be conjugated to a shift in a half-plane or in the
whole plane, as proved by Pommerenke [20], and Baker and Pommerenke [2].

If the Denjoy—Wolff point p is in D, the function f is said to be elliptic and
the multiplier ¢ = f’(p) satisfies |¢| < 1, unless f is an elliptic automorphism.
Conjugations for such maps were found by Koenigs [14] and Béttcher [4].

Conjugation to a linear-fractional transformation in all cases simultane-
ously was shown by Cowen in [9].

The question of uniqueness of the intertwining map has also been explored
and answered; in the elliptic case in [14], in the hyperbolic case by Bracci and
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Poggi-Corradini in [7], in the parabolic case by Poggi-Corradini in [19] and
by Contreras, Diaz-Madrigal and Pommerenke in [8].

1.1.2. Backward iteration.

DEFINITION 1.2. We will call a sequence of points {z,}52, a backward-
iteration sequence for f if f(zp41) =2, for n=0,1,2,....

In general, such sequences may not exist. Note that in the backward iter-
ation case the sequence d(zy,z,+1) is increasing, so we will impose an upper
bound on the pseudo-hyperbolic step:

(1.3) d(zn, 2nt1) <a Vn

for some fixed a < 1.

This condition is non-trivial, for an example of a map that admits a
backward-iteration sequence with unbounded steps, see Section 2 of [18].

A backward-iteration sequence satisfying (1.3) must converge to a point on
the boundary of D:

THEOREM 1.3 (Poggi-Corradini [16]). Suppose f is an analytic map with
f(D) CD (and not an elliptic automorphism). Let {z,}5> be a backward-
iteration sequence for the function f with bounded pseudo-hyperbolic steps
dp, =d(2zn,2n+1) Ta <1. Then the following hold:

(1) There is a point g € OD such that z, — q as n tends to infinity, and q is
a fized point for [ with a well-defined multiplier f'(q) = a < o0.

(2) When q # p, where p is the Denjoy—Wolff point, then o> 1, so we can
call ¢ a boundary repelling fixed point. If ¢ =p, then f is necessarily of
parabolic type.

(3) When q # p, then the sequence z, tends to q along a non-tangential di-
rection.

(4) When q=p, then z, tends to q tangentially.

In this case, Julia’s lemma holds for the point ¢ with multiplier o > 1:
(1.4) VR>0 f(H(q,R))C H(g,aR),

where « is the smallest number such that this holds.
For backward iteration, the following conjugation result was obtained
in [17].

THEOREM 1.4 (Poggi-Corradini). Suppose f is an analytic self-map of the
unit disc D and 1 is a boundary repelling fized point for f with multiplier
l<a<oo. Leta=(a—1)/(a+1) and n(z) = (z —a)/(1 — az). Then there
is an analytic map ¢ of D with ¢(D) C D, which has non-tangential limit 1
at 1, such that

(1.5) Pon(z) = foi(z)
for all z € D.
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1.2. Unit ball in CV.

1.2.1. Preliminaries. Consider the N-dimensional unit ball
BY={ZeC":|z| <1},

where the inner product and the norm are defined as

N
(ZW)=Y"Z;W; and |Z|*=(Z,2).
j=1
Schwarz’s lemma still holds for a self-map f of the unit ball, i.e. f must be
a contraction in the Bergmann metric kgn (Corollary 2.2.18 from [1]). For
simplicity of computations, we will use the pseudo-hyperbolic metric dg~ in
BY, which is related to the Bergmann metric by

dg~ (Z,W) = tanh (kg~ (Z,W)) VZ,W €B".
The pseudo-hyperbolic metric satisfies dg~ (Z,0) = ||Z|| and is preserved by
every automorphism of BY, thus one can derive that
A= lZ*a = [W]*)
1= (Z,W)]?

We also have the following generalization of Julia’s lemma:

(1.6) B (Z,W)=1— vZ,W B,

THEOREM 1.5 (Theorem 2.2.21 from [1]). Let : BN — BY be a holomorphic
map and take X € OBN such that

(D)

Then there exists a unique Y € OBN such that
VR >0 f(H(X,R)) CH(Y,aR),

where H(X, R) is a horosphere (the N-dimensional generalization of a horo-
cycle), defined as

_ 2
H(X,R):= {ZEIB%N: % <R}.

And a version of the Denjoy—Wolff theorem also holds.

THEOREM 1.6 (Hervé [12], MacCluer [15]). Let f: BN — BN be a holo-
morphic map without fived points in BN . Then the sequence of iterates {fn}
converges uniformly on compact subsets of BY to the constant map Z — p
for a (unique) point p € OBYN (called the Denjoy-Wolff point of f); and the
number

—piminp L (D]
(1.8) ci= llIZIIi;lf Tz €(0,1]

1s called the multiplier or the boundary dilatation coefficient of f at p.
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The map f is called hyperbolic if ¢ <1 and parabolic if ¢ =1.

Unlike in the one-dimensional case, there may be many fixed points inside
the unit ball BY. Even if the fixed point is unique, forward iterates need not
converge to it (consider rotations). We will call a function f wnitary on a
slice if there exist ¢ and 7 in OBY with f(A\() = An for all A € D. Functions
that are not unitary on any slice are precisely those for which strict inequality
occurs in the multidimensional Schwarz lemma and for them forward iterates
converge to the (unique) point 0 (see [10]). Note that even if function f has
more than one fixed point, the sequence of forward iterates may still converge,
see [1].

DEFINITION 1.7. We will call a self-map of the unit ball f attracting-elliptic,
if it has a unique fixed point inside BY and it is conjugate via an automorphism
to a self-map fixing zero, which is not unitary on any slice.

In the rest of the paper, we will consider only self-maps of the ball that are
attracting-elliptic, hyperbolic or parabolic.
Sometimes it will be more convenient to use the Siegel domain:

HY := {(z,w) eCx CN7': Rez > |w|?},

which is biholomorphic to BY via the Cayley transform C : BY — HY:

C(z,w)=<1+z “’) and C_l(z,w)z(z_l 2w )

1—-2"1—2 z+1z+1

We will use the same notations for the points in BY and their images in HY,
when this is not likely to cause confusion. We will also denote by (z,w) an N-
dimensional vector either in B or HY with z € C being the first component
and w € CN~! being the last N — 1 components. The pseudo-hyperbolic
distance in H” is defined as

(19)  din ((z,w), (2,0))
= d]]zgzv (C_l(zaw)vc_l(é’ 121))
~ 4(Rez — [lw]*)(Re z — ||w||*)

:1 —
|z 4+ 2 — 2{w,w)|?

Y(z,w),(Z,w) e HY,

Forward iteration in the unit ball of CV in the hyperbolic case was studied in
[5], [6] and [13]. In [6], the Schroder equation (1.2) was solved with 1 being
holomorphic map % : BY — H given some additional conditions. In [13], sim-
ilar result was obtained for Schur class maps. In [5], f was conjugated to its
linear part, assuming some regularity at the Denjoy—Wolff point. Lineariza-
tion results for the large class of hyperbolic and parabolic maps of B? were
proved in [3]. Conjugations for elliptic maps were given in [10]; and they also
follow by the classical Poincaré—Dulac theory, see [21].
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1.2.2. Main results. The main goal of this paper is to study backward iterates
in the unit ball BY. The following results are generalizations of Theorems 1.3
and 1.4 to higher dimensions.

THEOREM 1.8. Let f be a holomorphic self-map of BN of hyperbolic or
attracting-elliptic type with Denjoy—Wolff point p. Let {Z,} be a backward-
iteration sequence for f with bounded pseudo-hyperbolic step dgn (Zy, Zny1) <
a<1. Then:

(1) There exists a point q € OBY, q # p, such that Z, — q as n tends to
nfinity,

(2) {Z,} stays in a Koranyi region with vertex q,

(3) Julia’s lemma (1.4) holds for q with a finite multiplier o> 1, where ¢ <1
is a constant that depends on f.

REMARK 1.9. In the hyperbolic case, ¢ is the multiplier at p, see (1.8).

Because of the last statement of the Theorem 1.8, the multiplier @ > 1, and
thus we can introduce the following.

