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BACKWARD ITERATION IN THE UNIT BALL

OLENA OSTAPYUK

Abstract. We will consider iteration of an analytic self-map
f of the unit ball in C

N . Many facts were established about

such dynamics in the 1-dimensional case (i.e., for self-maps of

the unit disk), and we will generalize some of them in higher

dimensions. In particular, in the case when f is hyperbolic or

elliptic, it will be shown that backward-iteration sequences with

bounded hyperbolic step converge to a point on the boundary.

These points will be called boundary repelling fixed points and

will possess several nice properties. At each isolated boundary

repelling fixed point, we will also construct a (semi) conjugation

of f to an automorphism via an analytic intertwining map. We
will finish with some new examples.

1. Introduction

1.1. One-dimensional case.

1.1.1. Forward iteration. Let f be an analytic self-map of the unit disk D.
Denote fn = f ◦n and consider the sequence of forward iterates zn = fn(z0).
By Schwarz’s lemma, f is a contraction of the pseudo-hyperbolic metric, so
the sequence d(zn, zn+1) is decreasing, where

d(z,w) :=
∣∣∣∣ z − w

1 − wz

∣∣∣∣ ∀z,w ∈ D.

Theorem 1.1 (Denjoy–Wolff). If f is not an elliptic automorphism, then
there exists a unique point p ∈ D (called the Denjoy–Wolff point of f ) such
that the sequence of iterates {fn} converges to p uniformly on compact subsets
of D.
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Figure 1. Julia’s lemma at the Denjoy–Wolff point p ∈ ∂D.

Consider first the case p ∈ ∂D. It can be shown that f(p) = p and f ′(p) =
c ∈ (0,1] in the sense of non-tangential limits, and the point p can thus be
called “attracting”. More geometrically, Julia’s lemma holds for the point p,
that is,

∀R > 0 f
(
H(p,R)

)
⊆ H(p, cR),(1.1)

where H(p,R) is a horocycle at p ∈ ∂D of radius R (see Figure 1),

H(p,R) :=
{

z ∈ D :
|p − z|2
1 − |z|2 < R

}
.

Here c = f ′(p) is the smallest c such that (1.1) holds. We will call it the
multiplier or the dilatation coefficient and we will distinguish the hyperbolic
(c < 1) and parabolic (c = 1) cases.

In the hyperbolic case, Valiron [22] showed that there is an analytic map
ψ : D → H (where H is the right half-plane) with some regularity properties,
which solves the Schröder equation:

ψ ◦ f =
1
c
ψ,(1.2)

and so ψ conjugates f to multiplication in H.
In the parabolic case, f can be conjugated to a shift in a half-plane or in the

whole plane, as proved by Pommerenke [20], and Baker and Pommerenke [2].
If the Denjoy–Wolff point p is in D, the function f is said to be elliptic and

the multiplier c = f ′(p) satisfies |c| < 1, unless f is an elliptic automorphism.
Conjugations for such maps were found by Koenigs [14] and Böttcher [4].

Conjugation to a linear-fractional transformation in all cases simultane-
ously was shown by Cowen in [9].

The question of uniqueness of the intertwining map has also been explored
and answered; in the elliptic case in [14], in the hyperbolic case by Bracci and
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Poggi-Corradini in [7], in the parabolic case by Poggi-Corradini in [19] and
by Contreras, Dı́az-Madrigal and Pommerenke in [8].

1.1.2. Backward iteration.

Definition 1.2. We will call a sequence of points {zn} ∞
n=0 a backward-

iteration sequence for f if f(zn+1) = zn for n = 0,1,2, . . . .

In general, such sequences may not exist. Note that in the backward iter-
ation case the sequence d(zn, zn+1) is increasing, so we will impose an upper
bound on the pseudo-hyperbolic step:

d(zn, zn+1) ≤ a ∀n(1.3)

for some fixed a < 1.
This condition is non-trivial, for an example of a map that admits a

backward-iteration sequence with unbounded steps, see Section 2 of [18].
A backward-iteration sequence satisfying (1.3) must converge to a point on

the boundary of D:

Theorem 1.3 (Poggi-Corradini [16]). Suppose f is an analytic map with
f(D) ⊆ D (and not an elliptic automorphism). Let {zn} ∞

n=0 be a backward-
iteration sequence for the function f with bounded pseudo-hyperbolic steps
dn = d(zn, zn+1) ↑ a < 1. Then the following hold:
(1) There is a point q ∈ ∂D such that zn → q as n tends to infinity, and q is

a fixed point for f with a well-defined multiplier f ′(q) = α < ∞.
(2) When q 
= p, where p is the Denjoy–Wolff point, then α > 1, so we can

call q a boundary repelling fixed point. If q = p, then f is necessarily of
parabolic type.

(3) When q 
= p, then the sequence zn tends to q along a non-tangential di-
rection.

(4) When q = p, then zn tends to q tangentially.

In this case, Julia’s lemma holds for the point q with multiplier α > 1:

∀R > 0 f
(
H(q,R)

)
⊆ H(q,αR),(1.4)

where α is the smallest number such that this holds.
For backward iteration, the following conjugation result was obtained

in [17].

Theorem 1.4 (Poggi-Corradini). Suppose f is an analytic self-map of the
unit disc D and 1 is a boundary repelling fixed point for f with multiplier
1 < α < ∞. Let a = (α − 1)/(α + 1) and η(z) = (z − a)/(1 − az). Then there
is an analytic map ψ of D with ψ(D) ⊆ D, which has non-tangential limit 1
at 1, such that

ψ ◦ η(z) = f ◦ ψ(z)(1.5)

for all z ∈ D.



1572 O. OSTAPYUK

1.2. Unit ball in C
N .

1.2.1. Preliminaries. Consider the N -dimensional unit ball

B
N =

{
Z ∈ C

N : ‖Z‖ < 1
}
,

where the inner product and the norm are defined as

〈Z,W 〉 =
N∑

j=1

ZjWj and ‖Z‖2 = 〈Z,Z〉.

Schwarz’s lemma still holds for a self-map f of the unit ball, i.e. f must be
a contraction in the Bergmann metric kBN (Corollary 2.2.18 from [1]). For
simplicity of computations, we will use the pseudo-hyperbolic metric dBN in
B

N , which is related to the Bergmann metric by

dBN (Z,W ) = tanh
(
kBN (Z,W )

)
∀Z,W ∈ B

N .

The pseudo-hyperbolic metric satisfies dBN (Z,0) = ‖Z‖ and is preserved by
every automorphism of B

N , thus one can derive that

d2
BN (Z,W ) = 1 − (1 − ‖Z‖2)(1 − ‖W ‖2)

|1 − 〈Z,W 〉|2 ∀Z,W ∈ B
N .(1.6)

We also have the following generalization of Julia’s lemma:

Theorem 1.5 (Theorem 2.2.21 from [1]). Let : B
N → BN be a holomorphic

map and take X ∈ ∂B
N such that

lim inf
Z→X

1 − ‖f(Z)‖
1 − ‖Z‖ = α < ∞.(1.7)

Then there exists a unique Y ∈ ∂B
N such that

∀R > 0 f
(
H(X,R)

)
⊆ H(Y,αR),

where H(X,R) is a horosphere (the N-dimensional generalization of a horo-
cycle), defined as

H(X,R) :=
{

Z ∈ B
N :

|1 − 〈Z,X〉 |2
1 − ‖Z‖2

< R

}
.

And a version of the Denjoy–Wolff theorem also holds.

Theorem 1.6 (Hervé [12], MacCluer [15]). Let f : B
N → B

N be a holo-
morphic map without fixed points in BN . Then the sequence of iterates {fn}
converges uniformly on compact subsets of B

N to the constant map Z �→ p
for a (unique) point p ∈ ∂B

N (called the Denjoy–Wolff point of f ); and the
number

c := lim inf
Z→p

1 − ‖f(Z)‖
1 − ‖Z‖ ∈ (0,1](1.8)

is called the multiplier or the boundary dilatation coefficient of f at p.
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The map f is called hyperbolic if c < 1 and parabolic if c = 1.
Unlike in the one-dimensional case, there may be many fixed points inside

the unit ball B
N . Even if the fixed point is unique, forward iterates need not

converge to it (consider rotations). We will call a function f unitary on a
slice if there exist ζ and η in ∂B

N with f(λζ) = λη for all λ ∈ D. Functions
that are not unitary on any slice are precisely those for which strict inequality
occurs in the multidimensional Schwarz lemma and for them forward iterates
converge to the (unique) point 0 (see [10]). Note that even if function f has
more than one fixed point, the sequence of forward iterates may still converge,
see [1].

Definition 1.7. We will call a self-map of the unit ball f attracting-elliptic,
if it has a unique fixed point inside B

N and it is conjugate via an automorphism
to a self-map fixing zero, which is not unitary on any slice.

In the rest of the paper, we will consider only self-maps of the ball that are
attracting-elliptic, hyperbolic or parabolic.

Sometimes it will be more convenient to use the Siegel domain:

H
N :=

{
(z,w) ∈ C × C

N −1 : Rez > ‖w‖2
}
,

which is biholomorphic to B
N via the Cayley transform C : B

N → H
N :

C(z,w) =
(

1 + z

1 − z
,

w

1 − z

)
and C −1(z,w) =

(
z − 1
z + 1

,
2w

z + 1

)
.

We will use the same notations for the points in B
N and their images in H

N ,
when this is not likely to cause confusion. We will also denote by (z,w) an N -
dimensional vector either in B

N or H
N with z ∈ C being the first component

and w ∈ C
N −1 being the last N − 1 components. The pseudo-hyperbolic

distance in H
N is defined as

d2
HN

(
(z,w), (z̃, w̃)

)
(1.9)

:= d2
BN

(
C −1(z,w), C −1(z̃, w̃)

)
= 1 − 4(Re z − ‖w‖2)(Re z̃ − ‖w̃‖2)

|z + ¯̃z − 2〈w, w̃〉|2 ∀(z,w), (z̃, w̃) ∈ H
N .

