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POINT SIMPLICIALITY IN CHOQUET REPRESENTATION
THEORY

MIROSLAV BAČÁK

Abstract. Let H be a function space on a compact space K. If
H is not simplicial, we can ask at which points of K there exist

unique maximal representing measures. We shall call the set of

such points the set of simpliciality. The aim of this paper is to

examine topological, algebraic and measure-theoretic properties

of the set of simpliciality. We shall also define and investigate
sets of points enjoying other simplicial-like properties.

1. Introduction

The conception of the infinite-dimensional simplex in locally convex spaces
was introduced by Choquet, see [3]. Later, it was generalized by means of mea-
sure theory for general (nonconvex) compact spaces as the simplicial function
space.

Several authors (e.g., Chu [4], Köhn [6], Lima [7]) have studied simpliciality
restricted on faces generated by a given point. In Köhn’s paper [6], there is
an implicit definition of point simpliciality and some equivalent conditions for
it. We should also mention an abstract framework due to Simons [14].

In this paper, we define a point of simpliciality, this enables us to consider
simpliciality as a point phenomenon. Then we define the set of simpliciality
as the set of all points of simpliciality.

Moreover, we use a more general setup (the framework of function spaces),
than that used in previous work (cited above) concerned with simpliciality of
faces. That was limited to compact convex subsets of locally convex spaces.

The main results of this paper (Theorems 4.1, 4.5, 5.6, 6.2, 6.4) describe
properties of the set of simpliciality (and Bauer simpliciality). We also define
“generalized” simpliciality in the set of Radon probability measures. This
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provides a characterization of measures supported by the set of simpliciality
(Theorem 5.1), which enables us to show that the set of simpliciality is measure
extremal (Theorem 5.6).

We obtain an analogy to the following well-known fact [2].

Fact 1. Let H be a function space on a metrizable compact space K. Then
the Choquet boundary ChH(K) is a Gδ-set, and a measure μ ∈ M1(K) is
maximal if and only if μ(ChH(K)) = 1.

The promised analogy, which should be compared to the above fact, is
contained in Theorem 4.5 and in the equivalence (2) ⇔ (4) in Theorem 5.1.
Let us mention the statement here.

Fact 2. Let H be a function space on a metrizable compact space K. Then
the set of simpliciality SimH(K) is a Gδ-set, and, for a measure μ ∈ M1(K),
there exists a unique maximal measure ν ∈ M1(K), μ � ν if and only if
μ(SimH(K)) = 1.

We refer the reader to the next section for notation and definitions not
explained here.

2. Preliminaries

At the beginning, we introduce some notation and basic facts concerning
Choquet’s theory, for details, see e.g., [1], [2], [8], or [12]. All topological
spaces in this paper are supposed to be Hausdorff. Let K be a compact
space. The symbol C(K) stands for the Banach space of all real continuous
functions on K equipped with the sup-norm. A subspace H of C(K) is called
a function space on K provided it separates points of K and contains all
constant functions. Notice that the function space H does not have to be
closed. Let us denote the set of all Radon measures, positive Radon measures
and probability Radon measures M(K), M+(K), and M1(K), respectively.
These sets of measures are equipped with the weak∗ topology. We say that
a measure μ ∈ M1(K) represents a point x ∈ K if f(x) = μf for all f ∈ H.
If a measure μ represents a point x ∈ K, we also say that x is the barycenter
of μ, and we denote x = rμ. Since H separates points of K, the barycenter
of μ, if it exits, is determined uniquely. The set of all measures representing
a point x ∈ K will be denoted by Mx(H). Further, define an equivalence on
M1(K) by

μ ∼ ν if μ − ν ∈ H ⊥,

where H ⊥ stands for the annihilator of H defined as H ⊥ = {μ ∈ M(K) : μf =
0 for all f ∈ H }.