DEFINITION 1.10. The point ¢ € BY is called a boundary repelling fixed
point (BRFP) for f, if (1.4) holds for some a > 1.

REMARK 1.11. It follows from Julia’s lemma (Theorem 1.5) that the above
definition of multiplier is equivalent to (1.7).

REMARK 1.12. It follows from (1.4) that ¢ also is a boundary fixed point
with respect to K-limits and, consequently, non-tangential limits (see the
proof of Theorem 2.2.29 in [1]).

DEFINITION 1.13. The Koranyi region K(q, M) of vertex ¢ € 9BY and
amplitude M > 1 is the set

1-(Z
(1.10) K(q,M):{ZeIB%N: M@w}.
1-[Z]
Koranyi regions are natural generalizations of the Stolz regions in D and
can be used to define K-limits:

DEFINITION 1.14. We will say that function f has K-limit A at ¢ € OBY if
for any M >1 f(Z)— X\ as Z — ¢ within K(q, M).

In one dimension this is exactly the non-tangential limit, while when N > 1
the approach can be tangential, see [1].

THEOREM 1.15. Suppose f is an analytic function of HY with f(HY) C HY
and 0 is a boundary repelling fixed point for f with multiplier 1 < a < oo,
isolated from other boundary repelling fixed points with multipliers less or
equal to o. Consider the automorphism of HN: n(z,w) = (az,/aw). Then
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there is an analytic map ¥ of HYN with (HY) CHYN and ¥(z,w) = 1(z,0),
which has restricted K -limit 0 at 0 (see Definition 3.3), such that

(1.11) Yon(Z)=foip(Z)
for every Z ¢ HV .

It follows from the proof of Theorem 1.15 (see Lemma 3.1), that ev-
ery isolated boundary repelling fixed point is a limit of some backward-
iteration sequence with bounded hyperbolic step. Thus, in the hyperbolic
and attracting-elliptic cases we have the following characterization of BRFP
in terms of backward-iteration sequences: Every backward-iteration sequence
with bounded hyperbolic step converges to a BRFP; and if a BRFP is isolated,
then we can construct a backward-iteration sequence with bounded hyperbolic
step that converges to it.

The intertwining map 1 in Theorem 1.15 satisfies ¥ (z,w) = 9(z,0) and
essentially is a map from one dimensional subspace of HY to HY, therefore
that conjugation does not provide information about behavior of f outside of
one dimensional image of . It then is natural to identify situations in which
we can find a conjugation such that the image of the intertwining map ¢ has
larger dimension.

THEOREM 1.16. Let f : HY — HY be analytic and expandable at 0 (see Def-
inition 5.1) and 0 be a boundary repelling fixed point with multiplier 1 < a <
00. Assume further that the matrix A in the definition of f is diagonal, and
without loss of generality let its eigenvalues be a; ; = Vaelli for j=1,... L
(L is an integer, 0 < L< N —1) and |a;jj|* <a for j=L+1,...,N — 1.
Define 2 as a diagonal matric with Q; ; = ei for j=1,...,L and Q=1
for j=L+1,....N —1. Then the conjugation (1.11) holds for n(z,w) =
(az, Qa?w) and intertwining map 1 such that (z,w) = (pL(z,w)), where
pr 1S a projection on the first L + 1 dimensions.

In the last section, we will provide some new examples, in particular, func-
tions in the two-dimensional Siegel domain that have non-isolated BRFPs, a
phenomenon that never occurs in one dimension. In Example 6.3, we will show
that the quadratic function f(z,w) := (22 + w?,w) is of hyperbolic type with
the Denjoy—Wolff point infinity and has a curve {(r2,ir)|r € R} of boundary
repelling fixed points, all of them having the same multiplier o = 2.

In Example 6.5, we will describe a non-trivial way to construct a func-
tion f of the two-dimensional Siegel domain based on a function ¢ of a one-
dimensional half-plane. f will behave very similarly to ¢ and will inherit
many properties, however, it may have non-isolated BRFPs.

We will finish with a discussion of open questions.
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2. Convergence of backward-iteration sequences

Proof of Theorem 1.8 (Hyperbolic case). We will move to the Siegel do-
main HY. Without loss of generality we can assume that the Denjoy—Wolff
is infinity. Also denote backward-iteration sequence as Z,, = (z,,w,) € C X
CN=1 and define t,, = Re z, — ||w,||>. The image of the horosphere centered
at (1,0) of radius R under the Cayley transform will be

v = € (), (LO)J?
{(z’“’)EH' TG w)|P <R}’

N . z+1
{(z,w)GH : = T [l <R},
and after some computations,

1
{(z,w) cHY : Rez — ||w|* > E}’

that is, any horosphere centered at the Denjoy—Wolff point oo will have form
H(t)={(z,w) e HY|Rez — [[w|* > t}

for some t > 0, and the Siegel domain version of the multi-dimensional Julia’s
lemma (Theorem 1.5) at infinity will be

e ()l

(2.1) VE>0 f(H(ct)) C H(t).

Since f(Zp41) = Zn ¢ H(tyn), by (2.1) Z,41 ¢ H(cty), and, by induction,
Zpar & H(c*t,), k=1,2,.... Thus, we have

(2.2) Rezpik — |Wnarll? =tnar < Ftn, k=1,2,...

Since the dilatation coefficient at the Denjoy—Wolff point ¢ < 1, the se-
quence Z, must tend to the boundary of the Siegel domain as n tends to
infinity. All we need to show now is that the limiting set on the boundary is
just one point.

Define a Euclidean projection on the boundary of the Siegel domain as

pr(z,w) = (ilmz + [|lw|]?,w).
It will be enough to show that pr(Z,) has a limit.

LEMMA 2.1. The Fuclidean distance between projections of consecutive
points of the backward-iteration sequence is bounded by

[px(Z0) = pr(Znsr)| < CVEm

for some positive constant C independent of n.
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Assuming lemma and using (2.2), we have

k—1
(2.3) ||pr(Zn) - pr(ZnJrk)H ZHPr (Zn+j) — pr(Zn+j+1)||
7=0
k—1 k—1
<CY Vtni; <C Aty

=]

.
Il
=]

j=

- > — CV%,
CVt,S Vi = 0.

IN

Thus, {pr(Z,)} is a Cauchy sequence and must have a limit ¢ € 9HY, which
is also the limit for {Z,}. Since ¢ is within finite Euclidean distance from
pr(Zy), it is finite and cannot coincide with the Denjoy—Wolff point infin-

ity.
Proof of Lemma 2.1. Consider the images of Z,, and Z,,+; under the au-
tomorphism in HY defined by

b (2,w) i= (2 — ilm z,, + |Jwy||? — 2(w, w,), w — wy),

which maps Z, to (t,,0). Denote hy(Zni1) = Zn = (Zn, W) = (& + i, Wy ).
h,, are called translations and they do not change the horoshperes centered
at infinity H (). We check this for the reader’s sake:
Re(z —ilmz, + |Jw,||* — 2(w,wy)) — lw — w,|?
=Rez + ||w,||? — 2Re{w, wy,) — |[|w — w,||?
=Rez + [wn|? — 2Re(w, wy) — [Jwl® + 2Re(w, wy) — [Jwn]|?
=Rez— ||w|?

The point (Z,,w,) must satisfy two conditions (see Figure 2). First,
dyn (Zn, Znt1) < a, which will take form

Zn—tn At |10, ||
24
24 il TRt S
Second, by Julia’s lemma (2.1)
(2.5) thi1=ReZ, — |0, || < cty

Using (2.4) and (2.5), we obtain
|20 — ta? + 4t, Re 2, < a?|Z, +tn|? — 4t || ||* + 4ty (ctn + || @0]1%),
Zp —tn|2 + 4ty Re 2, < a?|2, + tn|> + 4ct2,
n
120 4 tn]? < 2|2, + ta]? + 4ct?,
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FIGURE 2. The restriction on the point Z,, = hy,(Z,;1) and
its projection on the boundary of the Siegel domain. The
shaded area represents the intersection of the solutions of
(2.4) and (2.5).

