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DIRICHLET HEAT KERNEL ESTIMATES FOR A®/2 4+ AP/?

ZHEN-QING CHEN, PANKI KIM AND RENMING SONG

ABSTRACT. For d > 1 and 0 < § < a < 2, consider a family of
pseudo differential operators {A® + a®’AP/?; a € [0,1]} on R?
that evolves continuously from A®/? to A2 + AP/2. Tt gives
arise to a family of Lévy processes {X®,a € [0,1]} on R?, where
each X® is the independent sum of a symmetric a-stable process
and a symmetric G-stable process with weight a. For any C*!
open set D C R?, we establish explicit sharp two-sided estimates,
which are uniform in a € (0,1], for the transition density func-
tion of the subprocess X%P of X killed upon leaving the open
set D. The infinitesimal generator of X is the nonlocal oper-
ator A® + a® AP/2? with zero exterior condition on D°. As conse-
quences of these sharp heat kernel estimates, we obtain uniform
sharp Green function estimates for X*? and uniform boundary
Harnack principle for X* in D with explicit decay rate.

1. Introduction

It is well known that, for a second order elliptic differential operator £ on
R? satisfying some natural conditions, there is a diffusion process X on R¢
with £ as its infinitesimal generator. The fundamental solution p(t,z,y) of
Oru = Lu (also called the heat kernel of £) is the transition density function
of X. Thus obtaining sharp two-sided estimates for p(t,z,y) is a fundamental
problem in both analysis and probability theory. Such relationship is also true
for a large class of Markov processes with discontinuous sample paths, which

Received May 30, 2010; received in final form October 13, 2011.

Zhen-Qing Chen was supported in part by NSF Grants DMS-09-06743 and DMR-
1035196. Panki Kim was supported by Basic Science Research Program through the Na-
tional Research Foundation of Korea (NRF) funded by the Ministry of Education, Science
and Technology (0409-20110087).

2010 Mathematics Subject Classification. Primary 60J35, 47G20, 60J75. Secondary
47DO07.

(©2012 University of Illinois

1357


http://www.ams.org/msc/

1358 7Z.-Q. CHEN, P. KIM AND R. SONG

constitute an important family of stochastic processes in probability theory.
They have been widely used in various applications.

One of the most important and most widely used family of Markov pro-
cesses is the family of (rotationally) symmetric a-stable processes on R,
0 < a<2. A symmetric a-stable process X ={X;,t >0,P,,x € Rd} on R? is
a Lévy process such that

E, [eig'(Xt_XO)] =e 1" for every 2 € R? and € € RY.

When o =2, X is a Brownian motion on R? whose infinitesimal generator is
the Laplacian A. When 0 < a < 2, the infinitesimal generator of a symmetric
a-stable process X on R is the fractional Laplacian A®/2 which is a pro-
totype of nonlocal operators. The fractional Laplacian can be written in the
form

. dy
1.1 A 2y(z) = A(d, —) lim u(y) —u(z)) ——
(11) @ = Al [ () )

for some constant A(d, —a) := a2~ 1r~4/20(4E2)(1 — )7L, Here and in
the sequel, we use := as a way of definition. Here I' is the Gamma function
defined by T'(X) := [ t*"te~"dt for every A > 0.

Two-sided heat kernel estimates for diffusions on R? have a long history
and many beautiful results have been established. See [16], [18] and the ref-
erences therein. But, due to the complication near the boundary, two-sided
estimates for the transition density functions of killed diffusions in a domain D
(equivalently, the Dirichlet heat kernels) have been established only recently.
See [17], [18], [19] for upper bound estimates and [31] for the lower bound
estimates of the Dirichlet heat kernels in bounded C':! domains. In a recent
paper [6], we succeeded in establishing sharp two-sided estimates for the heat
kernel of the fractional Laplacian A®/? with zero exterior condition on D¢ (or
equivalently, the transition density function of the killed a-stable process) in
any C! open set.

The approach developed in [6] provides a road map for establishing sharp
two-sided heat kernel estimates of some other jump processes in open subsets
of R?. In [7], the ideas of [6] were adapted to establish two-sided heat kernel
estimates of censored stable-like processes in C! open subsets of R?. One of
the main tools used in [7] is the boundary Harnack principle established in [2]
and [21]. Very recently in [4], [5], the heat kernel of the fractional Laplacian
in nonsmooth open set was discussed.

In [8], the ideas of [6] were adapted to establish two-sided heat kernel
estimates of relativistic stable processes in C™! open subsets of R%. One of
the main facts used in [8] is that relativistic stable processes can be regarded
as perturbations of symmetric stable processes in bounded open sets and
therefore the Green functions of killed relativistic stable processes in bounded
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open sets are comparable to the Green functions of killed stable processes in
the same open sets.

The goal of this paper is to establish sharp two-sided heat kernel estimates
for a Lévy process Z that is the sum of an a-stable process X and an inde-
pendent (B-stable process Y, 0 < < a <2, in C! open subsets of R%. The
infinitesimal generator of the Lévy process Z is A%/2 + AP/2. Let ph(t,z,y)
and G}, (z,y) to denote the transition density function and the Green func-
tion of the subprocess ZP of Z killed upon exiting a C*! open set D C R<.
Let pp(t,z,y) and Gp(z,y) denote the transition density function and Green
function of the subprocess X of X killed upon exiting D. Intuitively, one
expects the following Duhamel’s formulas (or Trotter—Kato formula) hold:

t
(1.2) p})(m,y):pp(t?x?y)Jr/ /pb(s,x,z)Ag/QpD(t—s,z,y)dz,
0 D
(13)  Ghla) = Goep) + [ Ghlw2)A2GCplzp)dz.
D

Although the sharp two-sided estimates on pp(t,z,y) have been derived re-
cently in [6] while the estimates on Gp(x,y) were obtained sometime ago
n [14], [23], no sharp estimates on Af/QpD(s,z,y) and A§/2Gp(z,y) are
known and sharp estimates seem to be quite challenging to get, at least for
Ag/QpD(s,z,y). Hence at this stage, Duhamel’s formula (1.2) does not seem
to be useful in deriving sharp two-sided estimates on pl,(¢,z,v).

The Lévy process Z runs on two different scales: on the small spatial
scale, the a component dominates, while on the large spatial scale the 3
component takes over. Both components play essential roles, and so in general
this process can not be regarded as a perturbation of the a-stable process or
of the (3-stable process. Note that this process can not be obtained from
symmetric stable processes through a combination of Girsanov transform and
Feynman—Kac transform. So the method of [8] cannot be used to establish the
comparability of the Green functions of this process and the Green functions
of symmetric stable processes in bounded open sets. Since the differences
of the Lévy measure of this process and those of symmetric stable processes
have infinite total mass, the methods of [20], [25] also could not be used to
establish the comparability of the Green functions of these processes and the
Green functions of symmetric stable processes in bounded open sets. The
approach of this paper will be described in the second paragraph below after
the statement of Corollary 1.2.

Let us first recall some basic facts about the sum of independent stable
processes and state our main result.

Throughout the remainder of this paper, we assume that d > 1 and 0 < 8 <
a < 2. The Euclidean distance between z and y will be denoted as |z — y|.
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We will use B(z,r) to denote the open ball centered at z € R with radius
r>0.

Suppose X is a symmetric a-stable process and Y is a symmetric 8-stable
process on R? and that X and Y are independent. For any a > 0, we define
X* by X :=X; +aY;. We will call the process X the independent sum
of the symmetric a-stable process X and the symmetric g-stable process Y
with weight a. The infinitesimal generator of X% is A®/2 + aPAP/2. Let
p®(t,x,y) denote the transition density of X (or equivalently the heat kernel
of A%/2 + aPAP/?) with respect to the Lebesgue measure on R?. We will use
p(t,x,y) = p°(t,x,y) to denote the transition density of X = X°. Recently, it
is proven in [13] that

t t
1.4 Lt = (4> p=d/BY A
( ) p ( ,:c,y) ( ) |x_y‘d+(x + |.’E—y‘d+6

on (0,00) x R? x R, Here and in the sequel, for a,b € R, a A b:=min{a,b}
and a V b:= max{a,b}; for any two positive functions f and g, f < g means
that there is a positive constant ¢ > 1 so that ¢ 'g < f < cg on their common
domain of definition.

For every open subset D C R?, we denote by X% the subprocess of
X killed upon leaving D. The infinitesimal generator of X®P is (A®/2 +
a®AP/?)|p, the sum of two fractional Laplacians in D with zero exterior con-
dition. Tt is known (see [13]) that X®P has a Holder continuous transition
density p% (t,z,y) with respect to the Lebesgue measure.

Unlike the case of the symmetric a-stable process X := X°, X does not
have the stable scaling for a > 0. Instead, the following approximate scal-
ing property is true and will be used several times in the rest of this pa-
per: If {Xf’D,t >0} is the subprocess of X killed upon leaving D, then
{A1X %D >0} is the subprocess of {X{‘)‘(Q_B)/B,t >0} killed upon leaving
A7ID:={\"1y: y € D}. Consequently, for any A > 0, we have

(1.5) pii(la[;mm (t,z,y) = \p% ()\O‘t, Az, /\y) for t >0 and z,y € A7 D.
In particular, letting a =1, A =a?/(®=%) and D =R?, we get
p*(t,z,y) = a%pl (a%t,a%x,a%y) for ¢t >0 and z,y € R%

So we deduce from (1.4) that there exists a constants C' > 1 depending only
on d, o and 3 such that for every a >0 and (¢,2,y) € (0,00) x R% x R?

