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DEFORMATIONS WITH RESPECT TO AN ALGEBRAIC
GROUP

FRAUKE M. BLEHER AND TED CHINBURG

Abstract. Let G be a smooth linear algebraic group over the ring of
Witt vectors of a finite field k. In this paper, we study deformations

of representations of a profinite group into the points G(k) of G over
k. We show that the G-deformation functor has a versal deformation
ring, and we generalize criteria of Tilouine concerning when this ring
is universal. If G is an algebraic subgroup of GLn, we study when the
G-deformation functor is a subfunctor of the GLn-deformation functor

studied by Mazur. When G is an orthogonal group, this leads to study-
ing versal versions of results of Serre and Fröhlich about the connection
between Stiefel-Whitney classes, spinor norms and Hasse-Witt invari-

ants of orthogonal Galois representations.

1. Introduction

Let k be a finite field of positive characteristic p. Define W = W (k)
to be the ring of infinite Witt vectors over k, and suppose Γ is a profinite
group. In [10], Mazur developed a deformation theory of finite dimensional
representations of Γ over k using results of Schlessinger. For a more general
construction, see the work of de Smit and Lenstra [4]. Universal deformation
rings have become a basic tool in arithmetic geometry (see, e.g., [3], [18], [16],
[1] and their references).

In [17], Tilouine studied universal deformations of representations ρ of Γ
into the points G(k) over k of a specified smooth linear algebraic group G over
W . He showed in [17, Thm. 3.3] that there is a universal deformation of ρ
provided G has smooth center, the connected component of the identity of the
centralizer of ρ is contained in the center of G ⊗W k, and Γ satisfies Mazur’s
finiteness condition (Φp) [10, p. 387]. In this paper we make no assumptions
about the center of G, and we consider a slightly different functor than the
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one considered by Tilouine. In Theorem 2.7 we show that this functor, which
we call the G-deformation functor, always has a versal deformation provided
Γ satisfies Mazur’s condition (Φp). We also obtain in Theorem 2.7 a necessary
and sufficient condition, called the centralizer lifting property, for this versal
deformation to be universal. In Theorem 2.8 we deduce from Theorem 2.7
a generalization of the above mentioned sufficient condition for universality
proved by Tilouine.

In Section 3, we prove Theorem 2.7 using Schlessinger’s criteria, and we also
prove Theorem 2.8. In Section 4, we assume that G is a subgroup of another
smooth linear algebraic group H over W . When the H-deformation functor
is representable, we give in Theorem 4.1 necessary and sufficient criteria for
the G-deformation functor to be a subfunctor of the H-deformation functor.
We then look at classical cases when H = GLn and show that for G = SLn
one has a subfunctor if p does not divide n. For symplectic and orthogonal
groups, one has subfunctors for p > 2.

In Section 5, we specialize to the case in which G is an orthogonal group
and p > 2. In this case, we interpret the G-deformation functor in terms
of orthogonal lifts of orthogonal representations. In Section 6 we consider
versal versions of results of Serre and Fröhlich about the connection between
Stiefel-Whitney classes, spinor norms and Hasse-Witt invariants associated
to orthogonal representations of Galois groups. In this context, we prove
that different specializations at geometric points of the spectrum of the versal
orthogonal deformation ring all give rise to the same second Stiefel-Whitney
class. We also discuss the related problem of generalizing Fontaine’s ring Bcris

for representations of the absolute Galois group of a p-adic local field which
are defined over fields of positive transcendence degree over Qp.

2. Deformation functors for algebraic groups

Suppose k is a finite field of positive characteristic p, W = W (k) is the
ring of infinite Witt vectors over k, and Γ is a profinite group. Define Ĉ to
be the category of complete local Noetherian rings with residue field k. The
morphisms in Ĉ are continuous W -algebra homomorphisms which induce the
identity on k. Let C be the subcategory of Artinian objects in Ĉ.

Hypothesis 2.1. Throughout this paper, we assume that G is a smooth
linear algebraic group over W , and that ρ : Γ → G(k) is a continuous repre-
sentation of Γ into G(k), where G(k) has the discrete topology.