412 < 4ct?
zn n — b)
1—a?
4ct?
Nn tn 2 ~n 2 < n M
[+ tal [l < T2
Thus
2t,,
_ 2tny/c
(2.8) |0 ]|? < &p < Citn,

with C; and Cs independent of n. Note that we must have dyn (cty,t,) <

dun (Zyn, (tn,0)) < a, otherwise the backward-iteration sequence will not exist.
It follows that 4¢ > 1 —a? and C; > 0.
Now
pr(Z,) = (ilmz, + ||Jw, %, w,)
and
pr(ZnJrl) = pr(h;1 (ény wn))
= (iIm(Z, + 2n) + 2Im(Wy,, wy,)

+ [[n, +wnuszn +w")’
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pr(Zn+1) —pr(Zy,) = (z Im Z,, + 2 Im(wy,, wy,)
(2.9) + H“jzt + wnH~2 - ||wn||27zz)n)2 )
= (zImzn + 2(Wn, wn) + ||y 7wn)7
[Pr(Zng1) = pr(Z0)||* = [iTm Z, + 2, wa) + [ 2] + |15
< (Gl + 2@l lfwn | + [[B2]12)* + |02
< (Coty + 2Ctn |l wn]| + Citn)? + City,
< Oy,
using (2.7), (2.8) and the facts that ¢, — 0 and assuming that ||w,| is bound-
ed.

Thus, it is enough to show now is that ||w,| < Cs. Note that w,; =
Wy, + Wy, Vn and thus

wnll < [ @n—1ll + [[@n—2| + -+ + [[@o || + [Jwol|
< VO (V-1 +Vth—2+ -+ Vo) + |Jwol|
<VCVE (Ve +Ven=2 4 4+ 1) + |lwo
< \/C'1\/5+
ST

Now we want to show that {Z,,} stays in the Koranyi region with vertex g.
Without loss of generality, take ¢ = 0. A Koranyi region with vertex 0 in
HY must be the image under the Cayley transform of a Koranyi region with
vertex (—1,0) in BY, that is, the set

o L@ ). (10)
{(’ S e <M}'

Since 1 <1+ ||C71(2,w)| < 2, it is enough to show that
|1 — <C_1(va)7(_1a0)>| < M

||w0|| = 03. 0

1 —[|C~ =z w)? 2
The left-hand side is
1+ 25 41z +1 20z 41
1— |t 2_ 4wz 24112 — [z — 12 —4[jw|2  4Rez —4|w|?’

1l |z+1]2
thus for Z,, = (2, w,) € HY we need

|2nl|2n +1]

e < M.
(Rezp — [[wnl?)

Since |z, + 1| > 1 and bounded near 0, and Rez, — ||w,|* = t,, it is suffi-
cient to show that |z,| < Ct,, for some constant C independent of n. Using
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Lemma 2.1, similarly to (2.3), we have

[pr(Zn)]| = [[pr(Zn) = af| = Jim [[pr(Zp) = pr(Zn 1)

SZHPY(ZHJ‘)* r(Zntji1)] SOZ tntsj S
j= j=0

Cvin

)
—4/C

s0 || pr(Zn)[1? = |Tm 2, + [Jwy |*[* + Jwn [|* < (5 \/) = Cyt,. Tt follows that
|wn||? < Cyt,. If there is a bound
(2.10) [Im z,, + [|wn ||?] = |25, — tn] < Cstn,

then

and Z,, must stay in the Koranyi region. It is enough to show (2.10).
Denote pry(Z,) =Imz, + ||w,||?, which is the first component of pr(Z,).
As in (2.9)
pry(Znt1) — pri(Zn) = ifn + HwWHZ + 2(Wy, wn)
and thus
P11 (Zint1) = Pr1(Za)| < 1G] + @01 + 2[|@n][[|wn|

< Coty + City + 24/ Crtn/Caty, = Cotyp,

|p1‘1(Zn) - O| = leH;O|pr1(ZTL) - prl(Zn+k)|

< Z‘prl(sz»k) —pry (Znshi1)]

o0 o0
<C6 Y tapk <Cs» Mty < Chty,

k=0 k=0
which proves (2.10).
Now we will show that Julia’s lemma (Theorem 1.5) is applicable to the
point g. Once again, assume that ¢ = (—1,0) in BY or ¢ =0 in H".

Z 2
b L@ 12,
Z—(-1,0) 1—IIZII noos 1—||Zn+1||
The latter liminf in HY will take form
» 2 12
lim inf Re 2n — Jlwn | [n + 2‘ = liminf
n—oo Rezny1 — [[wns1l? |20 +1 n—oo tp4q

It is enough to show that ¢,4; > Kt, for some constant K. Since d(Z,,
Znt1) < a, H(t,11) must intersect the pseudo-hyperbolic sphere (2.4), and
thus

tn - tn—i—l
tn + thrl -

9
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and it follows that

tn+1 2 tna

1+4+a

so Julia’s lemma (1.4) holds with finite multiplier

a< L a.
“1l-a

(2.11)

REMARK 2.2. As the referee pointed out, there is another way to show
that ¢ is a BRFP with finite multiplier a < i; the boundary dilatation

coefficient o at ¢ € B can be written as

1 -
5 loga = IIIZIlj){]lf [k']BN (0,2) — kg~ (O, f(Z))]

< liminf [kgn (0, Zn11) — kg~ (0, Zy,)]

n—0o0
and

[kBN (0, Zn+1) — kg (0, Zn)} < kpn (Zn, Zny1) < d,
where o’ = §log 7%, and (2.11) follows.

Now we will show that there is also a lower bound on a:

(2.12) a>1
c
where ¢ < 1.

Consider the image of 0 in BY and denote f(0) = (29, wp). Since 0 €
0H((1,0),1) (here H((1,0),1) is a horosphere centered at the Denjoy—Wolff
point (1,0) of radius 1), by Julia’s lemma applied to (1,0), f(0) € H((1,0),c¢),
where ¢ < 1. This horosphere is a Fuclidean ellipsoid, centered at (ﬁ,O),
whose restriction to the 1-dimensional subspace, generated by e; = (1,0) is a

disk of radius 17 (see [1], (2.2.22)). Thus,
1—¢c

1+c¢

Rezo >

In a similar way, by Julia’s lemma applied to ¢ = (—1,0), f(0) € H((—1,0), )
and

a—1
Rezp < ——
=TT
so we have
a—1_1-c
> )
a+1"1+c¢c
which is equivalent to ca > 1 and (2.12) follows. t

Proof of Theorem 1.8 (Attracting-elliptic case). Without loss of generality
assume 0 is the Denjoy—Wolff point. We will need the following result on the
growth of function f near the boundary of the ball:
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LEMMA 2.3. Let f be a self-map of the unit ball BY fizing zero, not unitary
on any slice. Fixro >0, define M(r) :=max ||f(rB™)|, r € [ro,1). Then there
exists ¢ = c(rg) <1 such that

1—-r
2.13 — < v 1).
(2.13) 1—M(r)_c r € [ro,1)
Proof. Assume the opposite: Ve <1 3z = z(c) with ||z|| > ro such that
Rl I
TGN

Construct the sequence z, 1= 2(“=1). Let z be a partial limit of {z,}. If
20 € BN, then f(z) € BY and
1 — |20l
1—|[f(zo)ll

which is a contradiction, since ||zg|| > 79 > 0 by construction. Thus, 2o € OBY
and we pick a subsequence z,, — zp. Then

>1 & -zl 21-[|fGo)] < [f(z0)] =20l

L= Gl _

- (2l L
i e ELNR e oy
Applying Julia’s lemma to the point zg € IBY, we obtain that Jwg € OB such
that VR >0 f(H(z0,R)) C H(wo, R), where H(z, R) is a horosphere centered
at z of radius R.
Pick R small enough such that 0 ¢ H(zg, R). Let £ be a point in H(zg, R),
closest to the origin. Since (&) € H(wg, R), we have || f(&)| > ||£]|| (the horo-
spheres have the same radius). Contradiction. g

Denote the distance to the boundary ¢, :=1—||Z,||. By Lemma 2.3, we
have

(2.14) tpirw < cFt, Vn, k>0,

where ¢:=c¢(||Zo||) as in Lemma 2.3.

