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A Strengthened Freiheitssatz
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The basic result in the theory of one relator groups is, of course, the Freiheitssatz
of Magnus [5]. In the case where the defining relator is a proper power, the
“Spelling Theorem” of Newman [8, 9] gives sharper results. At the 1974 Calgary
Conference on infinite group theory, Steve Pride told me that Gurevich [1] had
strengthened Newman’s theorem. Steve asked whether this result could be further
improved. Reflection on the matter led to the discovery that there is a single
theorem which strengthens both the Freiheitssatz for one relator groups in general
and Newman’s results in the torsion case.

We state the general theorem below. Perhaps the most interesting consequence
is the following. Let G=<a, b, ¢, ...; r) where r is cyclically reduced. Let R* be
the symmetrized set generated by r, that is, R* consists of all cyclic permutations
of r*1, If u is a non-trivial freely reduced word such that u=1 in G, then u has a
subword s which contains all the generators occurring in r, and such that s is
also a subword of an element of R*.

We state the general theorem in an “equational form”.

Theorem. Let G=<a,b,c,...;r) where r is cyclically reduced. Write r=z",
nz1, where z is not a proper power in the free group on a,b,c, .... (Elements of
the symmetrized set R* generated by r thus have the form (z*)" where z* is a cyclic
permutation of z*'.) If an equation u=v holds in G where u and v are freely reduced
words and v omits a generator which occurs in both r and u, then u contains a sub-
word t of an element of R* such that t=(z*)""'s and s contains every generator
which occurs in r but not v. (If n=1, then t is simply s.)

The case n>1 is announced in Gurevich [1].

The amount of additional information which the theorem yields depends, of
course, on the form of the defining relator r. It is interesting to note that a “small
cancellation” type of conclusion follows for some groups purely by one-relator
methods. For example, if G=<ay, ..., a,; a? ... aj =1, then a subword containing
all the generators must be of length at least 2(g— 1).
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The following consequence about free subgroups is different from but in the
spirit of Theorem 1.3.11 of Newman [9]. Let G=<a,b,c,d,...;r) where r is
cyclically reduced and involves at least the generators a, b, and c. Then there is
an integer m such that a™, b™, ¢™, d, ... freely generate a free subgroup of G. Indeed,
all that is necessary is to take m greater than the maximum absolute value of any
power of a, b, or ¢ occuring in a permutation of . For then any part of a word of
the form w(a™, b™, c™, d, ...) which contains occurrences of a, b, and ¢ must contain
an m-th power and thus could not be a subword of a permutation of r*®,

Our proof is geometric and makes essential use of Lyndon’s “maximum
modulus” approach to the Freiheitssatz [3]. It is interesting to note that efforts
to find a non-geometric proof have so far failed. The difficulty is with the case
where no generator has exponent sum zero. This case is not exceptional in the
geometric approach.

If all of the generators of G do not occur in r, we can write G= K = L where K
is the free group on all the generators not occuring in r. The normal form theorem
for free products quickly shows that if the theorem is true for L then it is also
true for G. We will therefore assume from now on that all the generators of G
occur in the defining relator r.

We turn to the necessary notation and terminology. The reader familiar
with a non-geometric proof of the Freiheitssatz knows that the basic idea is to
rewrite the defining relator. For example, if G=<a, b, c; b%a~2b*c*a’®), we can
view G as an HNN extension of the one relator group

H=<b_5,b_ 1, bg, cyie Z; b2b% ,¢2 )

since

G={(H,a;ab_sa '=b_,,ab_,a " '=by,ac,a” '=c;,,i€l).

(Compare [6].)

In short, one now has many generators and relators with subscripts. We
formalize this situation, since it also arises in the geometric approach, although
in quite a different manner.

Consider a presentation G=<X; R). We assume that X is a disjoint union,
say X=uU X, and say that the generators in each X, are of the same type. We
also assume that there is an integer valued function assigning a subscript to each
generator in X. (In our example above, a type would consist of a letter with sub-
scripts, say all the ¢;, ie Z.) We also require that there is a unique subscript assigned
to each relator in R, say R={r;:je JCZ}. Furthermore, we required that there
is a fixed integer n= 1 such that each r;=z7 where z; is not a proper power in the
free group on X.