Definition 2.2. Suppose R ∈ Ob(Ĉ). Let κG,R : G(R) → G(k) be the
natural surjection. Define Ĝ to be the formal group of G, defined by Ĝ(R) =
Ker(κG,R) for all R. Let EG(R) be the set of continuous homomorphisms
π : Γ→ G(R) which lift ρ, in the sense that the composition κG,R ◦ π is equal
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to ρ. Then Ĝ(R) acts by conjugation on EG(R). The elements of EG(R)/Ĝ(R)
are called the G-deformations of ρ over R.

Definition 2.3. Let F̂G = F̂G,ρ : Ĉ → Sets be the functor which sends
each object R of Ĉ to the set F̂G(R) = EG(R)/Ĝ(R). Let FG = FG,ρ be the
restriction of F̂G to C. We call F̂G the G-deformation functor.

Remark 2.4. For G = GLn, F̂GLn,ρ is the deformation functor considered
by Mazur in [10].

Definition 2.5. The functor FG will be said to have the centralizer lifting
property, if the following is true for each surjective morphism A1

α−→A0 in C
with nilpotent kernel. Let π1 be an element of EG(A1), and define π0 =
απ1 ∈ EG(A0). Define ZĜ(πi) to be the subgroup of Ĝ(Ai) consisting of
all elements commuting (elementwise) with the image of πi in G(Ai). We
require for all A1, A0, π1 and π0 as above that the natural homomorphism
λ : ZĜ(π1)→ ZĜ(π0) is surjective. Note that the surjectivity of λ depends only
on [π1] ∈ FG(A1) = EG(A1)/Ĝ(A1) and the ring homomorphism A1

α−→A0,
but not on the choice of representative π1 for [π1].

Definition 2.6. (Mazur, [10, p. 387]) A group Γ satisfies the finiteness
condition (Φp), if H1(Γ,M) is finite for each finite discrete Γ-module M of
p-power order.

We can now state our main results about the existence and uniqueness of
versal and universal G-deformations and G-deformation rings.

Theorem 2.7. Suppose Γ satisfies (Φp).
(i) The functor FG has a pro-representable hull (cf. [14, Def. 2.7] and

[11, §1.2]), and F̂G is continuous (cf. [11]). Thus there is an object
RG(Γ, ρ) ∈ Ob(Ĉ) and a G-deformation [πG(Γ, ρ)] of ρ over RG(Γ, ρ)
with the following property. For each R ∈ Ob(Ĉ), the map
HomĈ(RG(Γ, ρ), R) → F̂G(R) induced by α → [α ◦ πG(Γ, ρ)] is sur-
jective, and this map is bijective if R is the ring of dual numbers k[ε]
where ε2 = 0. We call RG(Γ, ρ) the versal G-deformation ring of ρ and
[πG(Γ, ρ)] the versal G-deformation of ρ. Both RG(Γ, ρ) and [πG(Γ, ρ)]
are unique up to non-canonical isomorphisms.

(ii) The functor F̂G is represented by RG(Γ, ρ) if and only if FG has the
centralizer lifting property from Definition 2.5. In this case, the uni-
versal G-deformation ring RG(Γ, ρ) and the universal G-deformation
[πG(Γ, ρ)] are both unique up to canonical isomorphisms.

For a smooth linear algebraic group H over W , let Hk be the group scheme
k ⊗W H, and let Lie(Hk) be the Lie algebra of Hk.
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Theorem 2.8. Suppose Γ satisfies (Φp), and that there is an algebraic
subgroup J of G over W which has the following properties:

(a) The group scheme J is smooth over W .
(b) For all R ∈ Ob(C) and all π ∈ EG(R), Ĵ (R) ⊆ ZĜ(π).
(c) The natural injection Lie(Jk)→ Lie(Gk) induces an isomorphism be-

tween Lie(Jk) and the centralizer of ρ in Lie(Gk).
Then the versal G-deformation ring RG(Γ, ρ) is universal.

Remark 2.9. If J is the center of G, Theorem 2.8 is the criterion proved
by Tilouine in [17, Thm. 3.3]. Note that in this case, condition (b) holds
automatically. To find other J for which the conditions of Theorem 2.8 hold,
it is often useful to take advantage of information concerning the group Γ.