We shall denote the set of all measures ν ∈ M1(K) which are equivalent to
a given measure μ ∈ M1(K) as Mμ(H). Clearly, Mεx(H) = Mx(H), where
εx denotes the Dirac measure at a point x ∈ K. The symbol ChH(K) stands
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for the Choquet boundary, which is, by definition, the set of all x ∈ K having
only one representing measure εx.

We present two examples of function spaces.

Example 2.1. Let X be a compact convex subset of a locally convex space.
The set of all continuous affine functions Ac(X) is a function space on X . The
Choquet boundary corresponds with the set of extreme points of K. We will
refer to this setting as to the “convex case,” and the symbol X will always
stand for a compact convex subset of a locally convex space. As we will see
later (definition of the state space), every compact space (with a function
space defined on it) can be considered to be embedded into a certain compact
convex set (which depends on the function space). In this sense, the “convex
case” is the most important example.

Example 2.2. Let U be a bounded open subset of the Euclidean space R
m.

Then H(U), the family of all continuous functions on U which are harmonic
on U , is a function space on the compact set U . The Choquet boundary of
H(U) corresponds with the set Ureg of regular points of U (see [11, Theorem,
p. 625]).

We define the state space of a function space H as

S(H) = {ϕ ∈ H ∗ : 0 ≤ ϕ, ‖ϕ‖ = 1}.

It is well known that H ∗ is isometrically isomorphic to the quotient space

M(K)/H ⊥

and that
S(H) = π(M1(K)).

Here, π stands for the quotient mapping from M(K) to H ∗. Furthermore,
define homeomorphic embedding φ : K → S(H) : x 	→ φx by φx = π(εx).

A Borel bounded function f on K is said to be H-affine if f(x) = μf , for
all x ∈ K and μ ∈ Mx(H). Let us denote the set of all H-affine functions on
K as A(H) and the set of all continuous H-affine functions on K as Ac(H).
It is a closed subspace of C(K) and it contains H. In the “convex case,” one
has Ac(H) = H = Ac(X), hence Ac(H) coincides with the set of all continuous
affine functions on X .

A Borel bounded function f on K is said to be H-convex if f(x) ≤ μf , for
all x ∈ K and μ ∈ Mx(H). Denote the set of all H-convex functions on K as
K(H) and the set of all continuous H-convex functions on K as Kc(H). The
cone of all continuous H-convex functions induces so-called Choquet ordering
� on M+(K) by

μ � ν if μf ≤ νf for all f ∈ Kc(H).

Lemma 2.3. Let f be a semicontinuous H-convex function and μ, ν ∈
M+(K). If μ � ν, then μf ≤ νf .
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Proof. Can be found in [9, Lemma 2.7] �

For each measure μ ∈ M1(K), there exists a maximal (in the Choquet or-
dering) measure ν ∈ M1(K) such that μ � ν. The set of all maximal measures
representing a point x ∈ K will be denoted Mmax

x (H). If K is metrizable, then
the Choquet boundary is a Borel measurable set and a measure μ is maximal
if and only if μ(ChH(K)) = 1.

A function space H on a compact space K is called simplicial if, for every
x ∈ K, there exists a unique maximal measure μ ∈ Mx(H). Moreover, if
ChH(K) is closed, then H is called a Bauer simplicial space. We shortly say
that a compact convex set X is a Choquet simplex, if Ac(X) is simplicial.

For a bounded function f on K, its upper envelope f ∗ is defined as

f ∗ = inf{h : h ≥ f,h ∈ H },

and its lower envelope f∗ as

f∗ = sup{h : h ≤ f,h ∈ H }.

An upper envelope is upper semicontinuous and −f ∗ ∈ K(H).
The following lemma is called the Mokobodzki maximality test ([9, Theo-

rem 2.8]).

Lemma 2.4. A measure μ ∈ M1(K) is maximal if and only if μf = μf ∗

for all f ∈ Kc(H).

Let X be a compact convex subset of a locally convex space, we say that
a subset F ⊂ X is extremal if for any x, y ∈ X, t ∈ (0,1) is x, y ∈ F , provided
tx + (1 − t)y ∈ F . If F is extremal and convex, we say that F is a face. Let
x ∈ X , and define the smallest face face(x) containing x as the intersection
of all faces containing x.