Thus, t, < c"tp — 0 as n tends to infinity and the sequence {Z,, }22, must
tend to the boundary of the ball. Now denote ¢, the angle between Z,
and Z,41 seen from the origin (which is also the arc-length between radial
projections of Z,, and Z,; on the boundary of the ball—see Figure 3).

Because dgn (Zy, Zn+1) < a, Zp4+1 must be inside of the pseudo-hyperbolic
ball of radius a centered at Z,, which is the Euclidean ellipsoid centered

1—a? S [ 1-1Zn]2
at 7170‘2”Z,LH2Z” and largest semiaxis a =2 Z, 2 5O a8 Z,, tends to the
boundary,

(2.15) bn < C1(1~ [ Za])"* = C1 v/
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Zn+t1
| Zng1l

Ficure 3. Two consecutive points Z,, and Z,4+; and their
radial projections on the boundary of the ball.

Then the arc-length between H?H and H?L—::H does not exceed
k k k 1
D Ontg SC1Y Vi SC1VE D <O NS
§=0 §=0 §=0

which tends to 0 when n tends to infinity, so the sequence of projections must
converge to some point on the boundary, denote it . Thus the sequence Z,
must tend to g.

The next step is to show that Z,, stays in a Koranyi region centered at q.
Without loss of generality assume ¢ = (1,0) and denote Z,, = (z,,w,) € C x
CN~1. We need to show that

|1 — z,|
1= Zn]l

for some M > 1. By (2.14) and (2.15), the arc-length between (1,0) and the
projection of Z, on the boundary is bounded by

(2.17) D i <Ci Y\t < Coven.
j=n Jj=n

(2.16) <M

Let 6,, be the angle between Z,, and z, (i.e., the angle between Z,, and the
plane spanned by (1,0)). By (2.17), 6,, < Ca+/¢,,. Then

1—lzn| =1—||Z,]| cosb, =1 — cosb,, + cosb,, — || Z,]|| cosb,
<1-—cosb, +1—|Z,| <Cstp,
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2 -
since 1 — cosf,, = %" +0(03) as n — oo.
Since dp(zn,2zn+1) < dgv(Zp, Zn+1) < a and the pseudo—hyperbolic disk
centered at z, of radius a is a Euclidean disk with center w = ﬁﬁzn

‘Zﬂ‘

and radius r = ma

ro_alolml_ g,
_ .

| Arg 2n — Arg zp 41| & sin| Arg 2, — Arg 2| < [wl |zn| 1-a?

Now

oo oo
|Arg z,| = | Arg z, — Arg 1| < Z | Arg z — Arg zp11| < Z Cyuty, < Csty,
k=n k=n

and
11— z,)? = (Im2,,)® + (1 — Re z,,)? = |2, |*sin® Arg z,, + (1 — |2y, cosArgzn)2
<sin® Argz, + (1 — cos Argz, + 1 — \zn|)2 < Cgt?,

and (2.16) follows.
For Julia’s lemma to hold, we need to prove that

minf L= IFAI
hmmf
Zz—10) 1—|2Z|

Since {Z,}22, is a backward-iteration sequence tending to (1,0),

Z
liminf Hf( )l < liminf M
Z-0) 1—[Z]] = n=oe 1= Znsal’

and it is enough to show that the latter liminf is finite. Note that Z,,;1
must be in the (Euclidean) ellipsoid centered at %Z with radius
r= %a in the subspace generated by Z,, and R=a % in the
dimensions orthogonal to Z,. Thus the point W, closest to the boundary,
must have norm

HW||=¥||Z |4 202l (1 Zall + )2~ all Z])
a?||Zy||? —a?||Z, ||2 1— a2(|Z,|]2
_ Nzl +a
14 al|Zy||
and
[ Zall +a  (1—a)(1—|Z])
L= Zppa1]| 21— W] =1~ _
[ Znall =1 = [|W]] S T
Thus

L= 1Zall _ LtalZa]l _ 1ta
1 [Zopa] = 1-a ~1-a



BACKWARD ITERATION IN THE UNIT BALL 1585

14+a
l—a-

multiplier a > % is the direct consequence of the Lemma 2.3.
Note that the above results will hold for ¢ = ¢(]|Z,]|) Vn > 0, and since
|1 Z.]| — 1, for

and Julia’s lemma holds with multiplier a0 < The lower bound on the

c:= lim ¢(rg). 0

ro—1
3. Construction of special backward-iteration sequence

It was shown in the previous section that any backward-iteration sequence
with bounded hyperbolic step tend to a BRFP. Now we will show that any
isolated BRFP is a limit of a special backward-iteration sequence. This spe-
cial backward-iteration sequence will be a cornerstone in the construction of
conjugation near BRFP.

We will follow the idea, similar to that in one-dimensional case outlined
in [17]. Note that in one dimension BRFPs with multipliers bounded by the
same constant have to be isolated, as it follows from theorem of Cowen and
Pommerenke [11]. Here we will have to impose this as a hypothesis, since not
all BRFPs are isolated in higher dimensions (see Example 6.3).

LEMMA 3.1. Let f be an analytic self-map of B and (1,0) be a BRFP for
[ with multiplier 1 < a < o0, isolated from the other BRFP’s with multipli-
ers less than or equal to a. Then there exists a backward-iteration sequence
{Z,}5 tending to (1,0) such that
a—1

( +)sa a+1

In this and the following sections, we will need a geometric notion slightly
different from Koranyi regions:

DEFINITION 3.2. For X € 9BY, a curve o : [0,1) — BY such that o(t) — X
as t — 1 is called special if
o) —ox(®)]?
3.1 lim 12X,
) T o
and restricted if it is special and its orthogonal projection ox := (o, X)X is
non-tangential.

DEFINITION 3.3. We will say that f: BY — BY has restricted K-limit Y
at X € OBY if f(o(t)) — Y as t — 1 for any restricted curve o.

REMARK 3.4. Restricted K-limit is a weaker notion than K-limit: a func-
tion having K-limit has restricted K-limit, and a function having restricted
K-limit has non-tangential limit, see [1].

We will need the following result on the behavior of the radial and tangen-
tial components of f near the BRFP (1,0):
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LEMMA 3.5. Let f: BY — BN be analytic and (1,0) be a fized point for f
with multiplier o (in the sense of Julia’s lemma). Then the following functions
are bounded in every Koranyi region:

1 (/(2))
O ==

Z)—m Z))(1,0
@ Lnymon

where m(Z) = (Z,(1,0)). Moreover, the function (1) has restricted K -limit o
at (1,0), and the function (2) has restricted K-limit 0 at (1,0).

Proof. Apply Theorem 2.2.29(i) and (ii) from [1] to the boundary fixed
point (1,0). O

Proof of Lemma 3.1. Let D be a small enough (Euclidean) closed ball cen-
tered at (1,0) that does not contain the Denjoy—Wolff point of f or any other
BRFP of f. Let ay = (a* —1)/(a* + 1) and
LGl Oaf )

L—[lz|> — 1-a

H(ay) = {Z cBY .

that is, a horosphere whose intersection with the 1-dimensional subspace gen-
erated by e; = (1,0) is a disk with diameter [(ax,0),(1,0)]. Let ng be the
smallest integer such that H(an,) C D and ry = any4k. (We will identify
rr with (r4,0) € BY, that will cause no confusion.) Also let Hjy = H(ry),
J=0DNBY and 7, be the line segment connecting r and f(r).

For each k, the sequence {f,(rx)}. converges to the Denjoy—Wolff point
of f, hence eventually leaves D. So there exists a smallest integer ny such
that fp, (&) intersects J. By Julia’s lemma (Theorem 1.5), f(Hy41) C Hg,
so fj(v) cannot intersect J for j=1,2,...,k —1 and thus n; > k.