(1.6) Clft 2, y) < pt(tx,y) < Cfta,y),

where

) a8 e t aPt
fitxyy) = (o) At )A(|x—yd+a+|x—yld+ﬁ>'
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The purpose of this paper is to establish the following two-sided sharp esti-
mates on p% (¢,z,y) in Theorem 1.1 for every ¢ > 0. To state this theorem, we
first recall that an open set D in R? (when d > 2) is said to be a (uniform) C''!
open set if there exist a localization radius Ry > 0 and a constant Ag > 0 such
that for every z € D, there exist a C™!-function ¢ = ¢, : R¥~! — R satisfy-
ing 6(0) = 0, V6(0) = (0,...,0), [ Vel < Ao, [Vo(x) — Vo(2)| < Aol — 21,

and an orthonormal coordinate system CS, with its origin at z such that
B(z,Ro)ND ={y=(y,ya) in CS. : [y| < Ro,ya> ¢(y)}.

The pair (Rg, Ag) is called the characteristics of the C'! open set D. Note that
a O open set D with characteristics (Rg,Ag) can be unbounded and dis-
connected; the distance between two distinct components of D is at least Ry.
Let dpp(z) be the Euclidean distance between x and 0D. It is well known
that any C1'! open set D satisfies both the uniform interior ball condition
and the uniform exterior ball condition: there exists rqg < Ry such that for
every x € D with épp(z) <79 and y € R\ D with §5p(y) < 7o, there are z,,
zy € 0D so that |z — z;| = 0gp(z), |y — 2y| = dop(y) and that B(zg,r9) C D
and B(yo,70) C R\ D for zg = 2z, +ro(x — 22) /|2 — 22| and yo = 2z, +70(y —
zy)/ly — zy]. By a Cb! open set in R we mean an open set which can be
written as the union of disjoint intervals so that the minimum of the lengths
of all these intervals is positive and the minimum of the distances between
these intervals is positive.

THEOREM 1.1. Suppose M > 0. Let D be a C™' open subset of R® with
characteristics (Ro, Ao) and 0p(z) the Euclidean distance between x and D°.

(i) For every T > 0, there is a constant C1; = C1(Ro, Ao, M,,3,T,d) > 1
such that for every a € (0, M],

Cflfg)(t?xay) Sp%(t?xay) S leg)(t,l',y),

where

t aPt
x |t~ p .
< (u—ywm*|x—yMW)>

(ii) Suppose in addition that D is bounded. For every T >0, there is a con-
stant Cy > 1 depending only on diam(D), Ry, Ao, M, v, B,d and T so that
for every a € (0, M] and (t,z,y) € [T,00) x D X D,

Cy e Mop(2)*26p (y)*/? <ph(t,a,y) < Cae™ M op () 20p (y)*/2,

where Ay > 0 is the smallest eigenvalue of —(A%/? +aPAP/?)|p.
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In the above theorem, we assumed that the weight a is contained in the
compact interval [0, M] for some M > 0. Without this assumption, the esti-
mates in the above theorem are not valid. As one can see from (1.6), as a T oo,
the 8 component will play the dominating role.

The above heat kernel estimates are uniform in a € (0, M]. Letting a — 0,
Theorem 1.1 recovers the heat kernel estimates for symmetric a-stable pro-
cesses obtained in [6]. By integrating the two-sided heat kernel estimates in
Theorem 1.1 with respect to ¢, we obtain the following estimates on the Green
function G4 (z,y) == [~ ph (¢, ,y) dt.

COROLLARY 1.2. Suppose M > 0. For any bounded C'! open set D with
characteristics (Ro,Ag) in R%, there is a constant Cs = Cs(diam(D), Ry, Ao,
M,a,8) > 1 so that for every a € (0, M],

C5'gp(z,y) < Gh(x,y) < Csgp(z,y) for z,y €D,

where
(L7)  gp(z,y)
(1/\W)|IE*ZJ|”‘7‘1 when d > a,
= 10%(14‘%) when d=1=q,
(5D(JU)5D(?J))(Q_1)/2 A W when d=1< a.

To the best of our knowledge, the above Green function estimates are new,
which says that for any bounded C'! open set D, G4 is comparable to the
Green function GY of the symmetric « stable process in D. The two-sided
estimates for G%, were first established independently in [14] and [23], when
d>2, and in [3] and [6] for d=1.

Theorem 1.1(i) will be established through Theorems 2.8 and 3.5, which
give the upper bound and lower bound estimates respectively. Unlike [6],
[8], Theorem 1.1(ii) is not a consequence of the intrinsic ultracontractivity of
X% in a bounded open set since the constant C3 depends on D only through
its diameter and C™! characteristics. We will prove Theorem 1.1(ii) using
Theorem 1.1(i) and some elementary facts from the spectral theory of compact
self-adjoint operators and the estimates of eigenvalues established in [15].

In fact, the upper bound estimates in both Theorem 1.1 and Corollary 1.2
hold for any open set D with a weak version of the wuniform exterior ball
condition in place of the C™! condition, while the lower bound estimates in
both Theorem 1.1 and Corollary 1.2 hold for any open set D with the uniform
interior ball condition in place of the C*! condition (see Theorems 2.8 and 3.5,
and the proofs for Theorem 1.1(ii) and Corollary 1.2).

Although we follow the general strategy developed in [6], there are several
new difficulties to overcome in obtaining two-sided Dirichlet heat kernel es-
timates for X*. First, X® is not self-similar; it is the mixture of two stable
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processes with two different parameters. Secondly, even though the boundary
Harnack principle has been extended in [22] to a large class of pure jump
Lévy processes including X%, the explicit decay rate of harmonic functions of
X near the boundary of D was unknown. Instead, following the approach
in [11], we establish necessary estimates using suitably chosen subharmonic
and superharmonic functions of the process X® to get the desired boundary
decay rate for X*. As in [11], we need to use the finite range (or truncated)
symmetric J-stable process Y2 obtained from Y by suppressing all its jumps
of size larger than A. The infinitesimal generator of YA s

dy

(1.8) A %u(x) = A(d,—B)lim (uly) = @) [ — s

el0 Jyyerd:e<|y—a|<A}

When A =1, we will simply denote ﬁf/ 2 by AB/2. We first establish the
desired estimates for the Lévy process X®:= X +aY* The infinitesimal
generator of Xis A2 4¢P AP/2. The desired estimates for X% = X +aY can
then be obtained by adding back those jumps of Y of size larger than 1/a.
To obtain the lower bound of p%,(¢,z,y), we use the Dirichlet heat kernel
estimates for the fractional Laplacian in [6] and a comparison of the killed
subordinate stable process with the subordinate killed stable process where
we will use some of the results obtained in [29]. Also some ideas in [5], [10] to
obtain the lower bound are adapted in this paper.

We like to point out that, unlike [6], the boundary Harnack principle for X
is not used in this paper, which indicates that it might be possible to obtain
sharp heat kernel estimates for processes for which the boundary Harnack
principle fails.

As a consequence of Corollary 1.2, we have the following uniform boundary
Harnack principle with explicit decay rate.

THEOREM 1.3. Suppose that M > 0. For any C™' open set D in R¢ with
characteristics (Ro, o), there exists a positive constant Cy = Cy(a, 8,d, Ao,
Ro, M) >1 such that for a € [0, M], r € (0,Ro], Q@ € ID and any nonnegative
function u in R that is harmonic in D N B(Q,r) with respect to X and
vanishes continuously on DN B(Q,r), we have

u(x) _, Op(a)*?
uy) = op(y)e

Throughout this paper, we will use capital letters C1,Cs,... to denote
constants in the statements of results, and their labeling will be fixed. The
lower case constants c¢p,cs,... will denote generic constants used in proofs,
whose exact values are not important and can change from one appearance
to another. The labeling of the lower case constants starts anew in every
proof. The dependence of the constants on dimension d may not be mentioned
explicitly. For every function f, let f™:= f Vv 0. We will use 9 to denote a

(1.9) for every x,y € DN B(Q,r/2).
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cemetery point and for every function f, we extend its definition to 0 by
setting f(9) =0. We will use dz to denote the Lebesgue measure in R?. For
a Borel set A C R?, we also use |A| to denote its Lebesgue measure.

2. Upper bound estimate

Throughout this section, we assume that D is an open set satisfying the
uniform exterior ball condition with radius ry > 0 in the following sense: for
every z € 9D and r € (0,7¢), there is a ball B* of radius r such that B* C
R4\ D and 0B* NID = {z}. The goal of this section is to establish the
upper bound for the transition density (heat kernel) p% (¢,x,y). One of the
main difficulties of getting the upper bound for p}, (¢, z,y) is to obtaining the
correct boundary decay rate.

Recall that A®/2 and 3?/2 are defined by (1.1) and (1.8). The next two
lemmas can be proved by direct computation, whose proofs can be found in
[21] and [11], respectively.

For p > 0, let wy(z) := (x7)P.

LEMMA 2.1. For any z € (0,00) x R4~1 we have
Aa/2wa/2(z) =0.

Moreover, for every p € (a/2,a), there is a positive constant Cs = Cs(d, a,p)
such that for every x € (0,00) x R4~1

AY 2, (x) = Csah ™.

LEMMA 2.2. There are constants R, € (0,1), Cs > C7 >0 depending on p,
d and o only such that for every x € (0, R,] x R4~!

Cral ™" < A% ?w,(2) < Coay™  foraf2<p<a,
|ﬁa/2w,,(x)| < Cg|logzi| forp=a
and

|£a/2wp(x)’ <Cs forp>a.

In the remainder of this paper, R, will always stand for the constant in
Lemma 2.2. The following result and its proof are similar to [11, Lemma 3.2]
and the proof there. For reader’s convenience, we spell out the details of the
proof here.

