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TRANSPORTATION COST INEQUALITIES ON PATH
SPACES OVER RIEMANNIAN MANIFOLDS

FENG-YU WANG

ABSTRACT. Some transportation cost inequalities are established on the
path space over a connected complete Riemannian manifold with Ricci
curvature bounded from below. The reference distance on the path
space is the L?-norm of the Riemannian distance along paths.

1. Introduction

Let M be a connected complete Riemannian manifold either with convex
boundary OM or without boundary. Assume that there is a nonnegative
constant K such that

(1.1) Ric(X,X) > -K|X|?, X e TM.

Then it is well-known that the (reflecting if 9M # @) Brownian motion on M
is nonexplosive.

For fixed p € M and T > 0, let u”" denote the distribution of the (reflect-
ing) Brownian motion starting from p before time 7. Then u” is a probability
measure on MT! .= {z :[0,T] — M} with o-field A” induced by cylindri-
cally measurable functions. Since the diffusion process is continuous, u” has
full measure on the path space

M = {z. € C([0,T]; M) : z = p}

with o-algebra Al := M N A", Our aim is to establish Talagrand’s trans-
portation cost inequality for the measure u”. This inequality was first intro-
duced in [13] for the standard Gaussian measure on R<.

Before we state our main results, let us recall the known results in finite
dimensions. Let p(z,y) be the Riemannian distance between z and y for
x,y € M. Let u:= eV *)dz be a probability measure on M, where dz denotes
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the Riemannian volume element. For any probability measure v on M, let
Wo (v, 1) be the L2-Wasserstein distance of v and u induced by p, i.e.,

Wl i= inf [ playPe(do.dy),
meC(v,n) JMrx M

where C(v, u) stands for the set of probability measures on M x M with

marginal distributions v and p. In 1996, Talagrand [13] proved for M = R¢

and p the standard Gaussian measure that

Wa(fu, p)? <2u(flogf), f>0, u(f) =1

This inequality was subsequently established by Otto and Villani [11] for
general M under a curvature condition: If Ric— Hessy is bounded below,
then the log-Sobolev inequality implies the transportation cost inequality.
Recently, Otto and Villani’s result was proved by Bobkov, Gentil and Ledoux
[4] for measurable V' without any curvature condition; see Section 2.3 and the
equivalence of (1.12) and (1.13) therein. This result is a starting point of our
present work, and we therefore state it explicitly:

THEOREM 1.1 ([11] and [4]). Let p := €V dx be a probability measure on
M. If there is a constant C' > 0 such that

(1.2) u(f?log f2) <2Cu(|Vf1?), feChM), u(f?) =1,
then
(1.3) Wa(fu,p)? <2Cu(flog f), f=>0, u(f)=1.

In view of Theorem 1.1 we may ask for transportation cost inequalities
on the path space as the log-Sobolev inequality holds for the O-U Dirichlet
form on MpT provided Ric is bounded; see, e.g., [1], [8], [5]. For this purpose
one may take the intrinsic distance of this Dirichlet form. Indeed, such a
transportation cost inequality has been established recently by Gentil [6] for
M = R and by the author [16] for compact M. In this paper, we work
with the following simple but natural distance and establish a transport cost
inequality depending only on the lower bound of the curvature.

For any T' > 0, let

T 1/2
pT<:c.,y.>:—{/ p(xs,ysms} . oy e M.
0

Let W4 be the corresponding L?-Wasserstein distance. Moreover, for I =
{s1,++,8,} with 0 < s7 < -++ < s, < T define the distance on M! := {z; =
(xslv"' 7xsn) 1Ty, € M,l <1< n} by

n

1/2
pl(@r,yr) = {Z(Siﬂ - Si)ﬂ(ﬂ«”s“ysi)g} , wnyr € MY, sy =T

i=1
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Let W be the corresponding probability distance. For a probability measure
v on MpT . let v! denote its projection onto M’. For two probability measures
pi1, iz on M', define

W3 (111, p2) := sup {Wi(u{,ué) 1 1C(0,7) s ﬁnite}-
We have the following result where only the lower bound of Ric is involved.

THEOREM 1.2.  Assume (1.1). For any nonnegative measurable function

f oon Mg with pT(f) =1, we have
—~ 2

(L4 Wy (fu®, p")? < Wy (Fu”, 1) < 525 ("7 =1 = KT)u (flog f).