CrLaM. d(rg, f(r)) o

By Lemma 3.5,

i LG _
k—oc0 1-— Tk

and by the definition of multiplier
1-— )
(3.2) liming LS00
k—o00 1—7rp
By (1.6), the pseudo-hyperbolic distance d in B must satisfy the relation:
, (1= r2) (1= [ fr)?) (L +re) (14 [1f () ) =L
1—d(ry, f(r1)) = = 5
|1 —rkﬂ'l(f(rk)ﬂz ’1—T’k7l'1(f(7“k))

1—7‘k

Now

1—7’k7T1(f(Tk)) _ 1—rp+mp —Tkm(f(rk)) :1+rk1—7T1(f(7"k))

I—rg 1—rg 1—rg

— 1+a,
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and so 4
. 2 @
hkrggf(l —d*(re, f(r1))) = (1+a)?
or 1
liirisolipd(m,f(rk)) S Z; 1 ¢
We will need the following inequality for dj, := d(ry, f(rx)):
1— 14+d
. £l 1+di
1—rg 1—rpdy

In fact, this is a partial case of more general inequality:

CLAIM 3.6. For all Z,W € BY and d :=dg~ (Z,W)
1— W] < 1+d
1—|lz]| = 1-d||Z]

Proof. Let A be a closed hyperbolic ball centered at Z of (pseudo-hyperbol-

ic) radius d = dg~ (Z,W). This is a Euclidean ellipsoid, centered at %Z
I|Z]]

2
and a disk of radius @Wd’ when restricted to the subspace generated

by Z. Thus the point, which is closest to the origin must be in the subspace
generated by Z, and has modulus

@ 2P (2= dadiz]) 2] -d
1—d?||Z|]? 1—d?||Z|? =& 2] T d[Z]
Since W € A,
1Z]| - d 1+d
oWl - - =112
1—diz] ~ T=drzy 140

L— W] __1+d

1—|z| = 1-dl|lZ|l -
By taking limsup of both sides of (3.3),
1-— 1
e LIS _1a_
k—o0 1—rg 1-a
so this with (3.2) shows that limk_,oo%(::)” = a and limg_,o d(rg,
f(re)) = a.
The final steps in the construction are exactly the same as in proof of
Lemma 1.4 in [17]. O

LeMMA 3.7. If {Z,}52, is backward-iteration sequence, which tends to

e1 = (1,0) (BRFP with multiplier « > 1) and d(Zy,, Zn41) <a= Z—H, then its

image in the Siegel domain must satisfy the following properties:

(3.4) lim 26

n—oo 1y

:]_’
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Im 2z,

(3.5) lim 22 o,
2
(3.6) tim 1el” o
n—oo 1,
(3.7) lim o _ a,

where t, :=Rez, — |wy||?>. In particular, the sequence {Z,} is special, that
18,

L — Ly, 2
g 10~ Gl _
w1 [(Zser)]

Proof. By definition of multiplier

1—-||Z 1
liminf 120 >aq= +a.
T Zeml ~ ¢ T 1-a

Applying Claim 3.6 to Z,,, Zn4+1 and r, = d(Z,,, Zn+1), we have

1—[|Zy|| L+mr, 1+a
1= 1Znall = 1 =ral Zngall = 1= all Znall

Taking limsup of both sides,

A
— s
1- ||Zn+1 H
or, in Siegel domain,
128
— a’
thrl

so0 (3.7) is proved. Here we are going to use slightly different version of Cayley

transform:
1—2 2w
C_l bl :: b) b)
(z,w) <1 +z 1+ z>

so that BRFP (1,0) will be mapped to C(1,0) = (0,0).

Consider the images of two consecutive points Z,, and Z,y; under the
automorphism A, : (z,w) := (2 — ilmz, + ||w,|* — 2(w,w,),w — w,), s.t.
hn(Zy,) = (tn,0) and denote (Z,,W,) := hn(Zp41). hn does not change the
pseudo-hyperbolic distance in HY, so d((t,,0), (Z,,%,)) = d(Zpn, Zni1) < a,
which is

|2n - tn|2 + 4tn||ﬁ]n||2 g a2|én + tn|27
1Zn —tn? + 4, (Re 2, — thy1) < @?|Z, +ta %,

(1 — CL2> |2n =+ tn‘Q S 4tntn+la

2
< 4tn+1

S h-a)

Zn

—+1
tn+
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V<)

Taking limsup of both sides and using (3.7),

2 . Rez, 2 Imz,
= limsup +1| + ;

n— 00 tn n

Zn
—+1
s

n

lim sup

n—oo

Since Re 2, = t,p1 + [|W0n]|? > thet,
2

t Im3, | 1\°
limsup< UamS | +‘ “ )§(1+> ;
n— oo n tn o
1N\ I, | 1)
—+1) +limsup <(1+-—]).
(0% n—o00 n «
So,
Imz,
(3.8) 0,
which implies
Rez, 1
(3.9) 5,
tn a
and
Dnl? Rez, t
(3.10) lonl® _ ReZn _tasr o
tn tn tn
Now wy41 =Wy + Wy, Wyt = Wy + Zf éﬁ)nﬂ vk > 1.
k—1
[wn il = llwnll = > 41l
=0
0> [lwnl = ldngsll,
=0
lwall <> 0]

Jj=0

Since f»- — a > 1, pick ¢ such that a —e > 1, then for large enough n
tnt1
tni1 < atzs and t,4; < (at_ﬁ

Now by (3.10), Vé > 0 AN = N(9) s.t. ||w,|| <5/t for n > N

||wn||<25\/ "+]<6Z 3/2_55\/:7

where S is finite value of the infinite sum. So
2
leal?

n
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and
Rez, tn,+||wnl|?
= — 1.
tn tn

Similarly, because Im 2,11 = Im z,, + Im Z,, + 2Im(w,,, wy,), we have

|2Im<“~}n7wn>‘ < 2[J@n ||[[wnl,
and using (3.8), (3.10) and (3.6),

Im 2z,

— 0.

n

The condition (3.1) for (z,,w,) — (1,0) being special in BY is

[[wnl|®
lim 2l
n—oo 1 — |Zn|
or, in HY
AfJw, |2 )
. M+z,2 . [[wn]] _
lim — 5 = lim —— =
n—oo 1 _ 11—z, ’ n—oo Re Zn
142z,
But )
llwn |
1 ||u)’7l||2 _ t: =0
n—oo Rezn n—oo R‘;Zn
n

4. Conjugation at boundary repelling fixed point

The aim of this section is to solve equation (1.11) in BY, where 7 is an
automorphism of BY with the same dilatation coefficient at BRFP as f and
¢ : BN — BY is an analytic map with some regularity at BRFP. As in [17],
the conjugating map will be obtained via the sequence of iterates f,, composed
with appropriate automorphisms of BY. It will be convenient to build almost

the entire construction in HY with BRFP 0.
We will start with several technical statements.

Using the backward-iteration sequence (z,,w;,) — 0 as in Lemma 3.7 with
tn = Rez, — ||w,||?, define a sequence of automorphisms 7,, of HY as 7, :=

htod, 1, where
w) = (2 + |wa||® = iyn — 2(w, wn ), w — wy,),
h”(z,w) (2 + lwall® + iyn + 2w, wy), w + wy),

e = (5 )
On ( (tnz7 nw
Then 7,(1,0) = (zn,wn)

LEMMA 4.1. Let ni,(z,w) := (o*z,0*/?w) and 7, be defined as above. Then

(1) T,,:_,'}k 0T, — Nk, uniformly on compact subsets of HY , as n tends to infinity,
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(2) Tn__&l on~tor,(z,w) — (z,w), uniformly on compact sets of HY, as n
tends to infinity.
Proof. Using definition of 7,, and properties (3.4), (3.5), (3.6) and (3.7),

Tn_+1k 0 Ty (2,W) = Gy © hpyr o byt o6 H(z,w)

" 2
:( LI [|wn | 4+ Yn
btk Itk btk
7 2
192 \/_"<w,wn) + [[wn s _ jYntk
trtk bntk btk
2
- <\/t_nw+wnawn+k>>
tn+k

Vipw + -
n
7—n:El ° 77_1 o7y (2,w) = 6pt10hyppr10 77_1 o hﬁl o 5;1(27“})

_ (t ln 2+ ||wn||2 . Yn

+1
N1 tpp1c tpp1c

\/tn <w w >+ ||wn+1||2 *iyn+1
tppra " In+1 tnt1
2
- t 41 <\/Ew +wn7wn+1>a
n
Viaw +w,  wng (zw)
Vint1 \/a Vint1 n—00 T

CLAM 4.2. 7,(z,w) —— 0 and stays in a Koranyi region uniformly on

n—oo

+2

O

compact sets of HY.
Proof.
Tn(z,w) = (tnz + o, ||” + iyn + 2(VEw, w,), VEw + wy,).
Condition for (z,w) being in a Koranyi region with vertex 0 in H”:

2]

—— <M
Rez — |Jw|?