LEMMA 2.3. Assume that r1 € (0,1/2] and p > §. Let 01 := R, A (11/4),
U:={zeR:r <|z| <3r1/2} and

~ p
hy(y) := (yd —\/r — |y\2) 1un(za>0,2<r /23 (U)-

Then there exist C; = Ci(a,p,m1) >0, i=8,...,12, such that
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(i) when p € (a/2,a), we have for all y € {z € R : 24 > 0,7 < |z| <7 +
517‘E|<:T1/4},

@) Cs(wa—y/r2—172) B n ) < Co(a—/rt-172)"

and

o \P T —\p—«
(22)  Cs (yd —\ri- \ylz) < ARy (y) < Cy (yd —\ri- \yl2) ;
(i) when p > a, we have for all y € {z € R : 24> 0,71 < |z| <71 +61,[2] <
T1/4},
(2.3) | ARy (y)] < Cio
(iii) when p=a/2, we have for ally € {z € R : 24> 0,11 < |z| <r1401,]2] <
T1/4},
(2.4) ‘Aa/zha/z(y)‘ <Cp

(iv) when p = a, we have for everyy € {z € R%: 24 > 0,11 < |z| <r1+01,|2| <

T‘1/4}7

(25) B2 o ()] < Cratog (wa — /13 — 1512)

Proof. Let

L(g):=/r} —|g]* and h(y):=ya—T(9), yeU.

Fix z€{z€R%: 25> 0,7 < |2] <71 + Ra A (r1/8), 2] < r1/4} and choose
a pomt xo € 0B1(0,11) :={zq > 0,|z| = r1} satisfying Z = 5. Denote by

7 (z0) the inward unit normal vector at xq for the exterior ball B(0,r1)¢ and
set ®(y) = (y — zo, 7 (z0)) for y € RL. I = {y: ®(y) =0} is the hyperplane
tangent to 9B (0,71) at the point z¢. Let I'* : § € R4~! — R be the function
describing the hyperplane II, that is, ((7,1*(y)) — 2o, 7 (70)) = 0. We also let

E:={y=.ya): yeUly—xz|<r/4},
.:{y.I‘ A’)>yd>l“@'),\y—ac|<r1/4}

and h(y) := (ya —T*(9))1{y.>r 5 (y) for y € RL Since VI'(Z) — VI™*(Z) =0,
by the mean value theorem,

(2.6) |h(y) —h(y)| < |T@) -T*@)| <Alg—2|°, yeE.

Let &, (y) = dist(y, ) for y € R? and Up- = {y € R?: y4 >T*(y)}. Let b, :=
14 |VI(Z)|? and
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Note that hyp(z) = hy(z) and B(z,m/4) NU C E. Since h(y) = by, (y)
on Dr«, by Lemma 2.1,

(2.7) ARy o a(2) =0

and, if /2 <p< «,

(2.8) ARy (x) = e1bh ol (@) = erbg (h(x)" "

for some ¢; > 0. By Lemma 2.2, there are constants ¢; >0, i =2,...,6, such

that for y € Dp« and §;,(y) < R, when o/2 <p < a,
(2.9)  ca(h(x))"" < cabBdP(w) < A2, (x) = EA2 (8, ()"
< egbBoP™ () <5 (ﬁ(m))p_a,

when p > «,
(210) ‘Aa/th’p(x)’ = b£|£tx/2 (61_[ (x>)17’ <o
and when p = «,
(2.11) |A/2h, (2)] < cs|log(h(2))].
Note that
(2.12) |A/2(hy, — Dy ) ()]
— A(d, o) tim [ (1 (0) Tt (1) dy‘
10 > y—a|>e} |z — y|o+e
<Aid,~a)| [ Uy (5) ~ () dy‘
(>ly—z|>r/ap 1T =Yl
+ A(d, —a) lim M )
0 Sy jazly—al>ey [Tl

§c7+,4(d,_a)/ ho(y) + hyo(v)

A |93 |d+°‘
1hp(y) — hpa(y)|
d,—a) [ /= 2paeld)l
o) [ R
=:cr+11+ 1

and, similarly,

(2.13) | A2 (hyy — hy ) ()|

(hp(y) - hp,m(y))
d+a dy
(y—al>ri/ay 12—l

JrA(d’a)/AhP(y)Jrhpvf(y)dy

=il

< -A(d7 70[)

hp(
A(d, a/| |.17— |d+a )|—113+I1+12.
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Since for y € B(z,r1/4)¢,
|hap () = hap(@)] csly =P and  |hy(y)] < cs
and h,(y) =0 for |y] > r1/2, for a/2 <p < o we get

B o (y) — B
(2.14) I; < A(d, _a)/ [ p(y) d+,§($)| J
B(x,r1/4)° |.23 - y|
hy(y) — h
+A(d, ) / M dy
Bla,r/0en{jgl<r/2y 1T =Yl

h,(x
+ A(d, —a) / % y’
B(z,r1/4)en{|g|>r1/2} |$ - y|
1 1
cof e
B(a,r /4y |2 —yldte—p Bla,ri a)e [T —yldte
< c19 < 00.
We claim that, if p > «/2,
(215) L+ 1 <cpp <.
Note that for y € A
(2.16) ‘hx’p(y)| + ‘hp(y)‘

<lya =T*@)|" + |va ~T@)|" <2 @ -T* @/

<2[T(5) - T(@) - VI(@) - (5 5) < 24,17 — 7.
Furthermore, since |['(y) — I'*(9)| < c13]y — Z|? < ¢127? on |y — | = r, this
together with (2.16) yields that

7‘1/4
I < 014/ rzp_o‘_d/ 14(y)ma—1(dy)dr
0 ly—z|=r

T1/4
= 014/ rzpfafdmd_l({y Sy —z|=r,TY) > ya > F@)}) dr
0
r1/4
< 015/ r2P= dr < 00.
0

Note that, if y € E, yq > x4 — |z — y| > /|z|? = |Z]? — r1/4 > V15r1 /4 —
r1/4>0and |y| <|Z|+ |z —y| <r1/2. Thus ECUN{z4>0,|z| <r1/2}, and
so we have that for y € F

(2.17) |ho () = hap ()| < c16|(R(y))" = (R(y))"]

< err () "7 [R(y) — h(y)),

where (p—1)_ :=(p— 1) A0. In the last inequality above, we have used the
inequalities

|bpfap}§bp*1|bfa| for a,b>0,0<p<1
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and
|bp _ap{ <(p+1)|b—a| fora,be(0,1),p>1.

For y = (7,v4) € R?, we use an affine coordinate system z = (Z, z4) to represent
it so that zg = yq — I'*(¥) and Z is the coordinates in an orthogonal coordinate
system centered at z( for the (d — 1)-dimensional hyperplane II for the point
(7, T*(¥)). Denote such an affine transformation y — z by z = ¥(y). It is clear
that there is a constant c;g > 1 so that for every y € R?,

el T <PEl<asly -2, egly—al < |(y) - V()| < esly - 2]
and that
U(E)C{z=(%z24)€ R?: |Z] <1571 and 0 < 2q < 1871}

Denote x4 — I'*(Z) by w; that is, ¥(z) = (0,w). Hence by (2.6) and (2.17)
and applying the transform ¥, we have by using polar coordinates for Z on
the hyperplane II,

() P—D- |7 — 7|2 (P=1)— 312
I, < 019/ ) L:i i dy < 019/ S Bl - 12 dz
E ly — z[dte w(E) |z — (0,w)|d¢te

C18T1 (r—1) C187T1 ’I"d_2
<c z; T dr | dz
son ([ G ) e
c187T1 ci187T1
(r-1)- / 1 >
<ec 2 ———dr | dzq
20/0 ¢ ( o (r+lza—w)e

C18T1 1 1
(p—1)—
< 021/ z ( - ) dzg
0 ¢ |za —w[*=t (c1sm1 + |za —w])*!

ci18T1 1
< 622/ a=r dzg < o3 < 00,
0 2

s |2q — w1
where all the constants depend only on «,d, p and r;. The last inequality is
due to the fact that since p>0, 0<a <2 and (1 —p)" +a—1=max{a —

p,a — 1} < 1, by the dominated convergence theorem, ¢(w) :=
-

C18T . . o . . . .
Ols 1 = P dzq is a strictly positive continuous function in z4 €
Zg Za—w|* ™

[0, c1871] and hence is bounded.
Thus, we have proved the claim (2.15). The desired estimates (2.1)—(2.5)
now follow from (2.7)—(2.15). O

It is well-known that X! has Lévy intensity

1 _ .1 _ _ A(d7 —Oé) A(d7 _ﬁ)
J(z,y) =7 (|x y|) T o - y|tte + |z — y|dth

A scaling argument yields that

T @, y) = (jz — y]) = Ald,—a) | 5 A(d,—B)

T — d+ao T — d+3 "
Y Y
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Put

v (o g AAB) g\
(2.18) o) = (e + 00380y
Clearly

. Ald,—a
(o) =" ) = Sy

The function ¥® plays an important role in the study of mixed stable-like
processes including X* in [13], which serves as the ‘scale function’ for the
heat kernel estimates and global parabolic Harnack inequality.

The Lévy intensity gives rise to a Lévy system for X¢, which describes
the jumps of the process X®: for any nonnegative measurable function f on
R, x R? x R? with f(s,y,y) =0 for all y € R, x € R? and stopping time T
(with respect to the filtration of X?),

(2.19) EE[Z f(s,ij,Xg)] =E, [/OT (/Rdf(s,Xg,y)J“(Xs,y) dy> ds}

s<T

(See, for example, [12, Proof of Lemma 4.7] and [13, Appendix A].)

For any open set D C R?, let 78 = 7¢(D) :=inf{t > 0: X2 ¢ D} denote the
first exit time from D by X°.

Note that by the approximate scaling property in (1.5), we have for every
r>0.

“ a—d ~ar(@—B)/8

(2.20) GB(O7T)(:L',y) =r dGB(o,l) (z/r,y/r).
The next lemma follows immediately from a special case of [22, Proposi-
tion 2.10 and Lemma 3.6] and (2.20).

LEMMA 2.4. For any b,M € (0,00), there exists C13 = C13(M,b,a, 3) >0
such that for every xo € R, a € [0, M] and r € (0,b],

(2.21) E. [Tg,( )] < Cp3r°/? (r—|z— m0|)a/2 for x € B(xg,r).