Example 2.10. Suppose Γ is perfect and satisfies (Φp). Suppose G is a
product H × H′ of smooth linear algebraic groups over W such that H′ is
solvable. For all R in C and π ∈ EG(R), the image of π : Γ→ G(R) lies in the
subgroup H(R). In particular, ρ : Γ→ G(k) factors through a representation
ρ′ : Γ → H(k). It follows that if a subgroup J ′ of H having the properties
listed in Theorem 2.8 for the representation ρ′ exists, then J = J ′ ×H′ is a
subgroup having these properties for ρ. Note that if H′ is not abelian, J is
larger than the center of G.

3. Schlessinger’s criteria and continuity

In this section, we use Schlessinger’s criteria to prove Theorem 2.7, follow-
ing the arguments in Mazur [10, 11]. We also prove Theorem 2.8.

Suppose A0, A1, A2 ∈ Ob(C) and that we have a diagram

A1 A2

α1↘ ↙α2

A0

.

Let A3 be the pullback A3 = A1 ×A0 A2 = {(a1, a2) ∈ A1 × A2

∣∣ α1(a1) =
α2(a2)}, and let α31 : A3 → A1 and α32 : A3 → A2 be the natural surjections.
Then α1 α31 = α2 α32. Assume that α1 : A1 → A0 is a small extension, i.e.,
α1 is surjective with kernel t ·A1 such that t ·mA1 = 0. Set Ei = EG(Ai) and
Gi = Ĝ(Ai) for i = 0, 1, 2, 3. Consider the natural map

b : FG(A3)→ FG(A1)×FG(A0) FG(A2) ,

which is the same as

(3.1)
b : E3/G3 → E1/G1 ×E0/G0 E2/G2

[π3] 7→ [π1]×[π0] [π2]

where π1 = α31π3, π2 = α32π3, and π0 = α1π1 = α2π2. Schlessinger’s criteria
(H1) through (H4) for FG are as follows:
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(H1) The map b is surjective.
(H2) The map b is bijective if A0 = k and A1 = k[ε].
(H3) The tangent space tFG = FG(k[ε]) is finite dimensional over k.
(H4) The map b is bijective if A2 = A1 and α2 = α1.

Proposition 3.1. Suppose Γ satisfies (Φp). Then Schlessinger’s criteria
(H1), (H2) and (H3) are always satisfied for FG. Schlessinger’s criterion
(H4) is satisfied if and only if FG satisfies the centralizer lifting property from
Definition 2.5.

Lemma 3.2. The map b is surjective.

Proof. The closed immersion Spec(A0) → Spec(A1) is defined by a nilpo-
tent ideal. Because G is assumed to be smooth over W , the homomorphism
G(A1)→ G(A0) induced by α1 is surjective by the Jacobian criterion for for-
mal smoothness [9, 28.C]. Thus G1 → G0 is surjective. Suppose [π1] ∈ E1/G1

and [π2] ∈ E2/G2 have the property that [α1π1] = [α2π2] in E0/G0. Then
α2π2 = g0(α1π1)g−1

0 for some g0 ∈ G0. Since G1 → G0 is surjective, g0 lifts
to an element g1 ∈ G1 with α1g1 = g0. Hence

α2π2 = α1(g1π1g
−1
1 ) ,

and g1π1g
−1
1 and π2 define an element π3 ∈ E3. �

We get the following criterion for the injectivity of b (cf. [10, Lemma 1]).
As in Definition 2.5, let π1 be an element in E1 and π0 its image in E0. As
before, for i = 0, 1, set ZĜ(πi) equal to the subgroup of Gi consisting of all
elements commuting with the image of πi in G(Ai).

Lemma 3.3. Suppose π1 ∈ E1.
(i) If the homomorphism ZĜ(π1) → ZĜ(π0) induced by α1 is surjective,

then b is injective.
(ii) Suppose A2 = A1 and α2 = α1. If b is injective, then ZĜ(π1) →

ZĜ(π0) is surjective.

Proof. To prove (i), suppose π3, π
′
3 ∈ E3 so that b([π3]) = [π1] ×[π0] [π2]

and b([π′3]) = [π′1] ×[π′0] [π′2]. We have to show that b([π3]) = b([π′3]) implies
[π3] = [π′3]. Suppose b([π3]) = b([π′3]), i.e., [π1] = [π′1] and [π2] = [π′2]. Then
there exist gi ∈ Gi for i = 1, 2 with

π′1 = g1π1g
−1
1 ,

π′2 = g2π2g
−1
2 .