The following proposition is due to Köhn [6, Proposition 2].

Proposition 2.5. Let X be a compact convex subset of a locally convex
space, x ∈ X . Then there exists a unique maximal measure representing the
point x if and only if, for every y ∈ face(x), there exists a unique maximal
measure representing the point y.

A Borel set B ⊂ K is called measure convex if every measure μ ∈ M1(K)
such that μ(B) = 1 has its barycenter in B, provided it has the barycenter.
A Borel set B ⊂ K is called measure extremal if for each x ∈ B and for each
μ ∈ Mx(H), it is μ(B) = 1. Define the following functionals

Qμ f = inf{μh : h ≥ f,h ∈ H } and Pμ f = μf ∗,

where f is a bounded Borel function and μ ∈ M1(K). If μ = εx for some
x ∈ K, then

Qμ f = Pμ f = f ∗(x).
Similarly, define functionals Qμf = sup{μh : h ≤ f,h ∈ H }, and Pμf = μf∗.
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Lemma 2.6. For each f ∈ C(K) and μ ∈ M1(K), we have

Qμ f = sup{νf : ν ∈ Mμ(H)}
and the supremum is attained.

Proof. See [9, Proposition 2.3]. �

Corollary 2.7 (Bauer). For each f ∈ C(K) and x ∈ K, we have

f ∗(x) = sup{νf : ν ∈ Mx(H)}
and the supremum is attained.

Lemma 2.8. For each f ∈ C(K) and each μ ∈ M1(K), we have

Pμ f = sup{νf : ν ∈ M1(K), μ � ν}
and the supremum is attained.

Proof. This lemma can be easily proved replacing Qμ by Pμ in the proof
of Proposition 2.3 in [9]. �

Lemma 2.9. If a sequence (fn) ⊂ C(K) converges uniformly on K to a func-
tion f ∈ C(K), then the sequence (f ∗

n) converges to f ∗ uniformly on K.

Proof. Follows from the inequality |f ∗
n − f ∗

m| ≤ ‖fn − fm‖. �

3. Examples

Let us start with the pivotal definition of this paper and present some
examples.

Definition 3.1. Let H be a function space on a compact space K. We say
that x ∈ K is a point of simpliciality if there exists only one maximal measure
representing the point x. We denote the set of all points of simpliciality by
SimH(K), and call it the set of simpliciality. The complement K \ SimH(K)
is called the set of nonsimpliciality.

Remark 3.2. Clearly, ChH(K) ⊂ SimH(K), in particular, the set of simpli-
ciality is nonempty; and SimH(K) = K if and only if H is simplicial.

Remark 3.3. In the “convex case,” for a compact convex set X , denote the
set of simpliciality Sim(X), that is Sim(X) stands for SimAc(X)(X).

Example 3.4. Consider a square in R
2. It is a compact convex set which is

not a simplex. The set of simpliciality consists of its edges.

Example 3.5. Let us introduce “McDonald’s nonsimplex” (Example 1.9 in
[10]). Choose μ ∈ M([0,1]) such that the positive and negative variations
μ+, μ− are in M1([0,1]) and spt(μ+) = spt(μ−) = [0,1]. Define

H = Kerμ = {f ∈ C([0,1]) : μf = 0}.
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Obviously,
H ⊥ = {ν ∈ M([0,1]) : ν = αμ for some α ∈ R}.