Zo,T

For A>0, Y = ()//\'t’\,IP’m) is a Lévy process on R such that
E, [eig'(?ﬁ*?&)] =e WO for every z € R? and ¢ e RY,
with

1— cos(¢ - y)

¥(&) = A(d,—p) |y|4+P

{lyl<A}
In other words, YA is a pure jump symmetric Lévy process on R? with a
Lévy density given by A(d, —/6’)|x|*d*51{‘x|§)\}. For a > 0, suppose Y 1/¢ is
independent of the symmetric a-stable process X on R?. Define

dy.

X? = Xt+a}7tl/a, t>0.
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We will call the process X the independent sum of the symmetric a-stable
process X and the truncated symmetric 3-stable process Y1/a with weight
a > 0. The infinitesimal generator of X is A2 4 aBAP/2,

For any open set U C R, let 7% = inf{t >0 : X ¢ U} be the first exit time
from U by X, The truncated process X will be used in the proof of next
lemma.

LEMMA 2.5. Assume r1 € (0,1) and M >0. Let U:={z € R%: r; <|z| <
3r1/2}. There are constants 014 = C14(r1,0) > 0 and Ci5 = C15(r1, M, v,
B3) >0 such that for every a € [0, M]

(2.22) E, [76] < CraPq (| X7 | > )
< Ci50u ()% for ry < |z| < 5ry /4.

Proof. The first inequality in (2.22) is easy. In fact, by the Lévy system
(2.19) with

f(S»CU»y) = 1U(£)1{5r1<\y\<10r1}(y)
and T = 7{;, we have that for x € U

Py (| X7 | >3r1/2) > Py (107 > | X7a| > 5r1)

i
E, [/ / J“(X;l,y) dyds}
{5r1<|y|<107r1}

CA(d,—a) ]
>E, / / dyds| > 1 E;
[ (5ri<lyl<ior} | X& — [ X2 — y|dte 761,

where ¢; = ¢q(r1, @) > 0.

It is enough to prove the second inequality in (2.22) for r < |z| <71 + &
for some small § > 0. Without loss of generality, we assume Z = 0 and 24 > 0.
Let p > 0 be such that p # 3 and

a—(B/2)<p<an(a—(8/2)+(a=p)/3).
Note that a/2 <p < a A (3a/2 — 3). Define

— a/2

h(y) = (va— 13 = 7)) Loageasozier 2 1)
. p

gp(y) = (yd — /77— |y|2) Lun{zg>0,21<r 2} (Y),

and let ¢ be a smooth function on R¢ with bounded first and second partial
derivatives such that ¢(y) = 247P|y|2/r? for y € {zq > 0,71 < |2| < 4r1/5,|Z| <
r1/4} and 2P < $(y) < 4P if || > r1/2 or |y| > 3r1/2.

Since 71 < 1/4, it is easy to see that ||gp|lec < 1. Now we define

u(y) :=h(y) + o(y) — 9(y).
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By Taylor’s expansion with remainder of order 2, we get that for any a € (0, M
and y € R?,
(223) (A2 +a A0 o(y)| < |||+ MPAS |
< 02(a7ﬁ7M) < 00.

Moreover, by (2.1)—(2.3), there exist c3 = c3(a, 8) >0, ¢4 = c4(a, 3) > 0 and
61 =01(a, 8) € (0,71/8) such that for y € {z € R: 24 > 0,71 < [2| <7y +
517 |z‘ < 7?1/4}

A2, (y) = eadu (y)P~*
and for y € {z €R%: 24> 0,71 < |z <ry 461, |2] <r1/4}

AP, (y) > —cady (y) P~

Note that p —a >p— 3 and p — a < 0. Thus there exist ¢5 = c5(e, 3, M) >
0 and 3 = d2(cr, 8, M) € (0,61) such that for all a € (0,M] and y € {z €
R : 24> 0,7 < |2| <7y + 69, 2] <71/4},
(224) (A2 4+aPAP2)g,(y) > 3y (y)P ™ — eaMP oy (y) =N

> e50u (y)'
Furthermore by (2.1) and (2.3)—(2.5), there exist cg = cg(v, 3, M) > 0 and d5 =

83(a, 3) € (0,81) such that for all a € (0, M] and for every y € {z € R : 24 >
0,7"1 < |Z| <7 +63,|E| <7'1/4},

(2.25) [(A%72 +aP AP\ h(y)| < |AY2h(y)| + MP|AP2h(y)]
< Jeet cebu (y) /2N if B £ )2,
cG—l—ce;llochU(y)‘ if 6=a/2.

Since p—a < a/2 — 3, by (2.23)—(2.25), there exists d4 = d4(cr, B, M) € (0,2 A
83) such that for all a € (0,M] and y €V :i={z€R: 24> 0,71 < |z| <7y +
647 |z‘ < T1/4}

(2.26) (A2 +aPAP?)u(y)
<catcegtce (fsU(Z/)(Ot/ziﬁ)AO + | log 0t (y) ’) —cs50u (y)P ™
<0.

Let n be a nonnegative smooth radial function with compact support in
R? such that n(z) =0 for |z > 1 and [p.n(z)dz =1. For k> 1, define

me(@) = 280 (2% ). Set u® (2) := (g, * u)(2). As (A2 + aPAP/2)u*) =y «
(A%/2 4 aP AP/?)u, we have by (2.26) that

(Aa/2 + aﬁﬁﬁ/z)u(k) <0
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on Vi :={z€R?: 24> 0,r +27F < |2| <r+8,—27% and |Z| <r1/4—27F}.
Since ©®) is a bounded smooth function on R? with bounded first and second
partial derivatives, by Ito’s formula and the Lévy system (2.19),

(227) M= u® (R0) —ul® (Xg) - / (A2 4 PRA2)u® (%2) ds
0

is a martingale. Thus, it follows from (2.27) that ¢t — u(k)()?fﬁg ) is a
k

bounded supermartingale. Since Vj increases to V and u is bounded and
continuous on V', we conclude that

(2.28) t— u(XtM ) is a bounded supermartingale.
We observe that, since ¢(z) =0,
(2.29) u(z) < oy (x)*/2.
We also observe that, since ¢ > 2g,, outside of {z €U : z4 > 0, |z] <r1/2} and

uw) > (v~ /i~ 152) " = (= 3~ 12) > e
on {zg>0,r; + 4 <|z| <3r1/2,|Z] <r1/2}, we have
(2.30) u(y) >cg >0 for yeVe\ B(0,r),
where cg depends on d4, a, § and 7. Therefore, by (2.28)—-(2.30) we get
(231) 6 (2)*/? 2 u(@) 2 B [u(XE )] > esPo (Xg, €V\ B0,1))
> Cspz(’)?%; > )

Note that there exist co = cg(er,d,r1) >0 and c¢19 = c10(08,d, 1) > 0 such
that for z € U,

dy dy
Tz = y|dFa S Ty
{yl>2m} 12 — yloHe (2ri<lyl<sr} |2 —yl4Te

dy dy
Tz ydA =10 P
(yl>2r} 12— Yl (2ri<lyl<sr} 12—l

Thus by (2.19), there exists a positive constant ¢;; = ¢11(d, o, 3, M) such that

for any a € (0, M],
e[ i
{\y|>2T1}

1E, [/ / J“(X;l,y) dyds]
0 {2r1<|y|<3r1}

=c11 P, (37“1 > ‘ng > )

and

Py (| X7 | =
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Since 1 < 1/4 and the processes X and Y do not jump simultaneously, we
have by (2.31) that there is a positive constant c12 = c12(d, o, 3, M, r1) such
that for all a € (0, M],

P, (\X;‘{j

>3r1/2) < (e + )Py (3r1 > [ X7 | > 3r1/2)
= (e11 + )P, (3r1 > ‘X$8| > 3r1/2)
< (en+ 1)PT(|)A($5| >3r1/2) < c120y ()2, O

LEMMA 2.6. Assume M >0 and r1 € (0,3]. Let E={z € R%: [z|>r}.
Then for every T > 0, there is a constant C1g = Ci6(r1,a, 3, T, M) >0 such
that for every a € [0, M],

po(t,z,y) < Credp(2)¥ 2%z, y)  forr < |z| < 5r1/4, |yl >2r and t <T.

Proof. Define U := {z € R?: r| < |z| < 3r1/2}. For ry < |z| < 5r1/4,
ly| > 2r1 and t € (0,7, it follows from the strong Markov property of X¢
and (2.19) that

Pi(t.z,y)
=B [pE(t — 70, X7, y); 76 <t (3r1/4) + (|y1/2) = | X7y | > 3r1/2]
+ B [ph (t— 76, X8 y)s 76 <, X2 | > (3r1/4) + (1y1/2)]
< ( sup pE(t— syw,y))

s:s€(0,t)
wi(3r1/4)+(lyl/2)2|w|=3r1/2

x Py (s <t,(3r1/4) + (Jyl/2) > | X% | > 3r1/2)

t

+/ /pU(s,;U,z)
0o Ju

X

(/ J“(z,w)paE(t—&Wy)dw) dzds
{w:w|>(3r1/4)+(ly|/2)}

=1+ 1I.
Note that for |w| < (3r1/4) + (|y|/2),

lyl o Jz—yl
8 = 16

1 3r
@) fw-yizlbl -z (- %) 2

Since p%(t — s,w,y) < p*(t — s,w,y), by (1.6) and (2.32), there exists a con-
stant ¢; = ¢1(«, 8, M) > 0 such that for a € (0, M]

I <aTJ(z,y)P, (| X5 | > 3r1/2).
By Lemma 2.5, we have for |z| € (r1,5r1/4),

Z 37“1/2) S CQ(SU(.T)Q/2 = CQ(SE(.Z‘)Q/Q

Py (| X5
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for some positive constant ¢ = ca(r1, o, 3, M). Thus,
(2.33) I <esTop(x)/2T%(x,y)

for some positive constant ¢z = c3(ry, «, 3, M).
On the other hand, for z € U and w € R? with |w| > (3r1/4) + (Jy|/2),