Among other applications, the transportation cost inequality can be applied
to obtain exponential convergence of a Markov semigroup in the Wasserstein
distance. For instance, let P; be a symmetric Markov semigroup on L?(u™)
whose Dirichlet form satisfies a log-Sobolev inequality. Then it is well-known
that for nonnegative f with u” (f) = 1 and u?(flog f) < oo, uT (P, flog P, f)
converges to zero exponentially fast as t — oo. Thus, by Theorem 1.2, so does
W3 ((Pf)u™, u™)?.

Note that (1.4) does not make sense when T' — oo. To establish a trans-

portation cost inequality which holds also for T" = oo, we introduce below a
modified distance. For K > 0, T > 0 and h € C|[0, 00) with h(r) > 0 for r > 0

such that [ s~ h(s)ds < oo, define

N O L O RS AL
ph(T.,y.) = {/O fosdrfTTh(t)eK(t—T)dtd } .

Let W2T " be the corresponding L2-Wasserstein distance. Let WQT " be defined
in the same way as W with p! replaced by

n @, ys,)? o7 h(s)ds \ /2
Z S84 T 9 sn+1 = T
Tds [ eKt=s)h(t)dt

Jj=1Jo

pr(xr,yr) = {

THEOREM 1.3.  Assume (1.1). For any T > 0 and any h € C(0,00) with
h(r) > 0 for r > 0 such that fol s~ h(s)ds < oo, we have

Wt (12 < WMt 1) <26 (flog f), f >0, pF(f) =1.
In particular, if [J° h(t)e™dt < oo, then
Wt (fu>, 1) < W= (>, u®)” < 2> (flog /), f 20, w(f) = 1.

REMARK. Theorems 1.2 and 1.3 can be extended to diffusion processes
with time-dependent drifts. Consider, for instance, the process generated by
L(-,t) == 3(A + Z;), where Z, is a C'-vector field for each ¢t € [0,T). In
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particular, let p;(z,y) be the transition density of the Brownian motion and
let

Zy =2V longft('v(J)v le [Oa T)

for a fixed point q. Then the distribution of the diffusion process starting
from p is the Brownian bridge measure on the pinned path space {z, € Mg :

rr = q}.
Assume that K, € C([0,T);[0,00)) is such that

Ric(X,X) — (VxZy, X) > —K | X%, te[0,T), X € TM.
Then

_ T T
Wy (fu®, p)? < Wi (fu”,ph)? < Q,UT(f]ng)/ ds/ K (t—5) gy
0 s

for all f > 0 with u”(f) = 1. Moreover, Theorem 1.3 remains true with K
replaced by K; in the definitions of p" and pi.

2. Proofs of Theorem 1.2 and 1.3

To apply Theorem 1.1, we first prove a log-Sobolev inequality for cylindrical
functions.

LEMMA 2.1.  Assume (1.1). Let f be a cylindrically smooth function with

f@)=f(zey, ,2s,),0< 51 <5, <T. If yT(f?) =1 then
(2.1)

n n eK(sj—=si1) _ oK(sj—si)\ 1/2 2
wrtoe) <23 [ (SS9 - )Y .
i=1 J=i

where so := 0 and V; denotes the gradient w.r.t. x,.

Proof. Let P; be the semigroup of the (reflecting) Brownian motion. By
(1.1) we have (see, e.g., [12], [9], [15])

(2.2) |VP£(x)| < eX2P|VE|(x), >0, €€ CHM), =€ M.

By Bakry’s semigroup argument, (2.2) implies that (see, e.g., [3], [8])

(eKt —

03 Pelose) < XU piver 1 (ne)log e

for any ¢t > 0,£ € C}(M). Hence (2.1) holds for n = 1 since in this case
uT(f*log f?) = Ps,(f?log f?)(p). Assume that (2.1) holds for n < k for some
k > 1. Tt remains to prove (2.1) for n = k + 1. Let

plov st (da, . deg, ) = P(sy, p,deg, )P(sa — s1, 2, , ds,)

Tt P(Sk — Sk—1, "I:Skfladxsk)v
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where P(t,z, dy) is the transition kernel of the (reflecting) Brownian motion.
Note that for fixed y € MP¥, it follows from (2.2) with ¢ = sp41 — s that