If wis a word on X*! and t is a type, then max,(w) will denote the generator
of type T with maximum subscript which occurs in w. (We will use this notation
only when w actually contains a generator of type 7.) Define min,(w) similarly.
Let X and R be as above. We say that the presentation {X; R) is staggered if
every relator in R contains at least one generator of each type and the following
condition holds for every type t:
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If 4 can be chosen so that R contains at least two different relators, then we
have succeeded in reducing the proof to the previous case. Now Lyndon shows
that such a choice of u is possible provided that we make one preliminary modi-
fication of the labelling on the diagram M. Call two positions p; and p; immediately
related, written p;~p;, if p;=p; or if there are regions D, and D, of M with an
edge ee 0D, NdD, such that the label on e occurs at position p; in the label on
0D, and occurs at position p; in the label on dD,.

Call two positions p; and p; related, written p;~p;, if there is a sequence of
positions such that

Pi~Pr~ - ~Di~Dj-

What we desire in the original relator r is that any two positions p; and p; such
that y occurs in p; and y** occurs in p; are related. If this is not the case, take each
equivalence class under &~ and relabel it with a new generator. This procedure
is easily seen to be consistent. Let M’ be the diagram obtained after this modifi-
cation of the labelling. It is clear that the modulus principle for M’ is, if anything,
stronger than the result for M. Under the assumption that any two positions
labelled by the same y*! are related, Lyndon now shows how to choose u so
that at least two distinct relators will be present after subscripting.

We now state a geometric “omission principle” which implies the theorem
we wish to prove.

Theorem. Let {X; R) be a staggered presentation. Let M be a connected
simply connected reduced R*-diagram with at least one region and no vertices of
degree one. Suppose that aff is a boundary cycle of M where @(B) omits max,(0M)
for some type o. Then M has a region D such that o/ = N3D is a consecutive part
of both o and 0D and @(«')=(z*)""'s where (z*)" is a boundary label of D and s
contains an occurrence of a generator of type t for every t such that @(f) omits
max_ (0M). The same statement holds with “max” replaced by “min”.

Proof. Note that the geometric version implies the non-geometric version,
for suppose that an equation u=v holds in G where u and v are freely reduced
and v omits max,(u,v) for some type g. As noted previously, we may assume
that uv ™! is cyclically reduced without cancellation. Apply the present theorem
to a reduced R*-diagram with boundary label uv~'.

The proof is by induction on the number of regions of M with the induction
being applied simultaneously over all staggered presentations. If M has only one
region the result clearly holds. We carry out the argument assuming that ¢(f)
omits max,(0M). The other case will follow by interchanging “max” and “min”.

We first show how the result follows from the induction hypothesis if M is
not a simple closed path. In this situation pick an extremal disk J of M. (See Lemma
3 of [7].) Let J be attached to the rest of M at the vertex v,, and let A be the bound-
ary cycle of J beginning at v,. (See Fig. 1.) Let v, be the vertex preceeding v, and
closest to v, so that, if 5 is the stem running from v, to v,, the removal of nin ™!
(and its interior) from M leaves a map K with no vertices of degree one. (It is
possible that v, =v, and # is empty.)
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label on a region of M. Pick a region D labelled by r, and let K be the maximal
connected submap of M satisfying:

K contains D and all edges of K are on the boundaries of regions labelled by
relators with subscript k.

By the maximality of K, if a region E which is labelled by an r, has a boundary
edge in K, then E is in K.

Now K is connected by definition. We claim that K is also simply connected.
If not, let J be a bounded component of M—K. Now J contains a region labelled
by some r; with j< k, and J has fewer regions than M. By the induction hypothesis,
dJ contains edges labelled by min_(J) for every type 7. But all the edges of dJ are
on the boundaries of regions labelled by relators with subscript k. Since (X ; R)
is staggered, min (J)< min,(r,), which is a contradiction establishing the claim.

Since K is not all of M, the induction hypothesis says that 0K contains edges
labelled by max_(r,). By the maximality of K, these edges must also be in dM.
Minimum modulus follows by interchanging “max” and “min”.

Thus we are left with the case where there is one relator r such that all the
regions of M are labelled by cyclic permutations of r*!. We recall Lyndon’s
ingenious procedure for reducing this case to the previous case. We change
notation and consider each distinct generator in r to be of a different type and
to be without subscript. Let Y be the set of generators occuring in r, and let F
be the free group on Y. Recall that each edge of M is labelled by a generator or
its inverse. Let r=z" where z is not a proper power in F.