Forward iteration in the unit ball of C
N in the hyperbolic case was studied in

[5], [6] and [13]. In [6], the Schröder equation (1.2) was solved with ψ being
holomorphic map ψ : B

N → H given some additional conditions. In [13], sim-
ilar result was obtained for Schur class maps. In [5], f was conjugated to its
linear part, assuming some regularity at the Denjoy–Wolff point. Lineariza-
tion results for the large class of hyperbolic and parabolic maps of B

2 were
proved in [3]. Conjugations for elliptic maps were given in [10]; and they also
follow by the classical Poincaré–Dulac theory, see [21].
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1.2.2. Main results. The main goal of this paper is to study backward iterates
in the unit ball B

N . The following results are generalizations of Theorems 1.3
and 1.4 to higher dimensions.

Theorem 1.8. Let f be a holomorphic self-map of B
N of hyperbolic or

attracting-elliptic type with Denjoy–Wolff point p. Let {Zn} be a backward-
iteration sequence for f with bounded pseudo-hyperbolic step dBN (Zn,Zn+1) ≤
a < 1. Then:
(1) There exists a point q ∈ ∂B

N , q 
= p, such that Zn → q as n tends to
infinity,

(2) {Zn} stays in a Koranyi region with vertex q,
(3) Julia’s lemma (1.4) holds for q with a finite multiplier α ≥ 1

c , where c < 1
is a constant that depends on f .

Remark 1.9. In the hyperbolic case, c is the multiplier at p, see (1.8).

Because of the last statement of the Theorem 1.8, the multiplier α > 1, and
thus we can introduce the following.

Definition 1.10. The point q ∈ ∂B
N is called a boundary repelling fixed

point (BRFP) for f , if (1.4) holds for some α > 1.

Remark 1.11. It follows from Julia’s lemma (Theorem 1.5) that the above
definition of multiplier is equivalent to (1.7).

Remark 1.12. It follows from (1.4) that q also is a boundary fixed point
with respect to K-limits and, consequently, non-tangential limits (see the
proof of Theorem 2.2.29 in [1]).

Definition 1.13. The Koranyi region K(q,M) of vertex q ∈ ∂B
N and

amplitude M > 1 is the set

K(q,M) =
{

Z ∈ B
N :

|1 − 〈Z, q〉 |
1 − ‖Z‖ < M

}
.(1.10)

Koranyi regions are natural generalizations of the Stolz regions in D and
can be used to define K-limits:

Definition 1.14. We will say that function f has K-limit λ at q ∈ ∂B
N if

for any M > 1 f(Z) → λ as Z → q within K(q,M).

In one dimension this is exactly the non-tangential limit, while when N > 1
the approach can be tangential, see [1].

Theorem 1.15. Suppose f is an analytic function of H
N with f(HN ) ⊆ H

N

and 0 is a boundary repelling fixed point for f with multiplier 1 < α < ∞,
isolated from other boundary repelling fixed points with multipliers less or
equal to α. Consider the automorphism of H

N : η(z,w) = (αz,
√

αw). Then



BACKWARD ITERATION IN THE UNIT BALL 1575

there is an analytic map ψ of H
N with ψ(HN ) ⊆ H

N and ψ(z,w) = ψ(z,0),
which has restricted K-limit 0 at 0 (see Definition 3.3), such that

ψ ◦ η(Z) = f ◦ ψ(Z)(1.11)

for every Z ∈ H
N .

It follows from the proof of Theorem 1.15 (see Lemma 3.1), that ev-
ery isolated boundary repelling fixed point is a limit of some backward-
iteration sequence with bounded hyperbolic step. Thus, in the hyperbolic
and attracting-elliptic cases we have the following characterization of BRFP
in terms of backward-iteration sequences: Every backward-iteration sequence
with bounded hyperbolic step converges to a BRFP; and if a BRFP is isolated,
then we can construct a backward-iteration sequence with bounded hyperbolic
step that converges to it.

The intertwining map ψ in Theorem 1.15 satisfies ψ(z,w) = ψ(z,0) and
essentially is a map from one dimensional subspace of HN to HN , therefore
that conjugation does not provide information about behavior of f outside of
one dimensional image of ψ. It then is natural to identify situations in which
we can find a conjugation such that the image of the intertwining map ψ has
larger dimension.

Theorem 1.16. Let f : H
N → H

N be analytic and expandable at 0 (see Def-
inition 5.1) and 0 be a boundary repelling fixed point with multiplier 1 < α <
∞. Assume further that the matrix A in the definition of f is diagonal, and
without loss of generality let its eigenvalues be aj,j =

√
αeiθj for j = 1, . . . ,L

(L is an integer, 0 ≤ L ≤ N − 1) and |aj,j |2 < α for j = L + 1, . . . ,N − 1.
Define Ω as a diagonal matrix with Ωj,j = eiθj for j = 1, . . . ,L and Ωj,j = 1
for j = L + 1, . . . ,N − 1. Then the conjugation (1.11) holds for η(z,w) =
(αz,Ωα1/2w) and intertwining map ψ such that ψ(z,w) = ψ(pL(z,w)), where
pL is a projection on the first L + 1 dimensions.

In the last section, we will provide some new examples, in particular, func-
tions in the two-dimensional Siegel domain that have non-isolated BRFPs, a
phenomenon that never occurs in one dimension. In Example 6.3, we will show
that the quadratic function f(z,w) := (2z + w2,w) is of hyperbolic type with
the Denjoy–Wolff point infinity and has a curve {(r2, ir)|r ∈ R} of boundary
repelling fixed points, all of them having the same multiplier α = 2.

In Example 6.5, we will describe a non-trivial way to construct a func-
tion f of the two-dimensional Siegel domain based on a function φ of a one-
dimensional half-plane. f will behave very similarly to φ and will inherit
many properties, however, it may have non-isolated BRFPs.

We will finish with a discussion of open questions.
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2. Convergence of backward-iteration sequences

Proof of Theorem 1.8 (Hyperbolic case). We will move to the Siegel do-
main H

N . Without loss of generality we can assume that the Denjoy–Wolff
is infinity. Also denote backward-iteration sequence as Zn = (zn,wn) ∈ C ×
C

N −1 and define tn = Re zn − ‖wn‖2. The image of the horosphere centered
at (1,0) of radius R under the Cayley transform will be{

(z,w) ∈ H
N :

|1 − 〈C −1(z,w), (1,0)〉 |2
1 − ‖C −1(z,w)‖2

< R

}
,

{
(z,w) ∈ H

N :

∣∣1 − z−1
z+1

∣∣2
1 −

∣∣ z−1
z+1

∣∣2 − ‖2w‖2

|z+1|2
< R

}
,

and after some computations,{
(z,w) ∈ H

N : Re z − ‖w‖2 >
1
R

}
,

that is, any horosphere centered at the Denjoy–Wolff point ∞ will have form

H(t) =
{
(z,w) ∈ H

N | Re z − ‖w‖2 > t
}

for some t > 0, and the Siegel domain version of the multi-dimensional Julia’s
lemma (Theorem 1.5) at infinity will be

∀R > 0 f

(
H

(
1
R

))
⊂ H

(
1

cR

)
or

∀t > 0 f
(
H(ct)

)
⊂ H(t).(2.1)

Since f(Zn+1) = Zn /∈ H(tn), by (2.1) Zn+1 /∈ H(ctn), and, by induction,
Zn+k /∈ H(cktn), k = 1,2, . . . . Thus, we have

Re zn+k − ‖wn+k ‖2 = tn+k ≤ cktn, k = 1,2, . . .(2.2)

Since the dilatation coefficient at the Denjoy–Wolff point c < 1, the se-
quence Zn must tend to the boundary of the Siegel domain as n tends to
infinity. All we need to show now is that the limiting set on the boundary is
just one point.

Define a Euclidean projection on the boundary of the Siegel domain as

pr(z,w) :=
(
i Imz + ‖w‖2,w

)
.

It will be enough to show that pr(Zn) has a limit.

Lemma 2.1. The Euclidean distance between projections of consecutive
points of the backward-iteration sequence is bounded by∥∥pr(Zn) − pr(Zn+1)

∥∥ ≤ C̃
√

tn

for some positive constant C̃ independent of n.
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Assuming lemma and using (2.2), we have

∥∥pr(Zn) − pr(Zn+k)
∥∥ ≤

k−1∑
j=0

∥∥pr(Zn+j) − pr(Zn+j+1)
∥∥(2.3)

≤ C̃

k−1∑
j=0

√
tn+j ≤ C̃

k−1∑
j=0

√
cjtn

≤ C̃
√

tn

∞∑
j=0

√
cj =

C̃
√

tn
1 − √

c
−−−−→
n→∞

0.

Thus, {pr(Zn)} is a Cauchy sequence and must have a limit q ∈ ∂H
N , which

is also the limit for {Zn}. Since q is within finite Euclidean distance from
pr(Z1), it is finite and cannot coincide with the Denjoy–Wolff point infin-
ity.

Proof of Lemma 2.1. Consider the images of Zn and Zn+1 under the au-
tomorphism in H

N defined by

hn(z,w) :=
(
z − i Imzn + ‖wn‖2 − 2〈w,wn〉,w − wn

)
,

which maps Zn to (tn,0). Denote hn(Zn+1) = Z̃n = (z̃n, w̃n) = (x̃n + iỹn, w̃n).
hn are called translations and they do not change the horoshperes centered
at infinity H(t). We check this for the reader’s sake:

Re
(
z − i Imzn + ‖wn‖2 − 2〈w,wn〉

)
− ‖w − wn‖2

= Rez + ‖wn‖2 − 2Re〈w,wn〉 − ‖w − wn‖2

= Rez + ‖wn‖2 − 2Re〈w,wn〉 − ‖w‖2 + 2Re〈w,wn〉 − ‖wn‖2

= Rez − ‖w‖2.