For 7(z,w):

|tz + lwnll® + iyn + 2(V/Tnw, wy)|
ta Rez + [[wn]|2 + 2/, Re{w, wy) — || vEw + wp |2

|z 4 1nll gty oy, )| .

= ReZJF%JFQR%w’y_:_)_ [+ \’L/U%HQ n—oo Rez— ||w]|?
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The limit is bounded on compact subsets of HY, so 7,,(z,w) belong to some
Koranyi region. U

CLAIM 4.3. Let ¢p:= fon~' in IB%N. Then

fnp Lo I0)1

=1
z—(1,0) 1-— ||Z||

and Lemma 3.5 is applicable.

Proof.
1— 1— -1 1— -1
timint L IOCN g LW o @y, 1=l (2]
=0 1=zl =00 1=ln=t @) =—00 1]z
_ 1— -1 1
—timing L@ I _ Ly
=100 1—|z|| 2=@0 1—]z] !
Since n~! is an automorphism that fixes (1,0) and
1—lIn-1 1—lln-1 2 1—||C7 (2,
el o BN O G ol ﬂl\
z—(1,00  1—z] z—(1,00  1—1]z] (zw)—(0,0) 1—[|IC71(z,w)|
|- [lzzfa? _ _alu)?
. 1+z/a all+z/al?
T ea)00) 1 [1=2|? _ Alwl?
’ ’ - 1+z| - [1+2]2
lim Rez anHZ ‘1 +Z|2 1
T w)—(0,0) Rez — w2 [1+2] o O

Now consider a normal family {f, o 7, o p1}, where p;(z,w) = (z,0).

CramM 4.4. The sequence T, o p1(z,w) — 0 is restricted uniformly on com-
pact subsets of HY.

Proof. Note that 7, o p1(z,w) = (tnz + ||wn||® + Y, w)-
Following Definition 3.2, we need to show that 7, o p;(z,w) is special in
HY:
llwal?
] e

im = lim ——— =0,
n—oo Re(t,z + ||wp||2 +iyn) n—c Rez+ IIIl;;LI\2

and that the projection on the first component is non-tangential, that is, that
[tnz + lwn|” + iyn|
Re(tnz + [|wnl? + iyn)
is bounded from above, but

. lwnll® | yn
i Atz llonl® tiga et EEE AR
n—oo Re(tnz + ||wn||2 + Zyn) n—  Rez+ M Rez’

so it is bounded uniformly on compact subsets of HY. O
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-1

Thus, Lemma 3.5 is applicable to the function ¢ = fon™" and the sequence

Tn 0 p1(2,w), which gives us the following lemma.
LEMMA 4.5.
nh_)rr;o d(’Tn (p1 (z, w)) , qb(Tn (p1 (z, w)))) =0.

Proof. Denote (un,vn) := Tn(2,0) and (U, 0p) := ¢(7n(2,0)). Then the
restricted K-limits (1) and (2) in Lemma 3.5 when translated to H" become

~ ~ 12
im 1 and  1m L22lC g
n—00 Uy, n—oo Uy
Since lim, .o = = 2,
n
~ 2
lim Un _ z and lim M =0.

n—oo t, n—oo t,

~ ~ 4(Reun Unp, Rey, Un
Now d((wn,vn), (Umvn))z =1- ( [tin Jun[;(@n Un)\H . )

i ARewn — ) (Reity — [20])

n—0o0 [Ty, + U, — 2(0p, V)|

4(Re 1th anll )(Re Gy Hftz )

%+%_2< Un, 'un>

4(Rez—0)(Rez —0)
|z +z+0?

= lim

n—oo

and

Proof of Theorem 1.15. Consider the normal family {f, o7, op;} and let
1 be one of its normal limits. Then, by Schwarz’s lemma
(4'1) d(fnoTn(Z70)7fn+1OTnJrl(ZvO))
< d(7n(2,0), f © Tny1(2,0))
< d(Tn(Za 0)7 f © 7771 © Tn(za 0)) + d( lo Tn(z O) Tn+1(z 0))
The first summand in (4.1) tends to zero by Lemma 4.5, and the second does
by part (2) of Lemma 4.1, so
d(fn © Tn('z?O)» fnJrl © Tn+1(zvo)) —0

as n tends to infinity. It follows that if a subsequence { f,,, o7, op1} converges
uniformly on compact subsets of HY to 1, then so does the subsequence
{fnp+10Tnp+10p1}. By construction

fnkJrl O Tn,+1°P1 :fofnk O Tn,+1°DP1,

where the left-hand side tends to 1, and it is enough to show that f,,, o7, 410
p1 — Y on~! to prove (1.11). Note that ! and p; are linear functions with
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diagonal matrices and therefore commute, so f,, o 7,, on top; —on~!

and it is enough to show that

d(f"k O Tny, onil Opl(Z)7fnk O Tnp+1 Opl(Z)) — 0.
Applying Schwarz’s lemma again,
d(fnk O Tpy © 77_1 Opl(Z)7fnk O Tny+1°P1 (Z))

< d(Tnk 077_1(2 0) Tnk+1(z70))

= d( nk+1 O Tp, 0N 1(270)7 (Z’O)) —0
by statement (1) of Lemma 4.1, so we have

Y =foon,

which is equivalent to (1.11).

All we are left to show is that ¢ fixes 0. Note that the image of (£ k+1,0)

under the Cayley transform is a = (a~%,0) and that p;(aj) = ax. Then by
definition of the sequence Z,, and 7, and Schwarz’s lemma

d(fn © Tn(ak)azk) = d(fn o Tn(ak) fn(Zn—i-k)) < d(aka Tn 1o Tn+k(1 0))
= d(n; ' (1,0),7;, " 0 T4k (1,0)) = 0
for any k=1,2,... as n tends to infinity, by (1) of Lemma 4.1. Thus, we have

Y(ag) = Zg.

Define the sequence
(4.2) gn(2) =1, o on, N (2).

Then g,((1,0)) = (170) and g,(a1) = Tn_l(TnJrl(lvO)) - 77_1(170) =ap, asn
tends to infinity. Hence, any normal limit of g, fixes (1,0) and a;, and,
by Corollary 2.2.15 from [1], must fix the entire subspace, containing (1,0)
and ajp, i.e. the set {(z,0) € HV}. Note that v (z,w) =1(z,0) and by (4.2)
In(2,w) = gn(2,0), s0 g — p1.

Consider a straight line segment connecting (1,0) and (0,0). Obviously it
is special curve and by Theorem 2.2.25 from [1] ¢ will have restricted K-limit
0 at 0 if

(4.3) tlirr(l)w(t, 0) =0.
By (4.2), ¥ =7, 0 g, o m,. Consider a straight line segment connecting

(a=+1) 0) to (a™™,0). Tt will be mapped by 7,, to a segment [(a~*,0), (1,0)].
Pick a point (¢,0) on this segment. Then

72 (9 (& O) || < [l (90 (2,0)) = 78, 0)| + [|7a (¢, O)]| = 0.

since gy, (¢,0) — (¢,0), 7, (¢,0) — 0 uniformly in ¢ and 7, is bounded, and (4.3)
follows.
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Now we can show that {f,, o7, op;} actually converges to ¢». By Schwarz’s
lemma, (1.11) and (4.2)

d(fnoTnopl(sz)vw(Z7w)) :d fnoTnOpl

5. Conjugation for expandable maps

In this section, we will provide conjugation for the maps with some regu-
larity at the BRFP. This class of maps was introduced in [5]:

DEFINITION 5.1. Let f : HY — HY be holomorphic. We will call the map f
expandable at 0 (write f € E4x(0)), if f has the following expansion near 0:

flz,w) = (az+0(|z\),Aw—|—0(|z|1/2)).
In particular, 0 is a fixed point of f.