Consider a function p: F—Z with p(z)=0. Then p induces a function on paths
o in M by defining p(x) = p(¢p(a)). Since p vanishes on boundary cycles of regions
of M, we have u(f) =0 for every closed path fin M. Pick a vertex v, on the boundary
of a region D, of M. For any vertex v of M, define the “potential function” o(v)
by o(v)= u(x) where « is any path from v, to v. Since u vanishes on closed paths,
o is independent of path and is thus well defined. Let e be an edge of M, say with
label @(e)=ye Y*!, and let v, and v, be the endpoints of e. We subscript this
occurrence of y by assigning to it the sum of the potentials at the endpoints,
that is, we give y the subscript o(v,)+0(v;). (Our definition of this subscript
differs slightly but inessentially from Lyndon’s definition.)

Write z=y, ... y, with each y,e Y*!. Since z is not a proper power, starting
at each y; determines a distinct cyclic permutation of z. We thus think of the
letters in r=z" as being in one of the distinct positions p,, ..., p,. (Each position
occurs n times in r.) Before subscripting, we may assume that r was the boundary
label on D, beginning at v,. If E is a region of M, pick a vertex v,e 0E and an
orientation so that r is the boundary label on JE beginning at v, and reading in
the chosen direction. Let # and #* be the subscripted relators obtained from
0D, and OF read as above. Let d= u(x) where « is a path from v, to v,. Then the
subscript on a generator occurring in position p; in #* differs from the subscript
on a generator occurring in position p; in # by 2d.

Thus we have the following situation. Let Y be the set of generators with
subscripts which now occur on edges of M. Let R be the set of relators obtained
by reading (as above) the boundaries of regions of M. Pick a type o of generator
in Y. Assign to each 7€ R the minimum of the subscripts on generators of type o
which occur in 7. Then the presentation (Y;R) is staggered.
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If i<j, then max,(r;)<max,(r;) and min (r;)<min(r). (We have used an
obvious extension of notation, writing x;<x; if x; and x; are generators of the
same type with i<j.)

We must, of course, work with the symmetrized set R* generated by R. If
some re R* is a cyclic permutation of r;* !, we also consider r as having the sub-
script j assigned to it. We now formulate our theorem as an “omission principle”
in terms of staggered presentations.

Theorem. Let G have the staggered presentation <X ; R). If an equation u=v
holds in G where u and v are freely reduced words and, for some type o, v omits
max,(u, v), then u contains a subword t of some r¥e R* where t=(z*)""'s and s
containes a generator of type t for every 1 such that v omits max,(u, v). The same
statement also holds with “max” replaced by “min”.

This statement about staggered presentation clearly implies the desired result
for one relator presentation. For, if G={X;r), we can regard each distinct
generator as being of a different type and having the subscript zero assigned to it.

One further comment is required at this point. Suppose that an equation
u=v holds in G with u and v as above. If u and v have a non-trivial common
initial segment, say u=wu,; and v=wv,, then u;=v, in G, u; and v, satisfy the
hypothesis of the theorem, and the conclusion applied to u; and v, yields the
conclusion for u and v. The same remark applies if u and v have a common terminal
segment. Thus from now on, we need consider only equations u=v where up ™'
is cyclically reduced without cancellation.

We assume that the reader is familiar with cancellation diagrams; for example,
with Lyndon [2] or [3], or Miller and Schupp [7]. Let {X; R) be a staggered
presentation with R* the symmetrized set generated by R. If M is an R*-diagram,
the boundary of M will be denoted by 0M, and the labelling function for M will
always be denoted by ¢. If & and  are paths, we use the notation a < to mean
that o is a subpath of B, that is, the edges in « are a consecutive subsequence of
the edges in f. Recall that a diagram M is reduced if it is not the case that there
are regions D, and D, of M with an edge eC dD, ()0D, such that if we remove
the edge e, combining D, and D, into a single region D, the resulting region D
has boundary label equal to 1 in the free group on X. For our purposes, we will
consider the edges of M subdivided so that each edge is labelled by a generator
or its inverse. For any type 7, max,(M) will denote the generator of type t with
maximum subscript which occurs as the label on an edge of M. Define max, (M)
similarly, but with the maximum taken over edges in M. Define min, (M) and
min,(6M) analogously.