We claim that H is a function space on [0,1]. Indeed, it contains constant
functions since μ([0,1]) = 0, and it separates points of [0,1] : choose x, y ∈ [0,1]
and suppose f(x) = f(y) for every f ∈ H. Then εx − εy ∈ H ⊥, hence

εx − εy = αμ = αμ+ − αμ−,

for some α ∈ R. Since spt(μ+) = spt(μ−) = [0,1], one gets α = 0, and thus
x = y. Further, we will show that ChH([0,1]) = [0,1]. Choose x ∈ [0,1] and
ν ∈ Mx(H). Then ν − εx ∈ H ⊥, and thus ν − εx = αμ, for some α ∈ R.
Similarly, as above, we have ν = εx, and thus ChH([0,1]) = [0,1]. McDonald’s
nonsimplex is defined as the state space S(H) of H. Let us show that it is
not a simplex. Since s := π(μ+) = π(μ−) ∈ S(H) and

rφμ+ = π(μ+) = π(μ−) = rφμ− ,

we see that the point s has two different representing measures φμ+, φμ−

supported by ChH([0,1]). Therefore φμ+ and φμ− are maximal, and so s is
not a point of simpliciality.

Now, we want to find the set of simpliciality Sim(S(H)). Suppose that
Λ1 and Λ2 are maximal probability measures on S(H) representing a point
x ∈ S(H). Then there exist maximal measures λ1, λ2 ∈ M1([0,1]) such that
Λ1 = φλ1 and Λ2 = φλ2. Then λ1 − λ2 ∈ H ⊥, and thus

λ1 − λ2 = αμ = αμ+ − αμ−,

for some α ∈ R. Without loss of generality, assume that α ≥ 0. Since λ1 ≥
αμ+, we get α ≤ 1. Hence,

λ1 = αμ+ + (1 − α)γ

and
λ2 = αμ− + (1 − α)γ,

where γ is a measure from M1([0,1]). If α > 0, then we have two different
maximal measures Λ1,Λ2 representing the point

x = αφμ+ + (1 − α)φγ = αφμ− + (1 − α)φγ

and thus x /∈ Sim(S(H)). We conclude that

S(H) \ Sim(S(H)) = {αφμ+ + (1 − α)φγ : α ∈ (0,1], γ ∈ M1([0,1])}.

Example 3.6. The last example deals with convex functions on [0,1]. A sim-
ilar set of functions was investigated from the point of view of the noncompact
Choquet theory by Rakestraw [13]. Let us define the following set of functions

Z = {f : [0,1] → [0, ∞), f convex, f(0) + f(1) = 1}.

This set is convex and compact in {f : [0,1] → R, bounded, continous on
(0,1)} with respect to the topology of pointwise convergence.
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The set of extreme points is

ext(Z) = {g1
y, g2

y : y ∈ [0,1]},

where

g1
y(x) =

{
0, 0 ≤ x ≤ y < 1,
x−y
1−y , 0 ≤ y < x ≤ 1,

for y ∈ [0,1),

g2
y(x) =

{
1 − x

y , 0 ≤ x < y ≤ 1,

0, 0 < y ≤ x ≤ 1,

for y ∈ (0,1], and

g1
1(x) = χ{1}(x), g2

0(x) = χ{0}(x).

A function f ∈ Z belongs to the set of simpliciality if and only if it satisfies
at least one of these conditions:

• f is affine on (0,1),
• infx∈[0,1] f(x) = 0.
Verification of these facts is rather technical but elementary.

In the following three sections, we will present the main results concerning
the set of simpliciality and the set of Bauer simpliciality. The letter “K”
stands for a compact space, whereas we use the letter “X” instead, for a convex
compact subset of a locally convex space.

4. Properties of the set of simpliciality

In the previous section, we introduced examples of nonsimplicial function
spaces for which we were able to find the sets of simpliciality. Now let us
investigate some general properties of the set of simpliciality.

Theorem 4.1. Let X be a compact convex subset of a locally convex space.
Then the set of simpliciality Sim(X) is extremal and, consequently, the set of
nonsimpliciality X \ Sim(X) is convex.

Proof. According to Proposition 2.5, if the set SimH(K) contains a point
x ∈ X , it also contains face(x). Hence,

Sim(X) =
⋃

x∈Sim(X)

{x} ⊂
⋃

x∈Sim(X)

face(x) ⊂ Sim(X).