By applying part (1) of Lemma 3.5 to any special sequence (z,,w,) — 0,
we obtain

lim @z + ollZn]) o(lzn)) =aq,
n— oo Zn

that is, a must be the dilation coefficient of f at 0.

REMARK 5.2. Note that A cannot have eigenvalues |a; j|* > «, because
otherwise f(HY) ¢ HY.

Proof of Theorem 1.16. The construction is essentially the same as in Sec-
tion 4. We modify the definition of 7, as follows: 7, :=Q "o h,' 0§, 1,
where (2 is as in the statement of Theorem 1.16. The following two limits are
generalization of Lemma 4.1:

Tnjk o Th(z,w)
= 0psk 0o Q¥ oh Lo 1 (z,w)

n

t 2
_ < LI l|lws|| 4+ Yn
tn+k tn+k tn+k

N

||w7l+k||2 _ Yn+k

+ 2 W, Wn,) +
tnik {w, wn) Ttk btk
2
- <Qk(\/tnw + wn),wn+k>,
tn—i—k

Qk(\/t_nw +wy) — Wnyk
tn+k:

> — (akz,Qkak/2w) =:ni(z,w).
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(Here 7y, differs from previous 7, by rotation by QF.)

-1 —1 1 —1 — —1 -1
Tn-}-lon OTn(Zaw):6n+lohn+IOQn+ on o) nohn O(Sn (Z,’LU)

_ ( n ||wn||2 Yn
tn+1a tn+1a thrla
+2 \/E <U) w >+ ||w7l+1||2 _,L-y’fl-‘rl
tpproet " tny1 bpt1
2
- £ 1<\/t_nw+wn7wn+1>,
n+

Viaw +wn, Wi )
V tn-i—lf vV n+1

Now ¢(z,w):= fon ' (z,w) = fla 'z, Qa1 2w) = (24 0(]z|), & f Ay +
o(|2]1/2)).

Let pr(z,w) = (z,w1,...,wr,0,...,0), that is, projection on the first 1 + L
dimensions.

Denote (ty,v,) :=Tn(pr(z,w)) and (U, 0y ) := ¢(7n (pr(z,w))). Then w,, =
tnz + |l wnll? + iyn + 2(v/Enpr(w), w,) and v, = Q" (\/t,pr(w) +wy,). Since

244 2
lim Un _ lim tnz + [lwall* + iyn + <\/EPL(w)vwn> _

n—oo t, n—o0 tn

o(Jun|) = o(t,) and o|u,|'/?) = o(v/1,), and, consequently, i, = u, + o(t,)
and

)

%vn +o(Vt,) = @ AV (nJ\r/l;A\/ran(w + LI (:;;)A
= Q7 "Vitapr(w) + o(Vin).
The pseudo-hyperbolic distance in HY is
4(Reun — [lvall*) (Retin — [|0a]1%)
T, + U, — 2(Tpy v )2 '

wy, + o(Vtn)

Uy, =

d* ((un,vn), (i, n)) =1 —

and because
A(Reun — [[vnl*) (Re din — [|54]1%)

A G T T — 200m, o)
— lim (Re i — Loal) (Re i 4+ o) — [|Qnpy (w) + 272 |°)
_n—>oo Un o o Un 2
|Re; o) — (O~ "po() Gha) ta)|

_ (Rez — [lpr(w)|*)(Rez — |lpr(w)|[*)
[Rez — (Q"pr(w), 2="pr(w))[?

d?((un,vn), (i, D)) — 0, that is, conclusion analogous to the statement of
Lemma 4.5 holds.

:17
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Now define ¢ as one of the normal limits of {f, o7, opr}. The above
computations shows that if f,,, o7, opr converges to 1, then f,, +107,,+10pL
also converges to . It is enough to show that f,, o7, 11 0pr converges to

Y o~ uniformly on compact subsets of H". Note that 7 opr, =pr on~ 1.
Because

d(fnk O Tny © 77_1 OpL(Zaw)vfnk O Tng+1 OpL(Z7w))
= d(Tn_kl_i_l O Tny, © 77_1 OpL(va)apL(Za w)) —0,

n—oo

lim f,, o Th,+10pL(z,w)

n—oo

= lim fu, 070, o0 opr(z,w) =9 on (2,w),

n—oo

and (1.11) holds.
By the same reasoning as in proof of Theorem 1.15, v fixes 0 in the sense
of restricted K-limits. (|

REMARK 5.3. Note that in the case when eigenvalues of A are equal to v/,
f will be conjugated to same automorphism 7 as in Theorem 1.15, but the
intertwining map 1 will be different (its image needs not be one-dimensional).

REMARK 5.4. Consider the hyperbolic map f : HY — HY with the Denjoy—
Wolff point infinity and BRFP 0 with multiplier 1 < a < o0: f(z,w) = (az,0).
Clearly, the image of f is one-dimensional and from (1.11) we have that
image of ¢ must be one-dimensional, so the result of Theorem 1.15 can-
not be improved in general. For less trivial example, one may consider
f(z,w) = (az, fw) with 0 < |B]?> < a. Now the image of f has dimension
N, but

) 5 (6)

is one-dimensional section of HY and the range of the intertwining map 1 is
also one-dimensional.

6. Examples and open questions

6.1. Examples. In the beginning of this section, we will describe all qua-
dratic polynomials that map the two-dimensional Siegel domain

H? := {(z,w) € C*|Rez > |w|*}

into itself while fixing zero, and completely characterize their dynamics. Some
of these polynomials happen to have non-isolated BRFPs (see Example 6.3).

CLAIM 6.1. A quadratic polynomial f : C2 — C? that fizes zero maps H?
into H? if and only if it is of the form f(z,w) = (Az+ Bw?, Cw) with A—|B| >
IC2.
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Proof. Consider the general form f(z,w) = (f1(z,w), f2(z,w)) = (az+bw+
cz? +dzw+ew?, Az+ Bw+ Cz? 4+ Dzw+ Ew?). First, we will show that most
coefficients must be 0.

Since Re f1(z,w) > |fa(z,w)|> > 0, then Re f1(2,0) = Re(az + cz?) > 0 Vz
such that Rez > 0. When z — 0, az + cz? ~az, so a > 0. Now Re f1(z,0) =
|z|(acos(Arg z) 4 |c||z| cos(2 Arg z + Argc)), we can choose Argz such that
cos(2Argz + Argc) <0 and |z| large enough so Re f1(z,0) <0 unless |¢| =0,
so ¢ must be 0.

Thus f(2,0) = (az, Az + C2?), and we must have a|z| cos(Argz) > |z|?|A +
Cz|? or acos(Arg z) > |z||A+Cz|?%. The right-hand side goes to oo as |z| — oo
unless C =A=0.

Thus, f must be of the form f(z,w) = (az + bw + dzw + ew?, Bw + Dzw +
Ew?). Consider the set {(t,1) € C?[t > 1} CH?. f(t,1)=(at+dt+b+e, B+
E + Dt) and Re(at +dt +b+e) < |B + E + Dt|? for large enough ¢ unless
D =0.

Now consider the set {(t? +¢,t) € C?|t >0} C H2. Re f1(t* +¢,t) < a(t* +
€) + [b|t + |d|(t* + €)t + |e|t? < | Bt + Et?|? for large enough t unless £ = 0.

To show that d =0, consider {(z,w) € C?|z =>*¢ |w| =¢t,t > 1} C H2.
Then on this set Re f1(2,w) < at?*t= + |b|t + |e|t? + |d[t3+¢ cos(Argd + Argw).
We can choose Argw such that cos(Argd + Argw) < 0 and ¢ large enough to
make Re f1(z,w) <0, unless d = 0.

The last part is to show that b= 0. Consider

{(z,w) €C?lz=1""%,|Jw|=t,1 >t >0} CH>.