The point (z̃n, w̃n) must satisfy two conditions (see Figure 2). First,
dHN (Zn,Zn+1) ≤ a, which will take form∣∣∣∣ z̃n − tn

z̃n + tn

∣∣∣∣
2

+
4tn‖w̃n‖2

|z̃n + tn|2 ≤ a2.(2.4)

Second, by Julia’s lemma (2.1)

tn+1 = Re z̃n − ‖w̃n‖2 ≤ ctn.(2.5)

Using (2.4) and (2.5), we obtain

|z̃n − tn|2 + 4tn Re z̃n ≤ a2|z̃n + tn|2 − 4tn‖w̃n‖2 + 4tn
(
ctn + ‖w̃n‖2

)
,

|z̃n − tn|2 + 4tn Re z̃n ≤ a2|z̃n + tn|2 + 4ct2n,

|z̃n + tn|2 ≤ a2|z̃n + tn|2 + 4ct2n,
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Figure 2. The restriction on the point Z̃n = hn(Zn+1) and
its projection on the boundary of the Siegel domain. The
shaded area represents the intersection of the solutions of
(2.4) and (2.5).

|z̃n + tn|2 ≤ 4ct2n
1 − a2

,

|x̃n + tn|2 + |ỹn|2 ≤ 4ct2n
1 − a2

.

Thus

x̃n ≤ 2tn
√

c√
1 − a2

− tn = C1tn,(2.6)

|ỹn| ≤ 2tn
√

c√
1 − a2

= C2tn,(2.7)

‖w̃n‖2 < x̃n ≤ C1tn,(2.8)

with C1 and C2 independent of n. Note that we must have dHN (ctn, tn) ≤
dHN (Z̃n, (tn,0)) ≤ a, otherwise the backward-iteration sequence will not exist.
It follows that 4c > 1 − a2 and C1 > 0.

Now
pr(Zn) =

(
i Imzn + ‖wn‖2,wn

)
and

pr(Zn+1) = pr
(
h−1

n (z̃n, w̃n)
)

=
(
i Im(z̃n + zn) + 2 Im〈w̃n,wn〉
+ ‖w̃n + wn‖2, w̃n + wn

)
,
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pr(Zn+1) − pr(Zn) =
(
i Im z̃n + 2Im〈w̃n,wn〉
+ ‖w̃n + wn‖2 − ‖wn‖2, w̃n

)
(2.9)

=
(
i Im z̃n + 2〈w̃n,wn〉 + ‖w̃n‖2, w̃n

)
,∥∥pr(Zn+1) − pr(Zn)

∥∥2 =
∣∣i Im z̃n + 2〈w̃n,wn〉 + ‖w̃n‖2

∣∣2 + ‖w̃n‖2

≤
(

|ỹn| + 2‖w̃n‖ ‖wn‖ + ‖w̃n‖2
)2 + ‖w̃n‖2

≤
(
C2tn + 2C1tn‖wn‖ + C1tn

)2 + C1tn

≤ C̃2tn,

using (2.7), (2.8) and the facts that tn → 0 and assuming that ‖wn‖ is bound-
ed.

Thus, it is enough to show now is that ‖wn‖ ≤ C3. Note that wn+1 =
wn + w̃n ∀n and thus

‖wn‖ ≤ ‖w̃n−1‖ + ‖w̃n−2‖ + · · · + ‖w̃0‖ + ‖w0‖
≤

√
C1(

√
tn−1 +

√
tn−2 + · · · +

√
t0) + ‖w0‖

≤
√

C1

√
t0

(√
cn−1 +

√
cn−2 + · · · + 1

)
+ ‖w0‖

≤
√

C1

√
t0

1 − √
c

+ ‖w0‖ =: C3. �

Now we want to show that {Zn} stays in the Koranyi region with vertex q.
Without loss of generality, take q = 0. A Koranyi region with vertex 0 in
H

N must be the image under the Cayley transform of a Koranyi region with
vertex (−1,0) in B

N , that is, the set{
(z,w) ∈ H

N :
|1 − 〈C −1(z,w), (−1,0)〉 |

1 − ‖C −1(z,w)‖ < M

}
.

Since 1 < 1 + ‖C −1(z,w)‖ < 2, it is enough to show that

|1 − 〈C −1(z,w), (−1,0)〉|
1 − ‖C −1(z,w)‖2

<
M

2
.

The left-hand side is∣∣1 + z−1
z+1

∣∣
1 −

∣∣ z−1
z+1

∣∣2 − 4‖w‖2

|z+1|2
=

|z + 1 + z − 1| |z + 1|
|z + 1|2 − |z − 1|2 − 4‖w‖2

=
2|z| |z + 1|

4Re z − 4‖w‖2
,

thus for Zn = (zn,wn) ∈ H
N we need

|zn| |zn + 1|
(Re zn − ‖wn‖2)

< M.

Since |zn + 1| > 1 and bounded near 0, and Rezn − ‖wn‖2 = tn, it is suffi-
cient to show that |zn| ≤ Ctn for some constant C independent of n. Using
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Lemma 2.1, similarly to (2.3), we have∥∥pr(Zn)
∥∥ =

∥∥pr(Zn) − q
∥∥ = lim

k→∞

∥∥pr(Zn) − pr(Zn+k)
∥∥

≤
∞∑

j=0

∥∥pr(Zn+j) − pr(Zn+j+1)
∥∥ ≤ C̃

∞∑
j=0

√
tn+j ≤ C̃

√
tn

1 − √
c
,

so ‖ pr(Zn)‖2 = | Imzn + ‖wn‖2|2 + ‖wn‖2 ≤ ( C̃
1− √

c
)2tn = C4tn. It follows that

‖wn‖2 ≤ C4tn. If there is a bound∣∣Imzn + ‖wn‖2
∣∣ = |zn − tn| ≤ C5tn,(2.10)

then
|zn| ≤ |zn − tn| + tn ≤ (C5 + 1)tn,

and Zn must stay in the Koranyi region. It is enough to show (2.10).
Denote pr1(Zn) = Imzn + ‖wn‖2, which is the first component of pr(Zn).

As in (2.9)

pr1(Zn+1) − pr1(Zn) = iỹn + ‖w̃n‖2 + 2〈w̃n,wn〉
and thus∣∣pr1(Zn+1) − pr1(Zn)

∣∣ ≤ |ỹn| + ‖w̃n‖2 + 2‖w̃n‖‖wn‖
≤ C2tn + C1tn + 2

√
C1tn

√
C4tn = C6tn,∣∣pr1(Zn) − 0

∣∣ = lim
k→∞

∣∣pr1(Zn) − pr1(Zn+k)
∣∣

≤
∞∑

k=0

∣∣pr1(Zn+k) − pr1(Zn+k+1)
∣∣

≤ C6

∞∑
k=0

tn+k ≤ C6

∞∑
k=0

cktn ≤ C5tn,

which proves (2.10).
Now we will show that Julia’s lemma (Theorem 1.5) is applicable to the

point q. Once again, assume that q = (−1,0) in B
N or q = 0 in H

N .

lim inf
Z→(−1,0)

1 − ‖f(Z)‖
1 − ‖Z‖ ≤ lim inf

n→∞
1 − ‖Zn‖2

1 − ‖Zn+1‖2
.

The latter lim inf in H
N will take form

lim inf
n→∞

Re zn − ‖wn‖2

Re zn+1 − ‖wn+1‖2

|zn+1 + 1|2
|zn + 1|2 = lim inf

n→∞

tn
tn+1

.

It is enough to show that tn+1 ≥ Ktn for some constant K. Since d(Zn,
Zn+1) ≤ a, H(tn+1) must intersect the pseudo-hyperbolic sphere (2.4), and
thus

tn − tn+1

tn + tn+1
≤ a,
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and it follows that

tn+1 ≥ 1 − a

1 + a
tn,

so Julia’s lemma (1.4) holds with finite multiplier

α ≤ 1 + a

1 − a
.(2.11)

Remark 2.2. As the referee pointed out, there is another way to show
that q is a BRFP with finite multiplier α ≤ 1+a

1−a : the boundary dilatation
coefficient α at q ∈ B

N can be written as
1
2

logα = lim inf
Z→q

[
kBN (0,Z) − kBN

(
0, f(Z)

)]
≤ lim inf

n→∞

[
kBN (0,Zn+1) − kBN (0,Zn)

]
and [

kBN (0,Zn+1) − kBN (0,Zn)
]

≤ kBN (Zn,Zn+1) ≤ a′,

where a′ = 1
2 log 1+a

1−a , and (2.11) follows.

Now we will show that there is also a lower bound on α:

α ≥ 1
c
,(2.12)

where c < 1.
Consider the image of 0 in B

N and denote f(0) = (z0,w0). Since 0 ∈
∂H((1,0),1) (here H((1,0),1) is a horosphere centered at the Denjoy–Wolff
point (1,0) of radius 1), by Julia’s lemma applied to (1,0), f(0) ∈ H((1,0), c),
where c < 1. This horosphere is a Euclidean ellipsoid, centered at ( 1

1+c ,0),
whose restriction to the 1-dimensional subspace, generated by e1 = (1,0) is a
disk of radius c

1+c (see [1], (2.2.22)). Thus,

Re z0 ≥ 1 − c

1 + c
.

In a similar way, by Julia’s lemma applied to q = (−1,0), f(0) ∈ H((−1,0), α)
and

Re z0 ≤ α − 1
α + 1

,

so we have
α − 1
α + 1

≥ 1 − c

1 + c
,

which is equivalent to cα ≥ 1 and (2.12) follows. �

Proof of Theorem 1.8 (Attracting-elliptic case). Without loss of generality
assume 0 is the Denjoy–Wolff point. We will need the following result on the
growth of function f near the boundary of the ball:
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Lemma 2.3. Let f be a self-map of the unit ball B
N fixing zero, not unitary

on any slice. Fix r0 > 0, define M(r) := max ‖f(rB
N )‖, r ∈ [r0,1). Then there

exists c = c(r0) < 1 such that

1 − r

1 − M(r)
≤ c ∀r ∈ [r0,1).(2.13)

Proof. Assume the opposite: ∀c < 1 ∃z = z(c) with ‖z‖ ≥ r0 such that

1 − ‖z‖
1 − ‖f(z)‖ > c.