Then
Sim(X) =

⋃
x∈Sim(X)

face(x).

It is straightforward to verify that a union of faces is an extremal set. This
finishes the proof. Another possibility is to prove first that X \ Sim(X) is
convex. �
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Remark 4.2. In the “convex case,” the set Sim(X) is the complementary set
to X \ Sim(X) and we have a disjoin union X \ Sim(X) ∪ (X \ Sim(X))′ = X .
Recall that, for a subset A of a compact convex set X , the complementary set
A′ is defined as the union of all faces of X disjoint with A.

Remark 4.3. In general, if a compact space K does not have an algebraic
structure, we can ask whether the set SimH(K) is measure extremal, or equiv-
alently, whether the set K \ SimH(K) is measure convex. But we do not know
yet that these sets are Borel measurable. Recall that in the “convex case”
a measure convex set is convex, but a convex set is not necessarily measure
convex, and similarly, a measure extremal set is extremal, but an extremal
set is not necessarily measure extremal. For counterexamples, see [5], and [9,
Examples 4.3].

Now, let us present some characterizations of point simpliciality for function
spaces which will be useful further on. “Global version” of Proposition 4.4 for
the “convex case” can be found in [12, Theorem, p. 56].

Proposition 4.4. Let H be a function space on a compact space K
and M a dense (with respect to the norm topology) subset of Kc(H). Let
x ∈ K. The following assertions are equivalent:

(1) x ∈ SimH(K),
(2) f ∗(x) = μf ∗ for all f ∈ M and μ ∈ Mx(H),
(3) f ∗(x) = μf for all f ∈ M and μ ∈ Mmax

x (H),
(4) (f + g)∗(x) = f ∗(x) + g∗(x) for all f, g ∈ M .

Proof. If M = Kc(H), the proof is similar to the proof of the “global ver-
sion” in the “convex case,” [12, Theorem, p. 56]. For an arbitrary dense
M ⊂ Kc(H), the proof follows from Lemma 2.9 and the Lebesgue Dominated
theorem. �

Theorem 4.5. Let H be a function space on a metrizable compact space
K. Then the set of simpliciality SimH(K) is a Gδ-set.

Proof. Since K is metrizable, the space C(K) is separable, and thus Kc(H)
is such. Choose a dense countable set M ⊂ Kc(H). According to (4), in
Proposition 4.4, we have

SimH(K) = {x ∈ K : f ∗(x) + g∗(x) = (f + g)∗(x) for all f, g ∈ M }.

Hence,

SimH(K) =
⋂
k∈N

⋂
f,g∈M

⋂
(h∈H,h≥f+g)

{
x ∈ K : f ∗(x) + g∗(x) − h(x) <

1
k

}

=
⋂
k∈N

⋂
f,g∈M

⋂
(h∈N,h≥f+g)

{
x ∈ K : f ∗(x) + g∗(x) − h(x) <

1
k

}
,
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where N is a dense countable subset of H. The function f ∗ + g∗ − h is upper
semicontinuous, hence the set {x ∈ K : f ∗(x) + g∗(x) − h(x) < 1

k } is open for
each k ∈ N. We conclude that SimH(K) is a Gδ-set. �

Remark 4.6. The set of simpliciality can be closed in the compact space K
as we saw in Example 3.4. But in the “convex case,” it cannot be open
in X . Moreover, its interior in X is empty (of course, provided Sim(X) �= X).
Indeed, if there exists a point x in interior of Sim(X), then for arbitrary point
y ∈ K \ Sim(X) one can find z ∈ Sim(X) on the line segment, say z = λx+(1 −
λ)y, for some λ ∈ (0,1). Let μx ∈ Mmax

x (Ac(X)) and μ1
y, μ2

y ∈ Mmax
y (Ac(X)).

Then
λμx + (1 − λ)μ1

y

and
λμx + (1 − λ)μ2

y

are two different maximal measures representing the point z, which is a con-
tradiction to z ∈ Sim(X).