1 3ri) oyl o ==yl
—w|>|w| - |z > = ) s B R
-l 2ol - > 5 (- 5 ) 2 1> B
Thus by the symmetry of p%,(t —s,w,y) in (w,y), we have
I S C4Ja(x7y)

¢
X/ /an(szvz)(/ paE(ts,y,w)dw) dzds
0 JU {w:|w|>(3r1/4)+(lyl/2)}
§C4Ja(x,y)/ /p((‘](s,m,z)dzds
0o Ju

= s J(2,y)Ey [78] < c50p(x)*2 T (2, y)
for some positive constants ¢, = cx(r1, 0, 3, M), k =4,5. In the last inequality,
we used Lemma 2.5 to deduce that E,[%] < ey (2)*/? = csdp(x)*/? for some
positive constant ¢g = ¢g(r1,, 3, M). This together with (2.33) proves the
lemma. O

THEOREM 2.7. Assume that M >0 and D is an open set that satisfies
the uniform exterior ball condition with radius ro > 0. Then for every T >0,
there is a constant Cy7 = Ci7(ro /Ty, 3, M) > 0 such that for all a € (0, M],
A€ (0,T] and z,y € \71D,

pt)l\*lD(lvxvy) < 017(1 A Ja(‘ray))(SA*lD(x)a/Z'

Proof. Note that for every X\ € (0,7], A~1D satisfies the uniform exterior
ball condition with radius ro/T. For x,y € A™'D, let z € (A~"1D) be that
|z — 2| = 8x-1p(x). Let B, C (A"1D)¢ be the ball with radius ry : =471 A
(ro/T) so that 9B, NO(A~1D) = {z}. Since, by (1.6)

Pi-ip(Layy) <p*(Lz,y) <c(1AJ(x,y)),
it suffices to prove the theorem for x € A™'D with §y-1p(x) < r1/4. When
dx-1p(x) <ri/4and |z —y| > 5r1, we have d e (y) > 2r; and so, by Lemma 2.6,
there is a constant ¢; > 0 that depends only on (r¢/T,d,«, 3, M) such that
for ¢ € (0,1],

(234) pi—lD(taxay) S p((zﬁz)c(tax>y) S Cla(ﬁz)c (:L')a/z‘]a(xay)
= c16y-1p(@) 2T (2,y).

So it remains to show that, when dy-1p(z) <r1/4 and |z — y| < 5rq, there
exists a positive constant co = ca(ro /T, d, a, 3, M) such that

(235) pi—lD(Lx?y) 3025)\_1D(1')a/2'
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Let z, € 9(A\~1D) be such that |z — z,| = d\—1p(x) and zy € R? so that
B(zg,r1) C (A_lD)C and 0B(zg,71) ﬂ@()\_lD) ={z.}.

Define U := {w € R?: |w — 2| € (r1,8r1)}. Note that x,y € UNA"'D and
du(x) = dy-1p(x). By the strong Markov property and the symmetry of
pi-1p(1,2,y) in z and y, we have
pi—lD(l,x,y) :p?]ﬁ)\—lD(l,x7y)
+Ey [py-1p (1 = Hrr-1ps X

UmA*1D7x);TgmA71D < 1].

By the semigroup property and (1.6),

Piraa-1p(1,7,y) :/

Unix—1
< ||pa(1/27 K )Hoopx (T((}ﬂ)\*lD > 1/2)
< c3E, [Tgnkle] <c3Ey [T[(}}

< e40y ()% = e40y-1p ()2

Prea-1p(1/2,2,2)p5An-1p(1/2,2,y) dz
D

In the last inequality, we used Lemma 2.5.
On the other hand, we have X% € UNA~'D on {7, 1, <1}, and
U D

Nnx—

S0
|X7‘_‘3m71D — x| >Try, on {T[’}m\_lD < 1}.
Consequently, by (2.34) for p§_. (1 =75 x-1p, Xfa ),
Unx—+D
E, [Pi—lp(l - Tlc}m\—lDaX%m,lef);Tf}n,\—lD < 1]

< Ey [015>\71D(x)0‘/2Ja (ngmxflp y Z‘) y T[(}m)\le < 1]
< er((Tr) ™+ MO(Tr1) =P )85 p () Py (T oy 1 p < 1)
<ci((Tr) " + Mﬁ(7r1)_d_5)5>\—1D(x)o‘/2.

This completes the proof for (2.35) and hence the theorem. O

THEOREM 2.8. Assume that M > 0 and that D is an open set that satisfies
the uniform exterior ball condition with radius ro > 0. For every T >0, there
exists a positive constant Ci1g = C15(T, 10,0, 3, M) such that for every a €
[0,M], t€(0,T] and z,y € D,

5D(x)a/2> ( 6D(y)”‘/2) —d
2.36) ph(t,z,y) <Cig( 1A 22— ) [ 1A —="20— ) (=Y At (2, y)).
( ) Ph( y) < 18( NG NG ( ( y))

Proof. Fix T,M > 0. By Theorem 2.7, there exists a positive constant

c1=c1(T,ro,, 3, M) such that for every t € (0,77,

qt(a=8)/(aB) at(a=8)/(aB) P
(237) ptfl/uD (any) Scl(l/\‘] K (x,y))ét—l/ﬂD(w) /2'
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Thus by (1.5), (1.6) and (2.37), for every ¢t <T,

— (a=B)/(aB) _ _
paD(t,x,y):t d/apgfl/aD (Lt 1/ax7t 1/ay)

<eitm V(1A JateTo/en (¢t~ o, 7 Y)) 81y (7 2)

5D($>a/2 5D(«T)a/2

L < eop(tx,y) — .
N 2" (L7,y) Vi

By symmetry, the above inequality holds with the roles of z and y inter-
changed. Using the semigroup property for ¢t < T,

P (1 2.,) = /D P (82,2, )i (12, 2,y) d=

a/2

=0 (t_d/“ At (2,y))

) a/25 a/2
< ey RO [ a2yt 022,90 d
D
) 04/25 a/2
< e o(@) ; o) Pt 2, y).
This proves the upper bound (2.36) by noting that (1 Aa)(1 A b) =min{1,a,
b,ab} for a,b> 0. O

3. Lower bound estimate

In this section, we discuss the uniform lower bound estimate of p%, (¢, x,y).
We will first give the uniform interior lower bound estimate of p%,(¢,z,y) for
arbitrary open set D.

LEMMA 3.1. For any positive constants A, k and b, there exists Cig =
Cro(A, k,b,c, B, M) >0 such that for every z € R4 X € (0,A] and a € (0, M],
Ulél]é‘d IPZ! (TE(Z,ZHAI/“) > b)\) = Cho.
ly—z|<rAL/@
Proof. By [13, Proposition 4.9], there exists e = (A, k,«, 3) > 0 such that
for every A € (0, A],

1
i 1
ylélﬂgd By (TB(y,nkl/a/g) > 6)\) > 5

Suppose b > ¢ then by the parabolic Harnack inequality in [13, Proposi-
tion 4.12]

Clplg(yﬁ/\l/a) (5>‘a Y, w) S p}g(yﬁ)\l/a) (bAa Y, ’LU) for w €B (y7 HAl/a/2)7

where the constant ¢; = ¢1 (A, k, a, 8,b) > 0 is independent of y € R, A € (0, A].
Thus

(3.1) Py (Th(yent/a) > bA)

:/ p}i’(y,n)\l/a)(b)‘ayaw) dw
B(y,xA\t/ )
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> / Ph(y /oy (DA, 4, w) dw
B(y,xA\t//2)

ch/ pIB(y’H)\l/a/g)(&-)‘ay7w> dw201/2
B(y,xA1//2)

For the general case, since Aas—p € (0, AMB/(e=B)] by (1.5) and (3.1),
yler]}gfd Py (Tg(z,%ﬂ)\l/"‘) > b>\)
ly—z|<rAL/«

=Py (Tf%(o,ml/a) > bA)
_ / P 0,ent/ey (0, 0,10) duo
B(0,rkA\1/ )
= 1 aB/(e=Bpx.0.2) d
a a ,0,2)dz
/B(o,m\l/aaﬁ/(aﬁ>)pB(0”“A1/ a* o= )
= P0(Th(0.n(rans/ s yi/ay > DAY > o (A k., 8,6, M) > 0.
This proves the lemma. O
Recall that ¢* is defined in (2.18).

PROPOSITION 3.2. Suppose that M,T >0 and (t,z,y) € (0,T] x D x D
with §p(x) > t/* > 20%(|x — y|)'/*. Then there exists a positive constant
Ca0 = Co0(M,,3,T) such that for all a € (0, M]

(3-2) ph(t,2,y) > Coot =Y.

Proof. Let t € (0,T] and z,y € D with 6p(z) > tV/* > 2¢%(|z — y|)/*. By
the parabolic Harnack inequality in [13, Proposition 4.12] and the scaling
property, there exists ¢; = ¢ (M, «, 3,T) > 0 such that for all a € (0, M],

phH(t/2,z,w) < e1ph(t,x,y) for we B(m,2t1/°‘/3).
This together with Lemma 3.1 yields that
1

c1B(z,t1/2)2)| J gz /a2
> cQtfd/a/ D s 2y (12,3, W) duw
Bla,t1/%/2)

= CQtid/a]P)z (Tg(x,tl/‘l/Q) > t/2) 2 Cgtid/a,
where ¢; = ¢;(T, o, 6, M) >0 for i =2, 3. O

pp(t,z,y) > pp(t/2,z,w) dw

LEMMA 3.3. Suppose that M,T >0, D is an open subset of R? and
(t,z,y) € (0,T) x D x D with 5p(x) Adp(y) >t/ and t < 2°¢*(|x—yl|). Then
there exists a constant Cay1 = Coy(a, 3, T, M) > 0 such that for a € (0, M]

P, (Xf’D € B(y,2_1t1/°‘)) > Cot¥ 1 Jo (2, y).
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Proof. For t € (0,T], it follows from Lemma 3.1 that, starting at z €
B(y,4~1t'/), with probability at least ¢; = ¢;(a,3,T,M) > 0, for any a €
(0, M], the process X* does not move more than 6~/ by time ¢. Thus, it
suffices to show that there exists a constant ca = ca(e, 3, T, M) > 0 such that

(3.3) P, (X" hits the ball B(y,4_1t1/0‘) by time t) > ot T (2, y)

for all a € (0, M], t € (0,T] and ¢ < 2*¢¥*(Jx — y|).