(24) ‘v/ f2(y) x8k+1 )P(sk+1 — Sk dwsk+1)
M

< ek mon)/2 /M(\fl AV 1 D)W sy ) P(Sk1 = Sis 5 dsy )

Applying (2.3) with ¢ = sgp41 — sk, (2.1) with n = k, and taking (2.4) into
account, we obtain

uT(fQ log f2) _ /Mk du{51>“' Sk} /M(f2 log fQ)P(S/H_l N 8k7x8k7dx5k+1)

2(eXK(srp1—sk) _ 1
< ( K )MT(|Vk+1f|2)

{sl,~~,8k}d o dxy,)
/J' xsu xsk
+2/ E

MF f]v

[f P 5k+1 _Sk7x5k’dm5k+1)

k+1 eK(ijSifﬂ_eK(Sj*S’i) 1/2
A Lin(Xmin( 7 )")

Jj=t
2
. P(Sk-‘rl - Sk?xsk?dxsk+l)}
k+1 k+1 (s;—si 1) _ eK(Sj—Si) 1/2 2
<2 ) du™. O
> [(Ema(—% ) o
COROLLARY 2.2. In the situation of Lemma 2.1, let I = {sl, ee, Sp } with

0< sy <--<s, <T and let u' denote the pmjection of u* onto M'. For
any Sp4+1 > Sn and any function h: (0,T] — (0,00), we have

(f2 logf < 22 fs]+|lvh.f|ds / / n+1 K(t—s) t)dt

Proof. Note that

n

si 1/2 2
{va( / e“w)ds) }

o T

Sk

(Zfsf'fhf' ) / . / p——

Then the desired result follows from Lemma 2.1. O
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LEMMA 2.3.  Let pi(z.,y.) := p(xt,y:). We have

1
(BT x ph)(p?) < (e = 1), te[0,T].
Proof. Let (z¢)i>0 and (y¢)¢>0 be two independent (reflecting) Brownian
motions with g = yg = p. Since M is either empty or convex, we have (see
[10], [14])

dp(zs, yr) = V2dby + %(Ap(xt, V(ye) + Ap(-sye) (w))dt — dLy,

where b; is the one-dimensional Brownian motion and L; is an increasing
process. By (1.1) and the Laplacian comparison theorem we have

%(Ap(m, Wy) + Ap(y)(z)) < VE(d— 1) coth (VK (d — 1)p(z,y))
d—1
< oy T VE@-D.

Therefore, by Ito’s formula we obtain
dp(e,11)* < 2V2p(w4, ye)dby + (2d + 20/ K (d — 1)p(a, ye))dt
< 2V2p(we, ye)dby + (3d — 1+ K p(ay, ye)?)dt.
Since p(zg,yo) = 0, this implies that

1
Ep(zs,y)? < g(?)d— DXt —1), t>o0.
Hence the proof is finished. O

LEMMA 2.4. Assume (1.1). Let ¢, = (e!%* —1)/K. We have

T, T pap(@ie)y < expla(3d — 1)c; /(1 — 4acy))
[ =™ ] (e ) < Ner= i

Proof. By (2.3) and the additivity of the log-Sobolev inequality (see [7])
we have

(P x P)(€21og &%) < 2¢4(Py x Py)(|Varxar]?) + (P x P,)(€2) log(Py x Py)(€%)

for any t > 0,6 € C}(M x M). Since |Varxmp|? = 2, according to [2] this
implies that

, t€0,T], a € (0,1/4¢y).

expla((P: x P)(p))?/(1 — dacy)]
VI—dac ’

Applying Lemma 2.3 completes the proof. O

(2.5) (P, x P,)(e™") < t>0.