Generally, in a “nonconvex case,” the set of simpliciality can be open.
To show this, consider the set K = {[0,0], [1,1], [1, −1], [−1, −1], [−1,1]} ⊂ R

2

equipped with the relative topology from R
2. Then K is a compact set and

restrictions of affine functions form a function space H. Clearly, SimH(K) =
{[1,1], [1, −1], [−1, −1], [−1,1]}, which is an open set in K.

Corollary 4.7. Let X be a compact convex subset of a locally con-
vex space. The set X \ Sim(X) of nonsimpliciality is dense in X , provided it
is not empty.

Proof. Follows immediately from Remark 4.6. �

5. Generalized simpliciality

Let K be a compact space. We know that a point x ∈ K is a point of
simpliciality if there exists only one maximal measure ν ∈ M1(K) represent-
ing x. That is, if there exists a unique maximal measure ν ∈ M1(K), such
that εx � ν. For every x ∈ K and ν ∈ M1(K), the following equivalence holds

εx � ν if and only if εx ∼ ν.

In general, for measures μ, ν ∈ M1(K), we have only implication

if μ � ν, then μ ∼ ν.

We can ask when, for a given measure μ ∈ M1(K), there exists a unique
maximal measure ν ∈ M1(K) such that μ � ν, and when there exists a unique
maximal measure ν ∈ M1(K) such that μ ∼ ν. We will see that such measure
μ can be characterized by the functionals Pμ and Qμ, respectively, in a similar
way like a point of simpliciality in Proposition 4.4(4).
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We shall say that a measure μ ∈ M1(K) belongs to the set PS if

Pμ f + Pμ g = Pμ(f + g)

for all f, g ∈ Kc(H). Similarly, we shall say that a measure μ ∈ M1(K) belongs
to the set QS if

Qμ f + Qμ g = Qμ(f + g)
for all f, g ∈ Kc(H).

Theorem 5.1. Let H be a function space on a metrizable compact space K
and μ ∈ M1(K). The following assertions are equivalent:

(1) μ ∈ PS,
(2) there exists only one maximal measure ν ∈ M1(K) such that μ � ν,
(3) for every maximal measure ν ∈ M1(K), μ � ν and every f ∈ Kc(H),

we have νf = Pμ f ,
(4) μ is supported by the set SimH(K), that is μ(SimH(K)) = 1.

Proof. (1) ⇒ (2) Suppose that

Pμ f + Pμ g = Pμ(f + g),

for all f, g ∈ Kc(H). Let us define a linear functional ϕ on Kc(H) − Kc(H) as

ϕ(f − g) = Pμ f − Pμ g for f, g ∈ Kc(H).

It is straightforward to verify that the definition does not depend on the choice
of f, g ∈ Kc(H). Hence the functional ϕ is well defined. Further, it is bounded
and ‖ϕ‖ = 1. Indeed,

(1) ϕ(f − g) = Pμ f − Pμ g ≤ Pμ(f − g) ≤ ‖f − g‖
implies after changing f and g that

|ϕ(f − g)| ≤ ‖f − g‖,

and hence ‖ϕ‖ ≤ 1. Further, ϕ(1) = 1 implies ‖ϕ‖ = 1. The first inequality in
(1) follows from

Pμ f = Pμ[(f − g) + g] ≤ Pμ(f − g) + Pμ g for all f, g ∈ Kc(H).

Since Kc(H) − Kc(H) is a dense subspace of C(K), there exists a uniquely
determined linear extension ν of ϕ to whole C(K), such that ‖ν‖ = ‖ϕ‖.
Using Riesz’s representation theorem, one can assume that ν ∈ M1(K). Take
a function f ∈ Kc(H), then νf = Pμ f ≥ μf . That is μ � ν. According to
Lemma 2.8, for any measure λ ∈ M1(K) such that μ � λ we have λ � ν. We
conclude that ν is the unique maximal measure such that μ � ν.