Let By := B(x,67t'/*), B, := B(y,6~'t"/*) and 72 := 75 . It follows from
Lemma 3.1 that there exists ¢ = c3(a, 3,7, M) > 0 such that for a € (0, M]
and ¢ € (0,7,

(3.4) Eu[t ATg] > 1Py (748 > t) > cst.
By the Lévy system in (2.19),
(3.5)  P,(X*" hits the ball B(y,4~'t"/*) by time ¢)
>P, (Xt“/wg € B(y,4_1t1/0‘) and t A 7Y is a jumping time)

tATY
>E, [/ / J“(Xg,u)duds .
0 B,

Note that ¢ <2%)*(|z —y|) < 2%z — y|*. Hence for s < 7¢ and u € By,
| XS —u| <|z—yl+ |z - XJ|+ |y —u| <2lz —yl.
Thus from (3.5) we get that for any a € (0, M] and ¢ € (0,77,
P, (X P hits the ball B(y,4~'*/*) by time ¢)

> E, [t A7) / 7*(2le —yl) du

By
> cat| Byl 2]z — yl) > est T (2] — y))
> 052—d—atd/a+1ja(|x _ y|)
for some positive constants ¢; = ¢;(«, 3,7, M), i =4,5. Here in the second
inequality, (3.4) is used. O

Now we are ready to give the interior lower bound estimate of p%, (¢, z,y)
for arbitrary open set D.

THEOREM 3.4. Suppose that T >0, M >0, D is an open subset of R?
and (t,z,y) € (0,T] x D x D with 6p(z) ASp(y) > t*/*. Then there exists a
constant Cag = Ca(a, 8, T, M) >0 such that for any a € (0, M],

(3.6) pp(t,w,y) > Coo (t_d/a AT (z,y)).

Proof. In view of Proposition 3.2, it remains to show that (3.6) holds for
(t,z,y) € (0,T] x D x D with dp(x) Adp(y) > (t/2)"/* and t < 2¢%(|x — yl).
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By the semigroup property, Proposition 3.2 and Lemma 3.3, there exist pos-
itive constants ¢; = ¢1(a, 8, T, M) and ¢g = c2(a, 3, T, M) such that for any
t€(0,7] and a € (0, M]

(3.7) ph(ta,y) = /D P (t/2, 2, 2)p (£/2,2,y) d=

>/ Pl (1/2,2, Wb (12,2, 9) d=
B(y,271(t/2)1/*)

> et~ P, (Xta/QD € B(y72*1(t/2)1/“)) > cotJ(x,y).

Now, combining (3.7) with Proposition 3.2, we have proved the theorem. O

In the rest of this section, we assume that D is an open set in R? satisfying
the uniform interior ball condition with radius r¢ > 0 in the following sense:
For every x € D with dp(z) < rg, there is z, € 9D so that |x — z;| = dp(x)
and B(xg,r0) C D for zg := 2, +ro(x — 2,)/ |z — 2,|. Clearly, a (uniform) C'*:!
open set satisfies the uniform interior ball condition.

The goal of the remainder of this section is to prove the following lower
bound for the heat kernel p}, (¢, z,y).

THEOREM 3.5. For any M >0 and T > 0, there exists positive constant
Cas = Cas(a, 3,T, M, 1) such that for all a € (0, M] and (t,z,y) € (0,T] x
D x D,

xa/Q a/2
p%(t,%y)Zng(l/\éD(\/% )(1/\613(\2;){5 )(t_d/o‘/\tJ“(x,y)).

To prove this result, we will first prove a lower bound estimates on the
Green function of X®V

Gy(ary) = / P (2, y) dt
0

when U is a bounded C™! open set. The tool we use to establish the Green
function lower bound is a subordinate killed a-stable process in U. We intro-
duce this subordinate killed process first.

Assume that U is a bounded C'! open set in R? and R; the radius in
the uniform interior and exterior ball conditions. Then it follows from [6,
Theorem 1.1] that the killed a-stable process XV on U has a density py (¢, z,y)
satisfying the following condition: for any 7' > 0 there exist positive constants
co > c¢1 depending only on «,T, Ry and d such that for any (¢,z,y) € (0,T] x
UxU,

(3.8) pult,z,y) > (1 A 5U(\:”/);/2> (1 A 5U(3);/2) <td/a A |x_t|d+a>

(3.9) pult,z,y) < c (1 A 5U(\:”/)Ea/2> (1 A 5U(3);/2) <td/a A t).
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Let {T{ : t > 0} be a subordinator, independent of X, with Laplace exponent
¢*(\) = A+ a AP/ Then the process {ZY : t >0} defined by Z»Y = quta
is called a subordinate killed stable process in U. Since ¢® is a complete
Bernstein function, the subordinator T has a decreasing potential density
u*(x). In fact u®(z) is completely monotone. (See [24], [28] for the details.)
Then it follows from [28] that the Green function R (x,y) of Z*Y is given by

(3.10) R (,y) = / " oty () di.

It follows from [29] that the Green function G¢ of XV and the Green function
R% of Z%Y satisfy the following relation:

(3.11) Ry (z,y) <Gir(x,y), (z,y)eUxU.

So we can get a lower bound on G§;(z,y) by establishing a lower bound on
R{(x,y). The following result gives sharp two-sided estimates on R{,(x,y)
and the idea of the proof is similar to that of [27].

THEOREM 3.6. Suppose that M >0 and U is a bounded C*' open set in U.
There exist positive constants Cas > Cay depending only on («,3,d, Ry, M,
diam(U)) such that for all a € (0, M],

(1A —6U(I)|C;/j(;[f<fy)a/2 )z —ylo—d when d > a,
Ry (w,y) = Cos log(lJr%) when d =1= a,
(5U(x)5U(y))(a_l)/2 A W when d=1< «,
and
(1/\%”:87@“*‘1 when d > «,
Ry (z,y) < Cas 10g(1+%) when d=1=a,
(5U<95)5U(y))(a_1)/2 A w when d=1< a.

=y

Proof. Since the drift coefficient of T is 1, we know that u®(¢) <1 for all
t > 0. Now the upper bound on R}, follows immediately from (3.10) and [6,
Corollary 1.2]. Thus we only need to prove the lower bound.

By using a scaling argument, one can easily check that

(3.12) u(t) =u'(as=5t), t>0.

Let T = diam(U). Since u'(t) is a completely monotone function with
w(0+) =1, by (3.12),

(3.13)  w(t) >u' (M%ﬁT) for every ¢ € (0,T] and a € (0, M].
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Using (3.13), (3.10) and [6, (4.2)], we get that

(3.14) /OT (1 A %) (1 A %) (t—d/a A W)ua(t) dt

1 25 o0
L SO =ty

T -yl Sy
o (1 YBOu @) (1 Vudu )2y
|z — y|o/? |z —y|o/? '

Now we can follow the proof of [6, Corollary 1.2] to get the desired lower
bound. In fact, when d > «, the desired lower bound follows from (3.14) and
[6, (4.3) and (4.7)]. Let
Su (2)*/28u (y)*/?

lz—yl*

When d =« =1, by (3.14) and [6, (4.3) and (4.9)],

Ug =

T
Ry (2,y) > u (M55T) / pu(t,2,y) dt
0

ch(mMXmM)

|z —ylo/? |z — y[o/?

+ c1log(ug V1) + crug ((1/u0) Al — W%)
[z —yl
> ca(1 Aug) + calog(ug V 1) + coug | (1/ug) A1 — —r
5U($)a/25u(y)a/2>

|z —yl|~

> c3(1 Aug) +eglog(up V1) > ey log<1 +

Lastly, in the case d =1 < a < 2. By (3.14), [6, (4.3) and (4.7)] and the first
display in part (iii) of the proof of [6, Corollaryl.2], we have

oo

Re(e,y) > u} (Ma53T) / pu(tya,y) dt
T

1 _
> es— (L) + (w0 v 107 - )

+ oo <(u0 vi1)“Ve - (%) W))
1

> ¢y (uo A u(l)_(l/a))

|z —y|t

S () e )

|z —yl



1382 7Z.-Q. CHEN, P. KIM AND R. SONG

By integrating the lower bound in Theorem 3.6 with respect to y and
applying (3.11), we obtain the following lower bound on E; [7{].

COROLLARY 3.7. Suppose that M >0 and U is a bounded C™' open set in
R?. Then there exists a constant Cag = Cog(cr, 3,d, M, Ry,diam(U)) > 0 such
that for every a € (0, M] and z €U,

Ez [T((ﬂ > ng(SU(!L‘)a/Q.

By integrating (1.5) with respect to ¢ and y, we have that for every open
set Uy, A>0and x €U,
(3.15) E.[rg] = /U Go (z,2)dz = \ A . Gy (A e, y) dy

— A Ey 1, [rX T ().

LEMMA 3.8. Suppose that M >0, xk € (0,1) and that (t,x) € (0, (ro/16)*] x
D with §p(z) < 3tY/* < ro/4. Let z, € ID be such that |z, — | = dp(x)
and define n(z,) == (v — 2z;)/|x — 2,|. Put x, = z, + 3t'/°n(z,) and B =
B(xy, 3t1/°‘). Suppose that xg is a point on the line segment connecting z, and
2p +6tY/°n(z,) such that B(xg,1.56tY/*) C B\ {x}. Then for any b >0, there
exists a constant Cao7 = Cor(k, v, B,70,b, M) > 0 such that for all a € (0, M]

(3.16) P, (X2 € B(o,kt"®)) > Cort =1 /25 (a)*/2.