Construct the sequence zn := z(n−1
n ). Let z0 be a partial limit of {zn}. If

z0 ∈ B
N , then f(z0) ∈ B

N and

1 − ‖z0‖
1 − ‖f(z0)‖ ≥ 1 ⇔ 1 − ‖z0‖ ≥ 1 −

∥∥f(z0)
∥∥ ⇔

∥∥f(z0)
∥∥ ≥ ‖z0‖,

which is a contradiction, since ‖z0‖ ≥ r0 > 0 by construction. Thus, z0 ∈ ∂B
N

and we pick a subsequence znk
→ z0. Then

limsup
k→∞

1 − ‖znk
‖

1 − ‖f(znk
)‖ ≥ 1 ⇔ lim inf

k→∞

1 − ‖f(znk
)‖

1 − ‖znk
‖ ≤ 1.

Applying Julia’s lemma to the point z0 ∈ ∂B
N , we obtain that ∃w0 ∈ ∂B

N such
that ∀R > 0 f(H(z0,R)) ⊆ H(w0,R), where H(z,R) is a horosphere centered
at z of radius R.

Pick R small enough such that 0 /∈ H(z0,R). Let ξ be a point in H(z0,R),
closest to the origin. Since f(ξ) ∈ H(w0,R), we have ‖f(ξ)‖ ≥ ‖ξ‖ (the horo-
spheres have the same radius). Contradiction. �

Denote the distance to the boundary tn := 1 − ‖Zn‖. By Lemma 2.3, we
have

tn+k ≤ cktn ∀n,k ≥ 0,(2.14)

where c := c(‖Z0‖) as in Lemma 2.3.
Thus, tn ≤ cnt0 → 0 as n tends to infinity and the sequence {Zn} ∞

n=0 must
tend to the boundary of the ball. Now denote φn the angle between Zn

and Zn+1 seen from the origin (which is also the arc-length between radial
projections of Zn and Zn+1 on the boundary of the ball—see Figure 3).

Because dBN (Zn,Zn+1) ≤ a, Zn+1 must be inside of the pseudo-hyperbolic
ball of radius a centered at Zn, which is the Euclidean ellipsoid centered

at 1−a2

1−a2‖Zn ‖2 Zn and largest semiaxis a
√

1− ‖Zn ‖2

1−a2‖Zn ‖2 , so as Zn tends to the
boundary,

φn ≤ C1

(
1 − ‖Zn‖

)1/2 = C1

√
tn.(2.15)
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Figure 3. Two consecutive points Zn and Zn+1 and their
radial projections on the boundary of the ball.

Then the arc-length between Zn

‖Zn ‖ and Zn+k

‖Zn+k ‖ does not exceed

k∑
j=0

φn+j ≤ C1

k∑
j=0

√
tn+j ≤ C1

√
tn

k∑
j=0

ck/2 ≤ C1
1

1 − √
c

√
tn,

which tends to 0 when n tends to infinity, so the sequence of projections must
converge to some point on the boundary, denote it q. Thus the sequence Zn

must tend to q.
The next step is to show that Zn stays in a Koranyi region centered at q.

Without loss of generality assume q = (1,0) and denote Zn = (zn,wn) ∈ C ×
C

N −1. We need to show that
|1 − zn|
1 − ‖Zn‖ < M(2.16)

for some M > 1. By (2.14) and (2.15), the arc-length between (1,0) and the
projection of Zn on the boundary is bounded by

∞∑
j=n

φj ≤ C1

∞∑
j=n

√
tj ≤ C2

√
tn.(2.17)

Let θn be the angle between Zn and zn (i.e., the angle between Zn and the
plane spanned by (1,0)). By (2.17), θn ≤ C2

√
tn. Then

1 − |zn| = 1 − ‖Zn‖ cosθn = 1 − cosθn + cosθn − ‖Zn‖ cosθn

≤ 1 − cosθn + 1 − ‖Zn‖ ≤ C3tn,
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since 1 − cosθn = θ2
n

2 + o(θ3
n) as n → ∞.

Since dD(zn, zn+1) ≤ dBN (Zn,Zn+1) ≤ a and the pseudo-hyperbolic disk
centered at zn of radius a is a Euclidean disk with center w = 1−a2

1−a2|zn |2 zn

and radius r = 1− |zn |2
1−a2|zn |2 a,

| Arg zn − Arg zn+1| ≈ sin | Arg zn − Arg zn+1| ≤ r

|w| =
a

|zn|
1 − |zn|2
1 − a2

≤ C4tn.

Now

| Arg zn| = | Arg zn − Arg1| ≤
∞∑

k=n

| Arg zk − Arg zk+1| ≤
∞∑

k=n

C4tk ≤ C5tn

and

|1 − zn|2 = (Imzn)2 + (1 − Re zn)2 = |zn|2 sin2 Arg zn +
(
1 − |zn| cosArg zn

)2

≤ sin2 Arg zn +
(
1 − cosArg zn + 1 − |zn|

)2 ≤ C6t
2
n,

and (2.16) follows.
For Julia’s lemma to hold, we need to prove that

lim inf
Z→(1,0)

1 − ‖f(Z)‖
1 − ‖Z‖ < ∞.

Since {Zn} ∞
n=0 is a backward-iteration sequence tending to (1,0),

lim inf
Z→(1,0)

1 − ‖f(Z)‖
1 − ‖Z‖ ≤ lim inf

n→∞
1 − ‖Zn‖

1 − ‖Zn+1‖ ,

and it is enough to show that the latter liminf is finite. Note that Zn+1

must be in the (Euclidean) ellipsoid centered at 1−a2

1−a2‖Zn ‖2 Zn with radius

r = 1− |Zn |2
1−a2|Zn |2 a in the subspace generated by Zn, and R = a

√
1− ‖Zn ‖2

1−a2‖Zn ‖2 in the
dimensions orthogonal to Zn. Thus the point W , closest to the boundary,
must have norm

‖W ‖ =
1 − a2

1 − a2‖Zn‖2
‖Zn‖ +

1 − ‖Zn‖2

1 − a2‖Zn‖2
a =

(‖Zn‖ + a)(1 − a‖Zn‖)
1 − a2‖Zn‖2

=
‖Zn‖ + a

1 + a‖Zn‖
and

1 − ‖Zn+1‖ ≥ 1 − ‖W ‖ = 1 − ‖Zn‖ + a

1 + a‖Zn‖ =
(1 − a)(1 − ‖Zn‖)

1 + a‖Zn‖ .

Thus
1 − ‖Zn‖

1 − ‖Zn+1‖ ≤ 1 + a‖Zn‖
1 − a

≤ 1 + a

1 − a
,
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and Julia’s lemma holds with multiplier α ≤ 1+a
1−a . The lower bound on the

multiplier α ≥ 1
c is the direct consequence of the Lemma 2.3.

Note that the above results will hold for c = c(‖Zn‖) ∀n ≥ 0, and since
‖Zn‖ → 1, for

c := lim
r0→1

c(r0). �

3. Construction of special backward-iteration sequence

It was shown in the previous section that any backward-iteration sequence
with bounded hyperbolic step tend to a BRFP. Now we will show that any
isolated BRFP is a limit of a special backward-iteration sequence. This spe-
cial backward-iteration sequence will be a cornerstone in the construction of
conjugation near BRFP.

We will follow the idea, similar to that in one-dimensional case outlined
in [17]. Note that in one dimension BRFPs with multipliers bounded by the
same constant have to be isolated, as it follows from theorem of Cowen and
Pommerenke [11]. Here we will have to impose this as a hypothesis, since not
all BRFPs are isolated in higher dimensions (see Example 6.3).

Lemma 3.1. Let f be an analytic self-map of BN and (1,0) be a BRFP for
f with multiplier 1 < α < ∞, isolated from the other BRFP’s with multipli-
ers less than or equal to α. Then there exists a backward-iteration sequence
{Zn} ∞

n=0 tending to (1,0) such that

d(Zn,Zn+1) ≤ a =
α − 1
α + 1

.

In this and the following sections, we will need a geometric notion slightly
different from Koranyi regions:

Definition 3.2. For X ∈ ∂B
N , a curve σ : [0,1) → B

N such that σ(t) → X
as t → 1 is called special if

lim
t→1

‖σ(t) − σX(t)‖2

1 − ‖σX(t)‖2
= 0,(3.1)

and restricted if it is special and its orthogonal projection σX := 〈σ,X〉X is
non-tangential.

Definition 3.3. We will say that f : B
N → B

N has restricted K-limit Y
at X ∈ ∂B

N if f(σ(t)) → Y as t → 1 for any restricted curve σ.

Remark 3.4. Restricted K-limit is a weaker notion than K-limit: a func-
tion having K-limit has restricted K-limit, and a function having restricted
K-limit has non-tangential limit, see [1].

We will need the following result on the behavior of the radial and tangen-
tial components of f near the BRFP (1,0):
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Lemma 3.5. Let f : B
N → B

N be analytic and (1,0) be a fixed point for f
with multiplier α (in the sense of Julia’s lemma). Then the following functions
are bounded in every Koranyi region:

(1) 1−π1(f(Z))
1−π1(Z) ,

(2) f(Z)−π1(f(Z))(1,0)
|1−π1(Z)|1/2 ,

where π1(Z) = (Z, (1,0)). Moreover, the function (1) has restricted K-limit α
at (1,0), and the function (2) has restricted K-limit 0 at (1,0).

Proof. Apply Theorem 2.2.29(i) and (ii) from [1] to the boundary fixed
point (1,0). �

Proof of Lemma 3.1. Let D be a small enough (Euclidean) closed ball cen-
tered at (1,0) that does not contain the Denjoy–Wolff point of f or any other
BRFP of f . Let ak = (αk − 1)/(αk + 1) and

H(ak) =
{

Z ∈ B
N :

|1 − 〈Z,e1〉|2
1 − ‖Z‖2

≤ (1 − ak)2

1 − a2
k

= α−k

}
,

that is, a horosphere whose intersection with the 1-dimensional subspace gen-
erated by e1 = (1,0) is a disk with diameter [(ak,0), (1,0)]. Let n0 be the
smallest integer such that H(an0) ⊆ D and rk = an0+k. (We will identify
rk with (rk,0) ∈ B

N , that will cause no confusion.) Also let Hk = H(rk),
J = ∂D ∩ B

N and γn be the line segment connecting rk and f(rk).
For each k, the sequence {fn(rk)}n converges to the Denjoy–Wolff point

of f , hence eventually leaves D. So there exists a smallest integer nk such
that fnk

(γk) intersects J . By Julia’s lemma (Theorem 1.5), f(Hk+1) ⊆ Hk,
so fj(γk) cannot intersect J for j = 1,2, . . . , k − 1 and thus nk ≥ k.