(2) ⇒ (3) Follows immediately from Lemma 2.8.
(3) ⇒ (1) Let f, g ∈ Kc(H) and μ ∈ M1(K). Take a maximal measure

ν ∈ M1(K), μ � ν. Then Pμ(f + g) = ν(f + g) = νf + νg = Pμ f + Pμ g.
(1) ⇒ (4) Suppose that for f, g ∈ Kc(H) is

Pμ f + Pμ g = Pμ(f + g).
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Hence,
μf ∗ + μg∗ = μ(f + g)∗,

and
μ
(
f ∗ + g∗ − (f + g)∗)

= 0.

Since the function f ∗ +g∗ − (f +g)∗ is nonnegative, we have f ∗ +g∗ = (f +g)∗

μ-almost everywhere. Using characterization (4) in Proposition 4.4, we get
μ(SimH(K)) = 1.

Implication (4) ⇒ (1) can be proven by following the previous lines back-
wards. �

Remark 5.2. The equivalences (1) ⇔ (2) ⇔ (3) in the previous Theorem 5.1
were proven in [6, Proposition 1] for a compact convex set in a locally convex
space. The equivalence (2) ⇔ (4) is analogous to this well-known statement:
a probability Radon measure on a metrizable compact space is maximal if
and only if it is supported by the Choquet boundary [2].

Theorem 5.3. The following assertions are equivalent for a measure μ ∈
M1(K):

(1) μ ∈ QS,
(2) there exists only one maximal measure ν ∈ M1(K) such that μ ∼ ν,
(3) for every maximal measure ν ∈ Mμ(H) and every f ∈ Kc(H), we have

νf = Qμ f .

Proof. Analogous to the proof of equivalences (1) ⇔ (2) ⇔ (3) in Theo-
rem 5.1. �

Remark 5.4. The following statements are easy to verify.

• {εx : x ∈ SimH(K)} ⊂ QS ⊂ PS.

In the “convex case,” we have:

• QS = {μ ∈ M1(X) : rμ ∈ Sim(X)},
• X is a simplex if and only if, for every μ ∈ M1(X), there exists a unique

maximal measure ν ∈ M1(X), such that μ � ν, and this is the case if and
only if, for every μ ∈ M1(X), there exists a unique maximal measure ν ∈
M1(X) such that μ ∼ ν.

Remark 5.5. According to the Bauer characterization, we know that x ∈
ChH(K) if and only if f ∗(x) = f∗(x), for all f ∈ C(K), cf. Corollary 2.7. In
the same way, one can define the “generalized boundaries”

∂P = {μ ∈ M1(K) : Pμ f = Pμf for all f ∈ C(K)}

and
∂Q = {μ ∈ M1(K) : Qμ f = Qμf for all f ∈ C(K)}.
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Let H be a function space on a compact space K. The Mokobodzki test
immediately yields that

μ ∈ ∂P if and only if μ is maximal,

and
μ ∈ ∂Q if and only if Mμ(H) = {μ}.

Clearly, ∂Q ⊂ ∂P ⊂ PS.

Theorem 5.6. Let H be a function space on a metrizable compact space K.
Then the set SimH(K) of simpliciality is measure extremal and the set K \
SimH(K) of nonsimpliciality is measure convex.

Proof. From Theorem 4.5, we know that the set SimH(K) is Borel mea-
surable. Choose x ∈ SimH(K) and μ ∈ Mx(H). Then there is a unique max-
imal measure ν ∈ M1(K) such that μ � ν. According to Theorem 5.1, we
have μ(SimH(K)) = 1. It means that SimH(K) is measure extremal. Now
choose a measure λ ∈ M1(K) having its barycenter rλ in K and suppose
λ(K \ SimH(K)) = 1. If rλ ∈ SimH(K), we get a contradiction to measure
extremality of SimH(K). We conclude that K \ SimH(K) is measure con-
vex. �

Remark 5.7. We can reformulate the previous result as follows. If x ∈ K is
a point of simpliciality, then μ-almost all points in K are points of simpliciality,
provided μ ∈ Mx(H).