Proof. Let 0 < k1 < k and assume first that 274k t1/* < op(z) < 3/,
Repeating the proof of Lemma 3.3, we get that, in this case, there exists a
constant ¢; = ¢1(«, 3, k1, M, ro,b) > 0 such that for all a € (0, M]

P, (th’D € B(xo, nltl/a)) > cltd/aHJ“(x,xo)
> ClA(d, 7a)td/a+1|x . :L,Olfdfa

for all t < (ro/16)*. Using the fact that |z — zo| € [2ktY/,6t'/*] we get that
for all a € (0, M],

(3.17) P, (X" € B(xo,k1t"/*)) > ¢z >0

for some constant ¢y = co(a, 8, k1, M, r9,b). By taking k1 = &, this shows that
(3.16) holds for all b> 0 in the case when 2~ 4k,t'/* < §p(x) < 3t/°.

So it suffices to consider the case that dp(z) < 2 *kt'/*. We now show
that there is some by > 1 so that (3.16) holds for every b > by and dp(x) <
2-4kt!/ . For simplicity, we assume without loss of generality that 2o = 0 and
let B := B(0, kt'/*). Let xy = 2z, 4 (k/4)n0(2, )t/ and By := B(a, 4 Lkt!/®).
Observe that since B(0,2xt!/%) C B\ {z},

(3.18) k)26 < |y — 2| <6t for y€ By and z € B(O,ﬁtl/o‘).
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By the strong Markov property of X at the first exit time 75, from By and
Lemma 3.1,

(3.19) P, (Xg € B(0,xt'/%))
> Py (rh, <0, X7y € B(0,27 ktY/*) and
| Xg - X7, | <27kt for s € [, 7, +bt"/°])
> e3Py (7, <Ot and X7y € B(0,27 kt"/)).
It follows from the Lévy system of X, (3.18), (3.15) and Corollary 3.7 that
(3.20) P, (X7 € B(0,27 at!/®))

— [ ey ( / 7y, 2) dz) dy
B, B(0,2- 1kt1/e)

A(da 70‘)
> | Gp,(2,y) </ 7@) dy
By B(0,2-1kt1/e) |y — 2]4T

C4 a at(@=B)/aB
?Em [TB2] = C4E9€/t1/°‘ [73(12/151/(174—1,{)}

2c5(5D<””))a/2

1/«

vV

for some positive constants cg4,c5 depending only on «, 3,79, and M. Note
that, by (1.5)

/ p%(mz 4,1Nt1/a)(bt,x,z)dz
B(z2,4= 1Kt/ ) ’
o t(@=B)/ap -1
B /B(tl/ax 4-1k) p%(fl/%%*lﬁ) (b’t /am’w) dw.
2,

Since at(@=A)/ab < MTO(O‘_E)/QB7 by applying Theorem 2.8 to the right-hand
side of the above display, we get

(3.21) Py(rh, >bt) = lim P (5, > bs)

:/ Py, (0t x,2) dz
B

—1/a,\a/2
gb—d/a/ Op(t-1/0my4-14) (1t /o) dw
B(t=1/ozy,4-1k) \/Z;

< Cbed/a71/26t71/aD (t71/ax) a/2

_ _ 5[)(1) /2
d/a—1/2
= c6b / / <t1/a >
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for some positive constant cg depending only on «, 3,79, and M. Define
2a
2\ 745
bo = (ﬁ> .

s
We have by (3.19)—(3.21) that for b > by,
(3.22) Po(Xf, € B) > c3(Pa (X2 € B(0,27 5tY/)) — Py (f, > bt))

5D($)>a/2.

tl/

> aafes/2)

(3.17) and (3.22) show that (3.16) holds for every b > by and for every x € D
with dp(x) < 3t/e.

Now we deal with the case 0 < b < by and dp(z) <27 4kt/*. If §p(z) <
3(bt/by)*/*, we have from (3.16) for the case of b= by that

P, (X0, € B(xo, 1Y) > B, (X5 ot /o) € B(xo, 5(bt/bo) %))

_ o F0@\*
-8 tl/a :

If 3(bt /b)Y ™ < 6p(x) < 274Kt/ (in this case x >3- 24(b/by)'/*), we get
(3.16) from (3.17) by taking s = (b/bg)'/*. The proof of the lemma is now
complete. O

Proof of Theorem 3.5. Let Ty := ({3)* and consider the case ¢t < Tj first.

Let zz,2, € 0D be such that |z, — x| =dp(x),|2zy —y| =0p(y) and define
n(z;) = (r — 2z;)/|xr — 2| and n(zy) := (y — 2y)/|y — zy|. Since D satisfies
the uniform interior ball condition with radius rg and 0 <t < Ty, we can
choose & as follows; if dp(x) < 31/, let & = 2, + (9/2)t"/*n(z,) (so that
B(&L,(3/2)tY*) C B(z, +3tY%n(z,),3tY*)\ {z} and §p(z) > 3t} for every
z € B(EL, (3/2)t"/*)). Tf dp(x) > 3t*/*, choose €. € B(x,5p(z)) such that
B(&,(3/2)t1/*) € B(z,0p(x)) \ {x} (so that and dp(z) >t/ for every z €
B(&L, 2711/ ). We also define ¢ the same way.

If 6p(z) < 3tY/* by Lemma 3.8 (with b=3"1x=2"1),

a/2
B (X0 € B(E24)) 2 0,2

If 6p(x) > 3t/ by Theorem 3.4,
P, (Xta/f € B({;,Qiltl/o‘)) z/ ph(t/3,z,u) du
B(gL,27 1t/ )

Z Cltid/a|B(£;,271t1/a)| 2 Co.
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Thus,
a,D t o—1,1/a 5D(9U)a/2
(3.23) P, (X5 € B(&,27't%)) 2 ¢ T/\l :
Similarly,
) a/2
(3.24) Py (X3 € B(&),27 1)) > 5 (% A 1).

Note that by the semigroup property, Theorem 3.4 and (3.23)—(3.24),
(3.25) pp(t,z,y)

> [ / P (t/3,2,u)
B(gt 27/ «) JB(gL, 2~ 1t/ @)

x ph(t/3,u,v)ph(t/3,v,y) dudv

204/ / p“D(t/S,x,u)(tJ“(u,v)/\t’d/"‘)
B(ey,2-11/%) J B(gt.2-111/e)

% P (1/3,0,y) dudv

( inf (b7 (w,0) A 7))
(u)EB(EL,2111/%) x B(g,211/%)

Since |u — v| <t/ 4 |z — y|, by considering the cases |z —y| >t/ and
|z — y| < t*/ separately, we have

3.26 inf £ (u,v) A Y
( ) (u,v)EB(E;Q*lt}}l")XB(EL,Q*ltl/“)( (u v) )

> c6(tJ%(,y) A t_d/a).
Thus combining (3.25) and (3.26), we conclude that for ¢ € (0, o],

(3.27) Ptz y) > o <5D(\2a/z A 1) (6[’(\3’/);/2 A 1)

x (tJ%(x,y) /\t_d/“).
Now we assume T = 2Ty. Recall that Ty = (r9/16)*. For (t,x,y) €
(To,2T0] x D x D, let xg,yo € D be such that max{|z — zo|,|y — yo|} <70

and min{dp(xo),dp(yo)} > ro/2. Note that, since for any M > 0, there exists
cg = cg(M) > 0 such that

(3.28) J(r) <cgj*(2r) for all >0 and a € (0, M],

>c

if v —y| > 4ro, then zlz —y| < |z —y| —2ro < |20 — yo| < |o —y| + 2o <
3lz — y|, and so cg " J(z0,y0) < J%(z,y) < cgJ%(0,yo) for some constant
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cg =cg(M) > 1. Thus by considering the cases |z — y| > 47y and |z — y| < 4rg
separately, we have

(3.29) (t/2)" %> A M > e (YN (£ (2,)))-

Similarly, there is a positive constant c¢;; such that

(371 n D s o (a/02) A ), e,
(3.50) £1%(w,) Cafe I (w,p0)
(t/3)*d/aAT’ ch<(t/(12)) /\T> weD.

By (3.30) and (3.27), we have

ph(t,z,y) =/DxDp“D(t/?),x,z)p%(t/g,z’w)p%(t/&w’y)dzdw
o1 557) 1 )

X P (t/3, 2,0) ((t/g)d/a N ““"7”) (1 p (@) ) 0z duw

Vi3
> c13 (1 A 6D(\5;);/2_2/g a/2>
oG )

s (t/3,2 w)<(1t2) d/e tJ“(qu; yo))

X (1/\ %) dz dw

for some positive constants ¢;,i = 12,13. Let Dy :={z€ D :dp(z) > ro/4}.
Clearly, xg,yo € D1 and

(3.31) min{dp, (20),0p, (o)} >r0/4=4(Tp)"* > 4(t/2)"/~.
By (1.6) and (3.29), we have

foall) 2 52) (0 25)

x pih(t/3, 2 w)(<1t2>_d/a A ”%fg’y[’)) ( %) dz dw
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—d/«a
t tJ%(xg, 2
> eu | ((ﬁ) N )>
Dy x Dy

—d/«a
u t tJ%(w, yo)
xpD(t/3,z,w)(<12> A 5 dzdw

> cls/ p* (t/(12), 0, 2) P, (/3. 2,0)p" (t/(12), w, yo) dz dw
D1 ><D1

Z Cg /; b paDl (t/(12)7$0, Z)paDl (t/37z7w)paD1 (t/(12)’wa yO) dz dw
1 X D1

A tJ“U«"mZ/o))

—cusp, (t/220,0) 2 xa (/2 n LG

> enr (17 A (1% (2,9)))

for some positive constants ¢;,i = 14,...,17. Here the interior estimate The-
orem 3.4 is used in the second to the last inequality in view of (3.31). By
repeating the argument above, we have proved Theorem 3.5. ([l

Proof of Theorem 1.1. Theorems 2.8 and 3.5 give Theorem 1.1(i).