Claim. d(rk, f(rk)) −−−−→
k→∞

a.

By Lemma 3.5,

lim
k→∞

1 − π1(f(rk))
1 − rk

= α,

and by the definition of multiplier

lim inf
k→∞

1 − ‖f(rk)‖
1 − rk

≥ α.(3.2)

By (1.6), the pseudo-hyperbolic distance d in B
N must satisfy the relation:

1 − d2
(
rk, f(rk)

)
=

(1 − r2
k)(1 − ‖f(rk)‖2)

|1 − rkπ1(f(rk))|2 =
(1 + rk)(1 + ‖f(rk)‖) 1− ‖f(rk)‖

1−rk∣∣ 1−rkπ1(f(rk))
1−rk

∣∣2 .

Now
1 − rkπ1(f(rk))

1 − rk
=

1 − rk + rk − rkπ1(f(rk))
1 − rk

= 1+ rk
1 − π1(f(rk))

1 − rk
−→ 1+α,
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and so
lim inf
k→∞

(
1 − d2

(
rk, f(rk)

))
≥ 4α

(1 + α)2
or

limsup
k→∞

d
(
rk, f(rk)

)
≤ α − 1

α + 1
= a.

We will need the following inequality for dk := d(rk, f(rk)):

1 − ‖f(rk)‖
1 − rk

≤ 1 + dk

1 − rkdk
.(3.3)

In fact, this is a partial case of more general inequality:

Claim 3.6. For all Z,W ∈ B
N and d := dBN (Z,W )

1 − | |W ‖
1 − ‖Z‖ ≤ 1 + d

1 − d‖Z‖ .

Proof. Let Δ be a closed hyperbolic ball centered at Z of (pseudo-hyperbol-
ic) radius d = dBN (Z,W ). This is a Euclidean ellipsoid, centered at 1−d2

1−d2‖Z‖2 Z

and a disk of radius 1− ‖Z‖2

1−d2‖Z‖2 d, when restricted to the subspace generated
by Z. Thus the point, which is closest to the origin must be in the subspace
generated by Z, and has modulus

1 − d2

1 − d2‖Z‖2
‖Z‖ − 1 − ‖Z‖2

1 − d2‖Z‖2
d =

(‖Z‖ − d)(1 + d‖Z‖)
1 − d2‖Z‖2

=
‖Z‖ − d

1 − d‖Z‖ .

Since W ∈ Δ,

1 − ‖W ‖ ≤ 1 − ‖Z‖ − d

1 − d‖Z‖ =
1 + d

1 − d‖Z‖
(
1 − ‖Z‖

)
,

1 − ‖W ‖
1 − ‖Z‖ ≤ 1 + d

1 − d‖Z‖ . �

By taking limsup of both sides of (3.3),

limsup
k→∞

1 − ‖f(rk)‖
1 − rk

≤ 1 + a

1 − a
= α,

so this with (3.2) shows that limk→∞
1− ‖f(rk)‖

1−rk
= α and limk→∞ d(rk,

f(rk)) = a.
The final steps in the construction are exactly the same as in proof of

Lemma 1.4 in [17]. �

Lemma 3.7. If {Zn} ∞
n=1 is backward-iteration sequence, which tends to

e1 = (1,0) (BRFP with multiplier α > 1) and d(Zn,Zn+1) ≤ a = α−1
α+1 , then its

image in the Siegel domain must satisfy the following properties:

lim
n→∞

Re zn

tn
= 1,(3.4)
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lim
n→∞

Imzn

tn
= 0,(3.5)

lim
n→∞

‖wn‖2

tn
= 0,(3.6)

lim
n→∞

tn
tn+1

= α,(3.7)

where tn := Re zn − ‖wn‖2. In particular, the sequence {Zn} is special, that
is,

lim
n→∞

‖Zn − 〈Zn, e1〉e1‖2

1 − ‖〈Zn, e1〉‖2
= 0.

Proof. By definition of multiplier

lim inf
n→∞

1 − ‖Zn‖
1 − ‖Zn+1‖ ≥ α =

1 + a

1 − a
.

Applying Claim 3.6 to Zn, Zn+1 and rn = d(Zn,Zn+1), we have

1 − ‖Zn‖
1 − ‖Zn+1‖ ≤ 1 + rn

1 − rn‖Zn+1‖ ≤ 1 + a

1 − a‖Zn+1‖ .

Taking limsup of both sides,

1 − ‖Zn‖
1 − ‖Zn+1‖ → α

or, in Siegel domain,
tn

tn+1
→ α,

so (3.7) is proved. Here we are going to use slightly different version of Cayley
transform:

C −1(z,w) :=
(

1 − z

1 + z
,

2w

1 + z

)
,

so that BRFP (1,0) will be mapped to C(1,0) = (0,0).
Consider the images of two consecutive points Zn and Zn+1 under the

automorphism hn : (z,w) := (z − i Imzn + ‖wn‖2 − 2(w,wn),w − wn), s.t.
hn(Zn) = (tn,0) and denote (z̃n, w̃n) := hn(Zn+1). hn does not change the
pseudo-hyperbolic distance in H

N , so d((tn,0), (z̃n, w̃n)) = d(Zn,Zn+1) ≤ a,
which is

|z̃n − tn|2 + 4tn‖w̃n‖2 ≤ a2|z̃n + tn|2,
|z̃n − tn|2 + 4tn(Re z̃n − tn+1) ≤ a2|z̃n + tn|2,(

1 − a2
)

|z̃n + tn|2 ≤ 4tntn+1,∣∣∣∣ z̃n

tn
+ 1

∣∣∣∣
2

≤ 4tn+1

tn(1 − a2)
.
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Taking limsup of both sides and using (3.7),

limsup
n→∞

∣∣∣∣ z̃n

tn
+ 1

∣∣∣∣
2

= limsup
n→∞

(∣∣∣∣Re z̃n

tn
+ 1

∣∣∣∣
2

+
∣∣∣∣ Im z̃n

tn

∣∣∣∣
2)

≤
(

1 +
1
α

)2

.

Since Re z̃n = tn+1 + ‖w̃n‖2 ≥ tn+1,

limsup
n→∞

(∣∣∣∣ tn+1

tn
+ 1

∣∣∣∣
2

+
∣∣∣∣ Im z̃n

tn

∣∣∣∣
2)

≤
(

1 +
1
α

)2

,

(
1
α

+ 1
)2

+ limsup
n→∞

∣∣∣∣ Im z̃n

tn

∣∣∣∣
2

≤
(

1 +
1
α

)2

.

So,

Im z̃n

tn
→ 0,(3.8)

which implies

Re z̃n

tn
→ 1

α
(3.9)

and
‖w̃n‖2

tn
=

Re z̃n

tn
− tn+1

tn
→ 0.(3.10)

Now wn+1 = wn + w̃n, wn+k = wn +
∑k−1

j=0 w̃n+j ∀k ≥ 1.

‖wn+k ‖ ≥ ‖wn‖ −
k−1∑
j=0

‖w̃n+j ‖,

0 ≥ ‖wn‖ −
∞∑

j=0

‖w̃n+j ‖,

‖wn‖ ≤
∞∑

j=0

‖w̃n+j ‖.

Since tn

tn+1
→ α > 1, pick ε such that α − ε > 1, then for large enough n

tn+1 ≤ tn

α−ε and tn+j ≤ tn

(α−ε)j .
Now by (3.10), ∀δ > 0 ∃N = N(δ) s.t. ‖w̃n‖ ≤ δ

√
tn for n ≥ N

‖wn‖ ≤
∞∑

j=0

δ
√

tn+j ≤ δ

∞∑
j=0

√
tn

(α − ε)j/2
= δS

√
tn,

where S is finite value of the infinite sum. So
‖wn‖2

tn
→ 0



1590 O. OSTAPYUK

and
Re zn

tn
=

tn + ‖wn‖2

tn
→ 1.

Similarly, because Im zn+1 = Imzn + Im z̃n + 2Im〈w̃n,wn〉, we have∣∣2 Im〈w̃n,wn〉
∣∣ ≤ 2‖w̃n‖ ‖wn‖,

and using (3.8), (3.10) and (3.6),
Imzn

tn
→ 0.

The condition (3.1) for (zn,wn) → (1,0) being special in B
N is

lim
n→∞

‖wn‖2

1 − |zn|2 = 0

or, in H
N

lim
n→∞

4‖wn ‖2

|1+zn |2

1 −
∣∣ 1−zn

1+zn

∣∣2 = lim
n→∞

‖wn‖2

Re zn
= 0.

But

lim
n→∞

‖wn‖2

Re zn
= lim

n→∞

‖wn ‖2

tn

Re zn

tn

= 0. �

4. Conjugation at boundary repelling fixed point

The aim of this section is to solve equation (1.11) in B
N , where η is an

automorphism of B
N with the same dilatation coefficient at BRFP as f and

ψ : B
N → B

N is an analytic map with some regularity at BRFP. As in [17],
the conjugating map will be obtained via the sequence of iterates fn composed
with appropriate automorphisms of B

N . It will be convenient to build almost
the entire construction in H

N with BRFP 0.
We will start with several technical statements.
Using the backward-iteration sequence (zn,wn) → 0 as in Lemma 3.7 with

tn = Re zn − ‖wn‖2, define a sequence of automorphisms τn of H
N as τn :=

h−1
n ◦ δ−1

n , where

hn(z,w) =
(
z + ‖wn‖2 − iyn − 2〈w,wn〉,w − wn

)
,

h−1
n (z,w) =

(
z + ‖wn‖2 + iyn + 2〈w,wn〉,w + wn

)
,

δn(z,w) =
(

z

tn
,

w√
tn

)
,

δ−1
n (z,w) = (tnz,

√
tnw).

Then τn(1,0) = (zn,wn).