Then on this set Re f1(z,w) < at?>=¢ + |b|t cos(Argb + Argw) + |e|t?. We can
choose Argw such that cos(Argb+ Argw) < 0 and ¢ close enough to 0 such
that Re f1(z,w) < 0 unless b=0.

Thus, f has only three non-zero terms, and (by changing notations) the
function must have form f(z,w) = (Az + Bw? Cw). If A—|B|>|C|?, then
Re(Az+ Bw?) > ARez — |Bl|lw|? > (A — | B|)|w|? > |C|?|w|? on H? and hence
f(H?) CH2. If A—|B|<|C|? we can choose Argw such that cos(Arg B +
2Argw) = —1 and Rez = |w|* + §|w|?, where e = |C|* — A+ |B| > 0, and then
Re(Az + Bw?) = ARez + |B||w|? cos(Arg B + 2 Argw) = ARez — | B||w|? =
(A= |B| +e¢)|w|*=|C|?|w|?, thus f(H?)Z H2. O

CLAIM 6.2.

(1) Aside from the trivial cases A =0 (must be zero map, because then B =
C =0) and C =0 (one-dimensional projection) f(z,w)= (Az+ Bw?, Cw)
has well-defined inverse on H?

-1 _(z_ B »w
/ (Z’w)<A AC?“”C)

(though its image may be outside of the Siegel domain).
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(2) nth iterate of f has the form

on n A" — CQn 2 m
Proof. (1) is obvious. (2) can be shown by induction. O

Now we will find fixed points and classify the dynamical behavior of poly-
nomials based on them.

Cases C' =0 (projection on the first dimension) and B =0 (linear map)
are trivial. So assume B # 0 and C # 0. To find the set of finite fixed points
(either inner or boundary), we need to solve

Az + Buw? =z,
Cw=w.

If C=1, we can assume A > 1 (otherwise B =0 and the map is identity).

w

Then there are solutions (—ﬁ—i,w). Since

Buw?® o _ [Bllwl 2 |B[+1-4
_ — < — <
Re( _1> lw]® < — |w] — |w]® <0,

any solution must be on the boundary of H? and non-zero solutions exist
ifft A=|B|+ 1. In this case, there are infinitely many fixed points on the
boundary (see Example 6.3 below).

If C'# 1, then non-zero solutions exist iff A =1 and they have form (z,0).
Thus we have interior fixed points.

If C'#1 and A # 1, then there are no fixed points inside of the domain and
only two fixed points on the boundary (zero and infinity). One of them must
be the Denjoy—Wolff point and the other BRFP.

The dilatation coefficient at (0,0) is

Re(Az + Bw?) — |C]?|wl|?

~ fiminf
‘T cw—(00) Rez — |w[?

... ARez —|B|w|* — |C]*|w]?
> liminf

(z,w)—(0,0) Rez — |w]|?

> i ARez — Ajw|?

11m 1n —_—
T (zw)—(0,00) Rez—|wl|?
=A

and value A attained for 2=t — 0 and w =0, so ¢ = A.

Thus if A <1 then zero is the Denjoy—Wolff point of f and this is hyperbolic
case c= A< 1. If A>1 then (0,0) is the BRFP with dilatation coefficient
A >1 and infinity must be the Denjoy—Wolff point. The dilatation coefficient
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at infinity
.., Re(Az + Bw?) — |C]*|w|? |2+ 12
c= liminf
(z,w)—00 Rez — |’LU|2 ‘AZ + Bw? + 1|2
A 112 1
< lim Ret |t+1]

St JAt+12 A
thus ¢ < % < 1 and this is also hyperbolic case.
EXAMPLE 6.3 (Example of a quadratic function with non-isolated BRFP).
Consider the function f(z,w) := (22 +w? w). Then f°"(z,w) = (2"z + (2" —
1)w?,w), the Denjoy—Wolff point is infinity and this is the hyperbolic case.
The curve {(r?,ir)|r € R} is clearly the set of fixed points on the boundary.
Any of those points can be mapped to (0,0) by translation
he(z,w) = (2 +r® + 2irw, w — ir)
with
hyH(z,w) = (2 +r® = 2irw, w + ir).
Then
hyo foh ' (z,w) =h,o f(z+1*—2irw,w+ ir)
= h,«(22+r2 — 2irw+w2,w—|—ir) = (22—|—w2,w),
that is, the behavior of the function in any of those points is the same as in
(0,0).
The dilatation coefficient at zero is
Re(2 2) — |wl|? R Re(w?
c= liminf o2z +w’) — Jul =1+ liminf Le(w)

=2.
(2,w)—(0,0) Rez — |w]|? (zw)—(0,00 Rez —|w|?

Thus, we have a set of BRFP’s on the boundary with the same dilatation
coefficient, neither of them is isolated.

REMARK 6.4. Though (0,0) is non-isolated BRFP for f(z,w):= (2z +
w?,w), the statement of Lemma 3.1 still holds in this case. Z, = (2%,0)
is clearly an example of backward-iteration sequence with step d = % Conse-

quently, it is still possible to construct a conjugation as in Theorem 1.15.

Now we will describe another class of self-maps of H?Z, the construction of
these will be based on a function of one-dimensional half-plane H.

EXAMPLE 6.5. Let ¢ : H — H be a holomorphic function of right-hand side
half-plane, of hyperbolic or parabolic type, with the Denjoy—Wolff point infin-
ity. Define a function f on H? as f(z,w) := (¢(z —w?) +w?,w). This function
is well-defined since V(z,w) € H? Re(z — w?) > Rez — |w|? > 0. Moreover, by
Julia’s lemma in H, Re ¢(z — w?) > Re(z —w?) and thus Re(¢(z — w?) +w?) >
Rez > |w|?, and the function f maps H? into itself.
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CLAIM 6.6. Infinity is the Denjoy—Wolff point for f and f has the same
type and same multiplier at infinity as ¢. Moreover, if ¢ has a BRFP ygi € OH
then f has a 1-dimensional real submanifold {(yoi +t%,t)|t € R} of BRFPs.

Proof. Tterates of f have a form f°"(z,w) = (¢°"(z — w?) + w?,w) and
clearly the Denjoy—Wolff point is infinity. Assume ¢ has multiplier ¢; <1 at
infinity, then f has multiplier
2

.. . Re(p(z —w?) +w?) — |w|? z+1
¢ = liminf
(z,w)—o0 Rez — |w|2 ¢(z—w2)+w2+1
2
< liminf Reg(z)| z+1 =c.
z—o0  Rez |¢(2)+1
Since f(z,0) = (¢(#),0) and using Julia’s lemma (2.1), we have
1 R 1
Re¢(z) > —Rez or M >- VzeH,
c Rez c
and, taking limit of both sides,
1 1
— >
C1 C

Thus ¢; = ¢, the multipliers coincide and therefore functions f and ¢ are of
the same type (either both hyperbolic or both parabolic).

Now f(yoi+12,t) = (¢(yoi) +12,t) = (yoi +12,t) and (yoi +t2,t) is a BRFP
for f VteR. O

6.2. Open questions.

6.2.1. The dimension of the stable set. The stable set S at the BRFP ¢ is
defined as the union of all backward-iteration sequences with bounded pseudo-
hyperbolic step that tend to ¢. In one dimension, & =(H). It is important
to understand the properties of the stable set in N dimensions, because it
may help to find the “best possible” intertwining map, i.e. the intertwining
map whose image has the largest dimension.

6.2.2. Non-isolated fized points and necessary conditions for conjugation at
BRFP. As we can see from Remark 6.4, the condition on the BRFP to be
isolated is sufficient, but not necessary. It is still not known if there are
any BRFP for which the conjugation construction does not work. One needs
to prove a result, similar to Lemma 3.1 for non-isolated BRFP or to find
necessary conditions on BRFP so that the conjugation construction will work.

6.2.3. Convergence of backward-iteration sequences in parabolic case. Theo-
rem 1.8 generalizes the one-dimensional Theorem 1.3 only in hyperbolic and
attracting-elliptic cases. It is still not known whether backward-iteration se-
quences with bounded step always converge for parabolic maps in higher di-
mensions.
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