Proof of Theorem 1.2. For I = {s; : 1 <i<n}with0<s; <+ <s, <
T, let fl(zsy, - ,2s,) = pL (f|s,, -+ ,7s,) and let u! be the projection of
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pu? onto MY. Tt is easy to check that p! is the Riemannian distance on MY
with metric

<X7 Y>I = Z(Si-‘rl - Si)<Xs7j7Y€i>Ma
where X, (resp. Ys,) is the i-th component of X (resp. Y') which is tangent
to M1}, Moreover, let V; denote the corresponding gradient operator. For
g € C(M7") one has

n

(Vig,Vig)r = Z(Sj+1 — ;) Vgl

j=1
Thus, by Theorem 1.1 and Corollary 2.2 with h = 1, we obtain

Sn Sn41
(2.6) W{(flﬂé,/f)z <2t (! logfl)/ ds/ eKt=5)qy
0 s

T T
< QMT(flogf)/ ds/ K t=9)qt.
0 s

It remains to prove the first inequality in (1.4). Since (M, pl) is a Pol-
ish space with Borel g-algebra A}, where pl(z.,9.) := supe(o 1) p(t; Yr),
{u”, fuT} is tight. Moreover, for any compact set D C MpT and any m €

C(fu”, uT) one has

©((D x D)%) < p"(D°) + (fu")(D°).
Thus C(fuT, uT) is tight too. Let {I,} be increasing such that §(I,) | 0 as
n 1 oo, where §(I,,) := maxi<ij<k,+1(8i —Si—1) for I, = {0 =sp <851 <--- <
sk, <T = s, 11} For each n > 1let 7ln € C(ffuf, uf") be such that

1
R (p1)2) < W (£l ) 4

Let
7m+=/ﬂwmﬂ%WMUXMMMﬂw;

i.e., for any set A C Ag X Ag,

7mmw=/ (FuT) % WT)(Aler, yr, )w™ (der,,, dyr, ).
MIn x MIn

Then {m,} C C(fu”,u”). Let {m,} be a subsequence such that m, —
weakly for a probability measure m on M x MY. Then 7 € C(fu”,u").

Thus for any n > 1 and any N > 0, if we let pf\’;' be defined in the same way
In 1 i
as p'~, but with p replaced by p A N, we have

(27) 7o) = lm " (o)?)

774 — ’ n In'
<+ W (fu", pu")? + (147 sup 7 (| — oy’ %)

n’'>n
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for any ¢ > 0. Noting that |p(zs,ys) — p(zt, y)| < p(zs,x) + p(ys, yt), we
have
I"L

sup 7' (|oyy — pi’ |°)
n’'>n

2
< 2/ {N A sup p(xs,xt)} (fu” + p")(d,),
M7 0<s<t<T,t—s<8(I,)

which converges to zero as n — oo according to the dominated convergence
theorem. Letting first n T oo, then N 1 oo, and finally € | 0 in (2.7), we
complete the proof. O

Proof of Theorem 1.3. We simply note that the argument in the proof of
Theorem 1.2 yields

Wy (fLu®, uT)? < 24 (f log f);

hence the first assertion follows. It remains to prove the second assertion,
where [;° e th(t)dt < co. To this end, it suffices to show

(2.8) WOt (fuo, 1) < limsup Wy " (fu”, ™).

T—o0

For nonnegative f with p>(f) =1 and u*(flog f) < oo, by Lemma 2.4 with
ar = 1/8¢; for each t > 0 we obtain

() 1oyt = [ MO T
vds [Te r)dr
< /OC h(t)p>(flog f)dt
S Jo oy fot ds [ eKr=s)h(r)dr
* h(@)[p* x p=)(explawp(s, yi)*])dt
" /0 fot ds [ eKr=s)h(r)dr

< 00.

Therefore

(2.9) P (L4 (P 2)7) < o0

for p*>-a.s. z, € My°. Let us fix z, € Mp° such that (2.9) holds. For any
coupling 77" for f7u” and p”, where T (1) := p*(f|xp,77), we have

() = / 7TT(daf[o,T],dy[QT])[(f,uoo) X Moo]('|$[07T]7y[o,T])
MTxMT

€ C(fu™, pu>).
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Then
W < [ (T
MpTprT
Ly /°° h(S)[p(s, 2)° + p(ys, 2) I (da,, dy.)
T Jo dr [ XU n(t)dt
< h sy Zs 21(1 >l(d
:/ (pmﬂ”/ () ] pls. 210+ Hi=)(de) |
M X MT T Jo dr [ K@= h(t)dt

_. /MT ehan +=(1).
P x P

Combining this with the first assertion, we arrive at

Wl (Fuo, 1) < W M (fTuT 1) + e(T).

Then (2.8) follows by noting that limp_.. £(T) = 0 according to (2.9). O
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