Lemma 4.1. Let ηk(z,w) := (αkz,αk/2w) and τn be defined as above. Then
(1) τ −1

n+k ◦ τn → ηk, uniformly on compact subsets of H
N , as n tends to infinity,
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(2) τ −1
n+1 ◦ η−1 ◦ τn(z,w) → (z,w), uniformly on compact sets of H

N , as n
tends to infinity.

Proof. Using definition of τn and properties (3.4), (3.5), (3.6) and (3.7),

τ −1
n+k ◦ τn(z,w) = δn+k ◦ hn+k ◦ h−1

n ◦ δ−1
n (z,w)

=
(

tn
tn+k

z +
‖wn‖2

tn+k
+ i

yn

tn+k

+ 2
√

tn
tn+k

〈w,wn〉 +
‖wn+k ‖2

tn+k
− i

yn+k

tn+k

− 2
tn+k

〈
√

tnw + wn,wn+k 〉,
√

tnw + wn − wn+k√
tn+k

)
−−−−→
n→∞

(
αkz,αk/2w

)
= ηk(z,w),

τ −1
n+1 ◦ η−1 ◦ τn(z,w) = δn+1 ◦ hn+1 ◦ η−1 ◦ h−1

n ◦ δ−1
n (z,w)

=
(

tn
tn+1α

z +
‖wn‖2

tn+1α
+ i

yn

tn+1α

+ 2
√

tn
tn+1α

〈w,wn〉 +
‖wn+1‖2

tn+1
− i

yn+1

tn+1

− 2
tn+1

〈
√

tnw + wn,wn+1〉,
√

tnw + wn√
tn+1

√
α

− wn+1√
tn+1

)
−−−−→
n→∞

(z,w). �

Claim 4.2. τn(z,w) −−−−→
n→∞

0 and stays in a Koranyi region uniformly on

compact sets of H
N .

Proof.

τn(z,w) =
(
tnz + ‖wn‖2 + iyn + 2〈

√
tnw,wn〉,

√
tnw + wn

)
.

Condition for (z,w) being in a Koranyi region with vertex 0 in H
N :

|z|
Re z − ‖w‖2

< M.

For τ(z,w):

|tnz + ‖wn‖2 + iyn + 2〈
√

tnw,wn〉|
tn Re z + ‖wn‖2 + 2

√
tn Re〈w,wn〉 − ‖

√
tnw + wn‖2

=

∣∣z + ‖wn ‖2

tn
+ iyn

tn
+ 2

〈
w, wn√

tn

〉∣∣
Re z + ‖wn ‖2

tn
+ 2Re

〈
w, wn√

tn

〉
−

∥∥w + wn√
tn

∥∥2 −−−−→
n→∞

|z|
Re z − ‖w‖2

.
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The limit is bounded on compact subsets of H
N , so τn(z,w) belong to some

Koranyi region. �

Claim 4.3. Let φ := f ◦ η−1 in B
N . Then

lim inf
z→(1,0)

1 − ‖φ(z)‖
1 − ‖z‖ = 1

and Lemma 3.5 is applicable.

Proof.

lim inf
z→(1,0)

1 − ‖φ(z)‖
1 − ‖z‖ = lim inf

z→(1,0)

1 − ‖f ◦ η−1(z)‖
1 − ‖η−1(z)‖ lim

z→(1,0)

1 − ‖η−1(z)‖
1 − ‖z‖

= lim inf
z→(1,0)

1 − ‖f(z)‖
1 − ‖z‖ lim

z→(1,0)

1 − ‖η−1(z)‖
1 − ‖z‖ = α · 1

α
= 1.

Since η−1 is an automorphism that fixes (1,0) and

lim
z→(1,0)

1 − ‖η−1(z)‖
1 − ‖z‖ = lim

z→(1,0)

1 − ‖η−1(z)‖2

1 − ‖z‖2
= lim

(z,w)→(0,0)

1 −
∥∥C −1

(
z
α , w√

α

)∥∥2

1 − ‖C −1(z,w)‖2

= lim
(z,w)→(0,0)

1 −
∣∣ 1−z/α
1+z/α

∣∣2 − 4‖w‖2

α|1+z/α|2

1 −
∣∣ 1−z
1+z

∣∣2 − 4‖w‖2

|1+z|2

= lim
(z,w)→(0,0)

Re z− ‖w‖2

α

Re z − ‖w‖2
· |1 + z|2∣∣1 + z

α

∣∣ =
1
α

. �

Now consider a normal family {fn ◦ τn ◦ p1}, where p1(z,w) = (z,0).

Claim 4.4. The sequence τn ◦ p1(z,w) → 0 is restricted uniformly on com-
pact subsets of H

N .

Proof. Note that τn ◦ p1(z,w) = (tnz + ‖wn‖2 + iyn,wn).
Following Definition 3.2, we need to show that τn ◦ p1(z,w) is special in

HN :

lim
n→∞

‖wn‖2

Re(tnz + ‖wn‖2 + iyn)
= lim

n→∞

‖wn ‖2

tn

Re z + ‖wn ‖2

tn

= 0,

and that the projection on the first component is non-tangential, that is, that

|tnz + ‖wn‖2 + iyn|
Re(tnz + ‖wn‖2 + iyn)

is bounded from above, but

lim
n→∞

|tnz + ‖wn‖2 + iyn|
Re(tnz + ‖wn‖2 + iyn)

= lim
n→∞

∣∣z + ‖wn ‖2

tn
+ iyn

tn

∣∣
Re z + ‖wn ‖2

tn

=
|z|

Re z
,

so it is bounded uniformly on compact subsets of H
N . �
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Thus, Lemma 3.5 is applicable to the function φ = f ◦ η−1 and the sequence
τn ◦ p1(z,w), which gives us the following lemma.

Lemma 4.5.

lim
n→∞

d
(
τn

(
p1(z,w)

)
, φ

(
τn

(
p1(z,w)

)))
= 0.

Proof. Denote (un, vn) := τn(z,0) and (ũn, ṽn) := φ(τn(z,0)). Then the
restricted K-limits (1) and (2) in Lemma 3.5 when translated to H

N become

lim
n→∞

ũn

un
= 1 and lim

n→∞

‖ṽn‖2

un
= 0.

Since limn→∞
un

tn
= z,

lim
n→∞

ũn

tn
= z and lim

n→∞

‖ṽn‖2

tn
= 0.

Now d((un, vn), (ũn, ṽn))2 = 1 − 4(Reun − ‖vn ‖2)(Re ũn − ‖ṽn ‖2)
|ũn+ūn −2〈ṽn,vn 〉|2 .

lim
n→∞

4(Reun − ‖vn‖2)(Re ũn − ‖ṽn‖2)
|ũn + ūn − 2〈ṽn, vn〉 |2

= lim
n→∞

4
(
Re un

tn
− ‖vn ‖2

tn

)(
Re ũn

tn
− ‖ṽn ‖2

tn

)
∣∣ ũn

tn
+ ūn

tn
− 2

〈
ṽn√
tn

, vn√
tn

〉∣∣2
=

4(Re z − 0)(Rez − 0)
|z + z̄ + 0|2 = 1,

and
lim

n→∞
d
(
τn(z,0), φ

(
τn(z,0)

))
= 0. �

Proof of Theorem 1.15. Consider the normal family {fn ◦ τn ◦ p1} and let
ψ be one of its normal limits. Then, by Schwarz’s lemma

d
(
fn ◦ τn(z,0), fn+1 ◦ τn+1(z,0)

)
(4.1)

≤ d
(
τn(z,0), f ◦ τn+1(z,0)

)
≤ d

(
τn(z,0), f ◦ η−1 ◦ τn(z,0)

)
+ d

(
η−1 ◦ τn(z,0), τn+1(z,0)

)
.

The first summand in (4.1) tends to zero by Lemma 4.5, and the second does
by part (2) of Lemma 4.1, so

d
(
fn ◦ τn(z,0), fn+1 ◦ τn+1(z,0)

)
→ 0

as n tends to infinity. It follows that if a subsequence {fnk
◦ τnk

◦ p1} converges
uniformly on compact subsets of H

N to ψ, then so does the subsequence
{fnk+1 ◦ τnk+1 ◦ p1}. By construction

fnk+1 ◦ τnk+1 ◦ p1 = f ◦ fnk
◦ τnk+1 ◦ p1,

where the left-hand side tends to ψ, and it is enough to show that fnk
◦ τnk+1 ◦

p1 → ψ ◦ η−1 to prove (1.11). Note that η−1 and p1 are linear functions with
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diagonal matrices and therefore commute, so fnk
◦ τnk

◦ η−1 ◦ p1 → ψ ◦ η−1

and it is enough to show that

d
(
fnk

◦ τnk
◦ η−1 ◦ p1(Z), fnk

◦ τnk+1 ◦ p1(Z)
)

→ 0.

Applying Schwarz’s lemma again,

d
(
fnk

◦ τnk
◦ η−1 ◦ p1(Z), fnk

◦ τnk+1 ◦ p1(Z)
)

≤ d
(
τnk

◦ η−1(z,0), τnk+1(z,0)
)

= d
(
τ −1
nk+1 ◦ τnk

◦ η−1(z,0), (z,0)
)

→ 0

by statement (1) of Lemma 4.1, so we have

ψ = f ◦ ψ ◦ η−1,

which is equivalent to (1.11).
All we are left to show is that ψ fixes 0. Note that the image of (αk −1

αk+1
,0)

under the Cayley transform is ak = (α−k,0) and that p1(ak) = ak. Then by
definition of the sequence Zn and τn and Schwarz’s lemma

d
(
fn ◦ τn(ak),Zk

)
= d

(
fn ◦ τn(ak), fn(Zn+k)

)
≤ d

(
ak, τ −1

n ◦ τn+k(1,0)
)

= d
(
η−1

k (1,0), τ −1
n ◦ τn+k(1,0)

)
→ 0

for any k = 1,2, . . . as n tends to infinity, by (1) of Lemma 4.1. Thus, we have

ψ(ak) = Zk.