6. The set of Bauer simpliciality

To define point Bauer simpliciality, one needs some characterization of
Bauer simpliciality which enables us to localize the conception of closed Cho-
quet boundary of a function space. We used the following Proposition 6.1.
For its proof in the “convex case,” see [7, Theorem 7].

Proposition 6.1. Let H be a function space on a compact space K. Then
H is a Bauer simplicial space if and only if it is simplicial and a CE-space.

Recall that a function space is called a CE-space, if the upper envelopes of
continuous functions are continuous.

Let H be a function space on a compact space K. We say that an x ∈ K
is a point of continuity of envelopes (or a CE-point) if the upper envelopes
f ∗ are continuous at the point x for all f ∈ C(K). Denote the set of all such
points of K by CEH(K).

Theorem 6.2. Let H be a function space on a metrizable compact space K.
The Choquet boundary ChH(K) is contained in the set CEH(K), in particular,
CEH(K) is nonempty.
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Proof. Consider x ∈ ChH(K) and a sequence xn ∈ K such that xn → x. We
want to show f ∗(xn) → f ∗(x) for an arbitrary f ∈ C(K). By Corollary 2.7,
there exists μn ∈ Mxn(H), for every n ∈ N, such that f ∗(xn) = μnf . We
claim that the sequence (μn) converges to εx. If it be to the contrary, there
exists a neighborhood U of εx such that μn /∈ U , for infinitely many n ∈ N.
By compactness of M1(K), we can find a subsequence (μnk

), μnk
/∈ U and

a measure μ ∈ M1(K) such that μnk
→ μ. Especially, for h ∈ H, we have

μnk
h → μh. Since μnk

h = h(xnk
), for every k ∈ N, and h(xnk

) → h(x), we
get μh = h(x). Hence, μ ∈ Mx(H), which, together with x ∈ ChH(K), yields
μ = εx. Contradiction.

Thus, we get f ∗(xn) = μnf → f(x). Since x ∈ ChH(K), we have f ∗(x) =
f(x), which finishes the proof. �

Now, being inspired by Proposition 6.1, we define the set of Bauer simpli-
ciality, BSimH(K), as

BSimH(K) = SimH(K) ∩ CEH(K).

Remark 6.3. Remark 3.2 and Proposition 6.2 yield

ChH(K) ⊂ BSimH(K).

In particular, BSimH(K) is nonempty. By Proposition 6.1, a function space H
is Bauer simplicial if and only if BSimH(K) = K.

Theorem 6.4. Let H be a function space on a metrizable compact space K.
Then the set CEH(K) is a dense Gδ-set subset of K.

Proof. Since K is metrizable, C(K) is separable. Let M be a countable
dense subset of C(K). Using Lemma 2.9, it is easy to verify that x ∈ CEH(K)
if (and only if) f ∗ is continuous at the point x for every f ∈ M . Consider a
function g ∈ M . As g∗ is upper semicontinuous, the set of points of continuity
of g∗ is a dense Gδ-set. Since M is countable, the set CEH(K) is also a Gδ-set
and the Baire Category Theorem yields that CEH(K) is dense in K. �

Corollary 6.5. Let H be a function space on a metrizable compact spa-
ce K. Then the set CEH(K) is residual, that is, its complement is of the first
category.

Corollary 6.6. Let H be a function space on a metrizable compact spa-
ce K. Then the set BSimH(K) is a Gδ-set.

Proof. Follows immediately from Theorems 4.5 and 6.4. �
Question 6.7. The Example 3.5 can be generalized in the following way. Let

M ⊂ {μ ∈ M([0,1]) : μ+, μ− ∈ M1([0,1]), spt(μ+) = spt(μ−) = [0,1]}
and define the function space H on the compact space [0,1] as follows

H = M ⊥ = {f ∈ C([0,1]) : μf = 0 for all μ ∈ M }.



302 M. BAČÁK

In this general setting, we were not able to find the set of simpliciality
Sim(S(H)).
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