In [3] Lyndon proves the Maximum-minimum Modulus Principle: Let M be a
connected simply-connected reduced R*-diagram. Then for each type 7, there
are edges in M labelled by max (M) and min (M).

Since we shall need not only this result but a firm grasp on the details of the
proof, we sketch the proof, which is by induction on the number of regions of M.
The induction is applied simultaneously over all staggered presentations. If M
has only one region the result holds.

We first suppose that M contains regions labelled by relators with different
subscripts. Let k be the maximum subscript on any relator which occurs as the
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Fig. 1

We consider three cases. First suppose that ACa. By the maximum modulus
principle applied to J, ¢(4) contains max,(J) for every type t. Let y be the empty
path at v,. Clearly then, 1=¢(y) omits max. (¢(4)) for every 7. By the induction
hypothesis, the theorem holds for J and the boundary cycle Ay. Since A< a, the
theorem holds for M and af. Suppose next that yin ' 2 . Let a, be the boundary
cycle of K beginning at v,, and note that a, Ca in view of the assumption on f.
Let y, be the empty path at v,. The result follows as in the previous case by applying
the induction hypothesis to K and the boundary cycle a,7,.

Finally, suppose that neither of the above situations apply, that is, both A and
0K contain edges of . Thus K has a boundary cycle a,, where a, Ca and ,< S
Similarly, J has a boundary cycle a,f; where o;Ca and g, <p. (It is possible
that one of a, or a, is empty.) Now max,(0M) cannot occur as the label on an
edge in #. For, such an edge could not be in B and we would have BCyin 1,
contrary to assumption. Thus at least one of ¢(a,) or ¢(a,) contains an occurrence
of max, (M) and the result follows by induction.

We are thus left with considering only the situation where 0M is a simple
closed path. Following Lyndon’s dichotomy, we first consider the case where M
contains regions labelled by relators with different subscripts. Let k be the max-
imum subscript on relators labelling regions of M. By the maximum modulus
principle,

max,(M)= max,(0M)= max,(r,),

so it is max,(r,) which ¢(f) omits.

We now show how the result follows from the induction hypothesis if any
region D, labelled by some r; with j<k has even so much as a single vertex v,
of its boundary in common with . (We include here the case that g is the empty
arc based at v,.) For, we can excise D, to form a new diagram M, as follows.

Pull apart the boundary of D, at the vertex v,. Form M, by deleting from M
the region D, and any edges in the component of dD; ndM which contains v,.
(See Fig. 2)

Now M, has a boundary cycle §,a,; where o, Ca and all edges of 8, are edges
which were originally in § or in 6D,. Since the presentation {X; R) is staggered,
max,(r;) < max,(ry) and thus ¢(B,) omits max,(éM,). The result now follows
from the induction hypothesis applied to M, and the boundary cycle «,j;.

We may now suppose that all regions having any part of their boundary on
p are labelled by a cyclic permutation of rf!. Let K be a maximal connected
submap of M such that:
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K contains f and all edges in K are on the boundaries of regions labelled by
relators with subscript k.

Now K is connected by definition, and, as in the proof of the modulus prin-
ciple, K is also simply connected. Some component of 0K néM contains . Thus
there is a simple path y lying entirely in K and a subpath o, C« so that a,;y bounds
a disk J containing all regions of M not labelled by relators of subscript k.
(This property of J is possible since K is simply connected. See Fig. 3.)

Thus J contains at least one region labelled by some r; with j<k. By the
minimum modulus principle, min,(J) equals min, (8J). Since y lies entirely in K
and the presentation (X; R) is staggered, ¢(y) omits min,(dJ) for every type t.
The theorem now follows from the induction hypothesis applied to J and the
boundary cycle a,y.

Finally, we are left with the case where all regions of M are labelled by cyclic
permutations of a single r*!. To conclude our proof, it remains only to note
that if, as in the establishment of the modulus principle, we follow Lyndon’s
preliminary modification and subscripting procedures, the conclusion for the
relabelled diagram M implies the conclusion for the original M.

Original article: Schupp, P. E.: A Strengthened Freiheitssatz. Math. Ann. 221,
73-80 (1976), reprinted with kind permission of Springer Science 4+ Business
Media.
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Note added in Proof. Gurevich has recently informed me that his methods of proof will also yield
the theorem of this paper when the relator is not a proper power.