Define the sequence

gn(Z) := τ −1
n ◦ ψ ◦ η−1

n (Z).(4.2)

Then gn((1,0)) = (1,0) and gn(a1) = τ −1
n (τn+1(1,0)) → η−1(1,0) = a1, as n

tends to infinity. Hence, any normal limit of gn fixes (1,0) and a1, and,
by Corollary 2.2.15 from [1], must fix the entire subspace, containing (1,0)
and a1, i.e. the set {(z,0) ∈ H

N }. Note that ψ(z,w) = ψ(z,0) and by (4.2)
gn(z,w) = gn(z,0), so gn → p1.

Consider a straight line segment connecting (1,0) and (0,0). Obviously it
is special curve and by Theorem 2.2.25 from [1] ψ will have restricted K-limit
0 at 0 if

lim
t→0

ψ(t,0) = 0.(4.3)

By (4.2), ψ = τn ◦ gn ◦ ηn. Consider a straight line segment connecting
(α−(n+1),0) to (α−n,0). It will be mapped by ηn to a segment [(α−1,0), (1,0)].
Pick a point (t,0) on this segment. Then∥∥τn

(
gn(t,0)

)∥∥ ≤
∥∥τn

(
gn(t,0)

)
− τn(t,0)

∥∥ +
∥∥τn(t,0)

∥∥ −−−−→
n→∞

0,

since gn(t,0) → (t,0), τn(t,0) → 0 uniformly in t and τ ′
n is bounded, and (4.3)

follows.
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Now we can show that {fn ◦ τn ◦ p1} actually converges to ψ. By Schwarz’s
lemma, (1.11) and (4.2)

d
(
fn ◦ τn ◦ p1(z,w), ψ(z,w)

)
= d

(
fn ◦ τn ◦ p1(z,w), ψ ◦ ηn ◦ η−1

n (z,w)
)

= d
(
fn ◦ τn ◦ p1(z,w), fn ◦ ψ ◦ η−1

n (z,w)
)

≤ d
(
τn ◦ p1(z,w), ψ ◦ η−1

n (z,w)
)

= d
(
p1(z,w), gn(z,w)

)
−−−−→
n→∞

0. �

5. Conjugation for expandable maps

In this section, we will provide conjugation for the maps with some regu-
larity at the BRFP. This class of maps was introduced in [5]:

Definition 5.1. Let f : H
N → H

N be holomorphic. We will call the map f
expandable at 0 (write f ∈ E 1

HN (0)), if f has the following expansion near 0:

f(z,w) =
(
αz + o

(
|z|

)
,Aw + o

(
|z|1/2

))
.

In particular, 0 is a fixed point of f .

By applying part (1) of Lemma 3.5 to any special sequence (zn,wn) → 0,
we obtain

lim
n→∞

αzn + o(|zn|)
zn

= α,

that is, α must be the dilation coefficient of f at 0.

Remark 5.2. Note that A cannot have eigenvalues |aj,j |2 > α, because
otherwise f(HN ) 
⊂ H

N .

Proof of Theorem 1.16. The construction is essentially the same as in Sec-
tion 4. We modify the definition of τn as follows: τn := Ω−n ◦ h−1

n ◦ δ−1
n ,

where Ω is as in the statement of Theorem 1.16. The following two limits are
generalization of Lemma 4.1:

τ −1
n+k ◦ τn(z,w)

= δn+k ◦ hn+k ◦ Ωk ◦ h−1
n ◦ δ−1

n (z,w)

=
(

tn
tn+k

z +
‖wn‖2

tn+k
+ i

yn

tn+k

+ 2
√

tn
tn+k

〈w,wn〉 +
‖wn+k ‖2

tn+k
− i

yn+k

tn+k

− 2
tn+k

〈
Ωk(

√
tnw + wn),wn+k

〉
,

Ωk(
√

tnw + wn) − wn+k√
tn+k

)
−−−−→
n→∞

(
αkz,Ωkαk/2w

)
=: ηk(z,w).
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(Here ηk differs from previous ηk by rotation by Ωk.)

τ −1
n+1 ◦ η−1 ◦ τn(z,w) = δn+1 ◦ hn+1 ◦ Ωn+1 ◦ η−1 ◦ Ω−n ◦ h−1

n ◦ δ−1
n (z,w)

=
(

tn
tn+1α

z +
‖wn‖2

tn+1α
+ i

yn

tn+1α

+ 2
√

tn
tn+1α

〈w,wn〉 +
‖wn+1‖2

tn+1
− i

yn+1

tn+1

− 2
tn+1

〈
√

tnw + wn,wn+1〉,
√

tnw + wn√
tn+1

√
α

− wn+1√
tn+1

)
−−−−→
n→∞

(z,w).

Now φ(z,w) := f ◦ η−1(z,w) = f(α−1z,Ω−1α−1/2w) = (z + o(|z|), Ω−1A√
α

w +

o(|z|1/2)).
Let pL(z,w) = (z,w1, . . . ,wL,0, . . . ,0), that is, projection on the first 1+ L

dimensions.
Denote (un, vn) := τn(pL(z,w)) and (ũn, ṽn) := φ(τn(pL(z,w))). Then un =

tnz + ‖wn‖2 + iyn + 2〈
√

tnpL(w),wn〉 and vn = Ω−n(
√

tnpL(w) + wn). Since

lim
n→∞

un

tn
= lim

n→∞

tnz + ‖wn‖2 + iyn + 2〈
√

tnpL(w),wn〉
tn

= z,

o(|un|) = o(tn) and o(|un|1/2) = o(
√

tn), and, consequently, ũn = un + o(tn)
and

ṽn =
Ω−1A√

α
vn + o(

√
tn) =

Ω−(n+1)A
√

tn√
α

pL(w) +
Ω−(n+1)A√

α
wn + o(

√
tn)

= Ω−n
√

tnpL(w) + o(
√

tn).

The pseudo-hyperbolic distance in HN is

d2
(
(un, vn), (ũn, ṽn)

)
= 1 − 4(Reun − ‖vn‖2)(Re ũn − ‖ṽn‖2)

|ũn + ūn − 2〈ṽn, vn〉 |2 ,

and because

lim
n→∞

4(Reun − ‖vn‖2)(Re ũn − ‖ṽn‖2)
|ũn + ūn − 2〈ṽn, vn〉|2

= lim
n→∞

(
Re un

tn
− ‖vn ‖2

tn

)(
Re un

tn
+ o(tn)

tn
−

∥∥Ω−npL(w) + o(
√

tn)√
tn

∥∥2)
∣∣Re un

tn
+ o(tn)

tn
−

〈
Ω−npL(w) + o(

√
tn)√
tn

, vn√
tn

〉∣∣2
=

(Rez − ‖pL(w)‖2)(Re z − ‖pL(w)‖2)
| Re z − 〈Ω−npL(w),Ω−npL(w)〉|2 = 1,

d2((un, vn), (ũn, ṽn)) → 0, that is, conclusion analogous to the statement of
Lemma 4.5 holds.
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Now define ψ as one of the normal limits of {fn ◦ τn ◦ pL}. The above
computations shows that if fnk

◦ τnk
◦ pL converges to ψ, then fnk+1 ◦ τnk+1 ◦ pL

also converges to ψ. It is enough to show that fnk
◦ τnk+1 ◦ pL converges to

ψ ◦ η−1 uniformly on compact subsets of H
N . Note that η−1 ◦ pL = pL ◦ η−1.

Because

d
(
fnk

◦ τnk
◦ η−1 ◦ pL(z,w), fnk

◦ τnk+1 ◦ pL(z,w)
)

= d
(
τ −1
nk+1 ◦ τnk

◦ η−1 ◦ pL(z,w), pL(z,w)
)

−−−−→
n→∞

0,

lim
n→∞

fnk
◦ τnk+1 ◦ pL(z,w)

= lim
n→∞

fnk
◦ τnk

◦ η−1 ◦ pL(z,w) = ψ ◦ η−1(z,w),

and (1.11) holds.
By the same reasoning as in proof of Theorem 1.15, ψ fixes 0 in the sense

of restricted K-limits. �

Remark 5.3. Note that in the case when eigenvalues of A are equal to
√

α,
f will be conjugated to same automorphism η as in Theorem 1.15, but the
intertwining map ψ will be different (its image needs not be one-dimensional).

Remark 5.4. Consider the hyperbolic map f : HN → HN with the Denjoy–
Wolff point infinity and BRFP 0 with multiplier 1 < α < ∞: f(z,w) = (αz,0).
Clearly, the image of f is one-dimensional and from (1.11) we have that
image of ψ must be one-dimensional, so the result of Theorem 1.15 can-
not be improved in general. For less trivial example, one may consider
f(z,w) = (αz,βw) with 0 < |β|2 < α. Now the image of f has dimension
N , but

∞⋂
n=1

fn

(
H

N
)

is one-dimensional section of H
N and the range of the intertwining map ψ is

also one-dimensional.

6. Examples and open questions

6.1. Examples. In the beginning of this section, we will describe all qua-
dratic polynomials that map the two-dimensional Siegel domain

H
2 :=

{
(z,w) ∈ C

2| Re z > |w|2
}

into itself while fixing zero, and completely characterize their dynamics. Some
of these polynomials happen to have non-isolated BRFPs (see Example 6.3).

Claim 6.1. A quadratic polynomial f : C
2 → C

2 that fixes zero maps H
2

into H
2 if and only if it is of the form f(z,w) = (Az+Bw2,Cw) with A − |B| ≥

|C|2.
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Proof. Consider the general form f(z,w) = (f1(z,w), f2(z,w)) = (az+bw+
cz2 +dzw+ew2,Az+Bw+Cz2 +Dzw+Ew2). First, we will show that most
coefficients must be 0.

Since Ref1(z,w) > |f2(z,w)|2 ≥ 0, then Ref1(z,0) = Re(az + cz2) > 0 ∀z
such that Re z > 0. When z → 0, az + cz2 ∼ az, so a > 0. Now Ref1(z,0) =
|z|(a cos(Arg z) + |c| |z| cos(2Arg z + Arg c)), we can choose Arg z such that
cos(2Arg z + Arg c) < 0 and |z| large enough so Ref1(z,0) < 0 unless |c| = 0,
so c must be 0.