For the proof of Theorem 1.1(ii), we use ideas used in [10]. For reader’s
convenience, we give the full details of the proof and specify the dependency
of the constants carefully.

Let D be a bounded C*! open set in R? with characteristics (Rg,Ag).
Clearly, there is a ball B = B(xg,r9) C D where ry depends only on Ry
and Ag. For each a > 0, the semigroup of X% is Hilbert-Schmidt as, by
Theorem 1.1(i)

| bltawPasdy= [ ppete.a)de < iz el <o
DxD D

and hence is compact. For a > 0, let {/\Z’D : k=1,2,...} be the eigenvalues
of —(A®/%2 +aPAP/?)|p, arranged in increasing order and repeated according
to multiplicity, and {(bZ"D : k=1,2,...} be the corresponding eigenfunctions
normalized to have unit L?-norm on D. Note that {(bZ’D :k=1,2,...} forms
an orthonormal basis of L%(D;dxz). It is well known that A$" is strictly
positive and simple, and that QST’D can be chosen to be strictly positive on D.

We also let {\¢" : k=1,2,...} be the cigenvalues of —(A*/2 +af AP/?)|p,
arranged in increasing order and repeated according to multiplicity. From the
domain monotonicity of the first eigenvalue, it is easy to see that (% > X%,
Thus, using [15, Theorem 3.4], we have that

(3.32) AP <2\0P < (/\119)06/2 + MP/? ()\’13)6/2 =:¢; for every a € (0, M],
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where AP the first eigenvalue of —A|g. Moreover, by the Cauchy-Schwarz
inequality,
1/2

(3.33) /D(l/\ép(x)o‘/Q)gZ)‘f’D(x)sz (/D(l/\ép(a:)o‘)dx> —on.

Recall that p} (¢, z,y) admits the following eigenfunction expansion

oo

phH(t,x,y) = Z eft)‘Z‘Dgf)Z’D(x)QSZ’D(y) for t >0 and z,y € D.
k=1

This implies that
(3.34) / (LA D (2)*?)ph (t,2,y) (1A Sp(y)*/?) do dy
DxD

= i et ( /D (LA (2)*?)gp " (w) dm>2.

k=1

Consequently, using the fact that {(éZ’D :k=1,2,...} forms an orthonormal
basis of L?(D;dx), we have

(3.35) /DXD(l A 5D(x)a/2)p“D(t,x,y) (1A §D(y)a/2) dx dy

< et / (1 A 5D(x)”‘) dx
D
for all @ >0 and ¢ > 0. On the other hand, since
a a,D a a,
01 7@) = [ ip(1.2.9)5 () dy.

by the upper bound estimate in Theorem 1.1(i) and (3.33) that for every
a € (0,M] and z € D,

¢T7D(w)Se”’DCl(l/\6D(fc)“/2)/D(lMD(y)C’/Q)Gb?’D(y)dy

S EAL;YDCQCl (1 A 5D(l‘)a/2).

Hence,
/(1A5D(x)a/2)¢‘;’0(x)dxze**?”’(@cl)fl/ 4P (2)% dx
D D

= e M7 (007

It now follows from (3.34) that for every a € (0, M] and ¢t >0

(3.36) /DXD(l A 5D(m)a/2)p‘1"3(t,x,y)(1 A 6D(y)a/2) dz dy

2
> o=t ( / (1/\5D(:z:)a/2)¢‘1l’D(m)dz> > e~ (M7 (¢, 00) 72,
D
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It suffices to prove Theorem 1.1(ii) for T'>3. For ¢t > T and z,y € D,
observe that

(337)  ph(tary) = / P (L2, )l (¢ — 2, 2, w)pl (L, w, ) dz dw.
DxD

Since D is bounded, we have by the upper bound estimate in Theorem 1.1(i),
(3.32) and (3.35) that for every a € (0, M], t >T and z,y € D,
Pp(t.z,y)
< 012 (1 A 5D(1‘)a/2) (1 A 5D(y)a/2)

></ (1/\6D(z)o‘/2)p“D(t—27z,w)(1/\5D(w)a/2) dz dw

DxD

< C2(1 A bp(2)*?) (1 A dp(y)*/2)e DA / 1A G (2) do
D

< 035D(x)°‘/25D(y)°‘/2et>‘(1l’D.

We also have by the lower bound estimate in Theorem 1.1(i) and (3.36) that
for every a € (0,M], t>T and z,y € D,

ph(t,x,y) > Cr2 (1v diam(D))_Qd_Qa(l A 5D(-73)a/2) (1A 5D(y)a/2)
X/ (LA GD(2)*) P (t — 2,2,w) (1A Sp(w)*/?) dz dw
DxD

> C46D($)a/26D(y)oz/2e—t)\‘ll’D )

This completes the proof of the theorem. O

Proof of Corollary 1.2. The lower bound estimate in (1.7) follows from
(3.11) and Theorem 3.6.

Since the function ¥*(|x — y|) is bounded above and below by a positive
constant if D is bounded, by integrating the two-sided heat kernel estimates
in Theorem 1.1 with respect to ¢, the proof of the upper bound estimate in
(1.7) is identical to that of [6, Corollary 1.2] so we omit the details here. [

THEOREM 3.9 (Uniform boundary Harnack principle). Suppose M,R €
(0,00), D is an open set in R?, z € D, r € (0,R) and that B(A,xr) C DN
B(z,r). There exists Cag = Cog(d, v, 8,6, M, R) > 1 such that for every a €
(0, M], and all functions u,v >0 on R, positive reqular harmonic for X in
DN B(z,2r) and vanishing on DN B(z,2r), we have

s 0(A) = (o) ()’

Proof. Applying [6, Corollary 1.2] and our Corollary 1.2 to (2.20), we have
that for every R, M > 0, there exists ¢ = ¢(a, 8, R, M) > 0 such that, for every

SCQSU x € DN B(z,7).
v
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a€(0,M]and 0<r<R
(3.38) c_lGB(:,:O,T) (x,y) < GE(z0,m) (7,y) <GBz, (x,y) Yo,y € B(xg,r).

Using (3.38), we can get uniform estimates on the Poisson kernel

Kan@2)i= [ Gy (o)1 (02)dy
B(zo,r)
of B(xg,r) with respect to X for r € (0,R]. In particular, for r < |z —
xo| < 2R, Kg(mo)” (7,2) is comparable to Kp(s, - (7,2), the Poisson kernel
of B(xg,r) with respect to X for r € (0, R]. Then using the uniform estimates
on Kp . . (2,2) and (3.38) we can easily see that [30, Lemma 3.3] can be
proved in the same way. Using the uniform estimates on the Poisson kernel of
B(xg,r), (3.28) and (3.38) we can adapt the argument in [1], [22], [30] to get
our uniform boundary Harnack principle. In [9], such ideas are used and the
uniform boundary Harnack principle is established for the relativistic stable
processes. Since the details of the proof is almost identical to those in [9], we
omit the details. O

Proof of Theorem 1.3. First, we observe that the Harnack inequality holds
for the process X! by [24]. That is, there exists a constant ¢; = ¢; (a, 3, M) > 0
such that for any r € (0, Mﬁ/(a_ﬁ)], zo € R? and any function v > 0 harmonic
in B(xg,r) with respect to X, we have

(3.39) v(z) <co(y) for all z,y € B(zo,7/2).

Note that for any a € (0, M], X® has the same distribution as {)\Xl_at,t >0},
where \ = af/(B=2) > MB/(B=)  Consequently, if u is harmonic in B(zq,r)
with respect to X%, where r € (0,1], then v(z) := u(Az) is harmonic in
B(A'zo, \~1r) with respect to X and A~lr < MA/(B=) S0 by (3.39)

u(Az) =v(x) <co(y) =cru(Ay) for all z,y € B(/\_lxo, )\_17“/2).
That is,
(3.40) u(z) <cu(y) for all z,y € B(xg,r/2).

In other words, the uniform Harnack inequality holds (for every r < 1) for the
family of processes {X®,a € (0, M]}.

Since D is a C'! open set, there exists 7o < Ry such that the following
holds: for every @ € D and r <rq there is a ball B = B(z(,r) of radius r
such that B C D and 9BNJD ={Q}. In addition, it follows [26, Lemma 2.2]
that, for each @ € 9D, we can choose a constant ca = c2(d, A) € (0,1/8] and
a bounded C1! open set Ug with uniform characteristics (R, A.) depending
on (Ro,A) such that B(Q,caro) N.D CUg C B(Q,70) N D and

(3.41) dp(y) = 0u,(y) for every y € B(Q,caro) N D.
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Assume a € [0, M], r € (0, carg], Q € OD and u is nonnegative function in R¢
harmonic in DN B(Q, r) with respect to X* and vanishes continuously on DN
B(Q,r). Let zg := ZSTO. By the boundary Harnack principle (Theorem 3.9),
there exists a constant ¢z = c3(a, 5, a, Ry, A, M) such that

u(x) G%Q (z,2q)

uly) = “Cp, (. 2q)

for every z,y € B(Q,r/8) N D.

Now applying Corollary 1.2 to Gy, (x,2¢) and Gl (z,20), then using (3.41),
we conclude that
2 (0%
u(x) 5% (z) 5% («

(3.42) <cg—; =c4—2 for every x,y € B(Q,cor)N D
ww) T el 0w

for some ¢y = ¢y4(a, B,a, Ry, A, M) > 0.
Now Theorem 1.3 follows from the uniform Harnack inequality in (3.40),
(3.42) and a standard chain argument. O
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