Thus f(z,0) = (az,Az + Cz2), and we must have a|z| cos(Arg z) > |z|2|A +
Cz|2 or a cos(Arg z) > |z| |A+Cz|2. The right-hand side goes to ∞ as |z| → ∞
unless C = A = 0.

Thus, f must be of the form f(z,w) = (az + bw + dzw + ew2,Bw + Dzw +
Ew2). Consider the set {(t,1) ∈ C

2|t > 1} ⊂ H
2. f(t,1) = (at+ dt+ b+ e,B +

E + Dt) and Re(at + dt + b + e) < |B + E + Dt|2 for large enough t unless
D = 0.

Now consider the set {(t2 + ε, t) ∈ C2|t > 0} ⊂ H2. Ref1(t2 + ε, t) ≤ a(t2 +
ε) + |b|t + |d|(t2 + ε)t + |e|t2 < |Bt + Et2|2 for large enough t unless E = 0.

To show that d = 0, consider {(z,w) ∈ C2|z = t2+ε, |w| = t, t > 1} ⊂ H2.
Then on this set Ref1(z,w) ≤ at2+ε + |b|t + |e|t2 + |d|t3+ε cos(Argd + Argw).
We can choose Argw such that cos(Argd + Argw) < 0 and t large enough to
make Ref1(z,w) < 0, unless d = 0.

The last part is to show that b = 0. Consider{
(z,w) ∈ C

2|z = t2−ε, |w| = t,1 > t > 0
}

⊂ H
2.

Then on this set Ref1(z,w) ≤ at2−ε + |b|t cos(Arg b + Argw) + |e|t2. We can
choose Argw such that cos(Arg b + Argw) < 0 and t close enough to 0 such
that Ref1(z,w) < 0 unless b = 0.

Thus, f has only three non-zero terms, and (by changing notations) the
function must have form f(z,w) = (Az + Bw2,Cw). If A − |B| ≥ |C|2, then
Re(Az +Bw2) ≥ ARez − |B| |w|2 > (A − |B|)|w|2 ≥ |C|2|w|2 on H2 and hence
f(H2) ⊆ H

2. If A − |B| < |C|2, we can choose Argw such that cos(ArgB +
2Argw) = −1 and Re z = |w|2 + ε

A |w|2, where ε = |C|2 − A+ |B| > 0, and then
Re(Az + Bw2) = ARez + |B| |w|2 cos(ArgB + 2Argw) = ARez − |B| |w|2 =
(A − |B| + ε)|w|2 = |C|2|w|2, thus f(H2) 
⊆ H

2. �

Claim 6.2.
(1) Aside from the trivial cases A = 0 (must be zero map, because then B =

C = 0) and C = 0 (one-dimensional projection) f(z,w) = (Az+Bw2,Cw)
has well-defined inverse on H

2

f −1(z,w) =
(

z

A
− B

AC2
w2,

w

C

)

(though its image may be outside of the Siegel domain).
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(2) nth iterate of f has the form

f ◦n(z,w) =
(

Anz +
An − C2n

A − C2
Bw2,Cnw

)
.

Proof. (1) is obvious. (2) can be shown by induction. �

Now we will find fixed points and classify the dynamical behavior of poly-
nomials based on them.

Cases C = 0 (projection on the first dimension) and B = 0 (linear map)
are trivial. So assume B 
= 0 and C 
= 0. To find the set of finite fixed points
(either inner or boundary), we need to solve{

Az + Bw2 = z,

Cw = w.

If C = 1, we can assume A > 1 (otherwise B = 0 and the map is identity).
Then there are solutions (− Bw2

A−1 ,w). Since

Re
(

− Bw2

A − 1

)
− |w|2 ≤ |B| |w|2

A − 1
− |w|2 =

|B| + 1 − A

A − 1
|w|2 ≤ 0,

any solution must be on the boundary of H
2 and non-zero solutions exist

iff A = |B| + 1. In this case, there are infinitely many fixed points on the
boundary (see Example 6.3 below).

If C 
= 1, then non-zero solutions exist iff A = 1 and they have form (z,0).
Thus we have interior fixed points.

If C 
= 1 and A 
= 1, then there are no fixed points inside of the domain and
only two fixed points on the boundary (zero and infinity). One of them must
be the Denjoy–Wolff point and the other BRFP.

The dilatation coefficient at (0,0) is

c = lim inf
(z,w)→(0,0)

Re(Az + Bw2) − |C|2|w|2
Re z − |w|2

≥ lim inf
(z,w)→(0,0)

ARe z − |B| |w|2 − |C|2|w|2
Re z − |w|2

≥ lim inf
(z,w)→(0,0)

ARe z − A|w|2
Re z − |w|2

= A

and value A attained for z = t → 0 and w = 0, so c = A.
Thus if A < 1 then zero is the Denjoy–Wolff point of f and this is hyperbolic

case c = A < 1. If A > 1 then (0,0) is the BRFP with dilatation coefficient
A > 1 and infinity must be the Denjoy–Wolff point. The dilatation coefficient
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at infinity

c = lim inf
(z,w)→∞

Re(Az + Bw2) − |C|2|w|2
Re z − |w|2

|z + 1|2
|Az + Bw2 + 1|2

≤ lim
t→∞

ARe t

t

|t + 1|2
|At + 1|2 =

1
A

,

thus c ≤ 1
A < 1 and this is also hyperbolic case.

Example 6.3 (Example of a quadratic function with non-isolated BRFP).
Consider the function f(z,w) := (2z + w2,w). Then f ◦n(z,w) = (2nz + (2n −
1)w2,w), the Denjoy–Wolff point is infinity and this is the hyperbolic case.
The curve {(r2, ir)|r ∈ R} is clearly the set of fixed points on the boundary.
Any of those points can be mapped to (0,0) by translation

hr(z,w) :=
(
z + r2 + 2irw,w − ir

)
with

h−1
r (z,w) =

(
z + r2 − 2irw,w + ir

)
.

Then

hr ◦ f ◦ h−1
r (z,w) = hr ◦ f

(
z + r2 − 2irw,w + ir

)
= hr

(
2z + r2 − 2irw + w2,w + ir

)
=

(
2z + w2,w

)
,

that is, the behavior of the function in any of those points is the same as in
(0,0).

The dilatation coefficient at zero is

c = lim inf
(z,w)→(0,0)

Re(2z + w2) − |w|2
Re z − |w|2 = 1 + lim inf

(z,w)→(0,0)

Re z + Re(w2)
Re z − |w|2 = 2.

Thus, we have a set of BRFP’s on the boundary with the same dilatation
coefficient, neither of them is isolated.

Remark 6.4. Though (0,0) is non-isolated BRFP for f(z,w) := (2z +
w2,w), the statement of Lemma 3.1 still holds in this case. Zn = ( 1

2n ,0)
is clearly an example of backward-iteration sequence with step d = 1

3 . Conse-
quently, it is still possible to construct a conjugation as in Theorem 1.15.

Now we will describe another class of self-maps of H
2, the construction of

these will be based on a function of one-dimensional half-plane H.

Example 6.5. Let φ : H → H be a holomorphic function of right-hand side
half-plane, of hyperbolic or parabolic type, with the Denjoy–Wolff point infin-
ity. Define a function f on H2 as f(z,w) := (φ(z − w2)+w2,w). This function
is well-defined since ∀(z,w) ∈ H

2 Re(z − w2) ≥ Re z − |w|2 > 0. Moreover, by
Julia’s lemma in H, Reφ(z − w2) ≥ Re(z − w2) and thus Re(φ(z − w2)+w2) ≥
Re z > |w|2, and the function f maps H

2 into itself.
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Claim 6.6. Infinity is the Denjoy–Wolff point for f and f has the same
type and same multiplier at infinity as φ. Moreover, if φ has a BRFP y0i ∈ ∂H

then f has a 1-dimensional real submanifold {(y0i + t2, t)|t ∈ R} of BRFPs.

Proof. Iterates of f have a form f ◦n(z,w) = (φ◦n(z − w2) + w2,w) and
clearly the Denjoy–Wolff point is infinity. Assume φ has multiplier c1 ≤ 1 at
infinity, then f has multiplier

c = lim inf
(z,w)→∞

Re(φ(z − w2) + w2) − |w|2
Re z − |w|2

∣∣∣∣ z + 1
φ(z − w2) + w2 + 1

∣∣∣∣
2

≤ lim inf
z→∞

Reφ(z)
Re z

∣∣∣∣ z + 1
φ(z) + 1

∣∣∣∣
2

= c1.

Since f(z,0) = (φ(z),0) and using Julia’s lemma (2.1), we have

Reφ(z) ≥ 1
c

Re z or
Reφ(z)

Re z
≥ 1

c
∀z ∈ H,

and, taking limit of both sides,
1
c1

≥ 1
c
.

Thus c1 = c, the multipliers coincide and therefore functions f and φ are of
the same type (either both hyperbolic or both parabolic).

Now f(y0i+ t2, t) = (φ(y0i)+ t2, t) = (y0i+ t2, t) and (y0i+ t2, t) is a BRFP
for f ∀t ∈ R. �

6.2. Open questions.

6.2.1. The dimension of the stable set. The stable set S at the BRFP q is
defined as the union of all backward-iteration sequences with bounded pseudo-
hyperbolic step that tend to q. In one dimension, S = ψ(H). It is important
to understand the properties of the stable set in N dimensions, because it
may help to find the “best possible” intertwining map, i.e. the intertwining
map whose image has the largest dimension.

6.2.2. Non-isolated fixed points and necessary conditions for conjugation at
BRFP. As we can see from Remark 6.4, the condition on the BRFP to be
isolated is sufficient, but not necessary. It is still not known if there are
any BRFP for which the conjugation construction does not work. One needs
to prove a result, similar to Lemma 3.1 for non-isolated BRFP or to find
necessary conditions on BRFP so that the conjugation construction will work.

6.2.3. Convergence of backward-iteration sequences in parabolic case. Theo-
rem 1.8 generalizes the one-dimensional Theorem 1.3 only in hyperbolic and
attracting-elliptic cases. It is still not known whether backward-iteration se-
quences with bounded step always converge for parabolic maps in higher di-
mensions.
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