If we denote by gi,0 the image of gi in G0 under αi, then

g1,0π0g
−1
1,0 = g2,0π0g

−1
2,0 .
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Hence g−1
1,0g2,0 ∈ ZĜ(π0). By assumption, g−1

1,0g2,0 can be lifted to h1 ∈ ZĜ(π1).
We define g̃1 = g1h1. By the definition of ZĜ(π1) it follows that

π′1 = g1π1g
−1
1 = (g1h1)π1(g1h1)−1 = g̃1π1g̃

−1
1

and
g̃1,0 = g1,0h1,0 = g10(g−1

1,0g2,0) = g2,0 .

Therefore, g̃1 and g2 define g3 ∈ G3 with π′3 = g3π3g
−1
3 .

To prove (ii), we assume A2 = A1 and α2 = α1. Suppose h0 ∈ ZĜ(π0).
Since G is smooth over W , there exists h ∈ G1 with α1h = h0. Then π′1 =
hπ1h

−1 satisfies α1π
′
1 = π0 = α1π1, and we thus obtain elements [π1 ×π0 π1]

and [π1 ×π0 π
′
1] of E3/G3. Since [π1] = [π′1] in E1/G1 = E2/G2 and b is

injective, there must be an equality

[π1 ×π0 π1] = [π1 ×π0 π
′
1]

in E3/G3. This means that there is an element g3 = g1×g0 g
′
1 of G3 such that

g3(π1 ×π0 π1)g−1
3 = π1 ×π0 π

′
1 .

One now sees that the element x = g′1g
−1
1 lies in Ker(G1 → G0), and xπ1x

−1 =
π′1. Thus x−1h ∈ ZĜ(π1) has image h0 under α1, so ZĜ(π1) → ZĜ(π0) is
surjective. �

Remark 3.4. As before, let Gk be the group scheme k ⊗W G and let
Lie(Gk) be the Lie algebra of Gk. Viewing G as a subgroup of GLn for some
integer n, we may identify Lie(Gk) with the k-vector space Matn(k) of all
n×n matrices M over k such that 1 + εM is an element of G(k[ε]), where 1 is
the identity matrix. The group Γ acts on Lie(Gk) through the adjoint action
ad(ρ) which is defined by letting γ ∈ Γ act as conjugation by ρ(γ). In the
following, we use the notation

(3.2) zγ = ad(ρ)(γ) z = ρ(γ) z ρ(γ)−1

for z ∈ Lie(Gk).

Proof of Proposition 3.1. By Lemma 3.2, (H1) is satisfied.
For (H2), we consider the case when A0 = k and A1 = k[ε] is the ring of

dual numbers. In this case G0 is the trivial group, which implies that ZĜ(π0)
is trivial for all π0 ∈ E0. Hence by Lemma 3.3(i), (H2) follows.

For (H3), we have to show that the tangent space tFG = FG(k[ε]) is finite
dimensional over k. Using the canonical embedding k → k[ε] defined by a 7→
ε a, we find that if π ∈ EG(k[ε]), then there is a one-cocycle c ∈ Z1(Γ,Lie(Gk))
such that

π(γ) = (1 + ε c(γ)) ρ(γ)
for all γ ∈ Γ. This induces a vector space isomorphism

(3.3)
τG : tFG → H1(Γ,Lie(Gk))

[π] 7→ 〈c〉
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where 〈c〉 denotes the cohomology class of c. Because of condition (Φp),
H1(Γ,Lie(Gk)) is a finite dimensional k-vector space, so condition (H3) holds.

Condition (H4) is satisfied if and only if the map b is bijective when A2 = A1

and α2 = α1. By Lemma 3.3 this will be the case if and only if FG has the
centralizer lifting property, which completes the proof of Proposition 3.1. �

Proof of Theorem 2.7. Because of Proposition 3.1 we only have to show
that F̂G is continuous, i.e., for all R ∈ Ob(Ĉ)

F̂G(R) = lim
←−
i

FG(R/mi
R) .

This follows as in the proof of [11, §20 Prop. 1], since G(R) = lim
←−
i

G(R/mi
R). �

In the proof of Theorem 2.8 we make use of the exponential map defined in
[17]. For the convenience of the reader we summarize the properties we need
in the following remark.

Remark 3.5. Suppose we have a short exact sequence

0→ I−→A1
α−→A0 → 0

with A0, A1 ∈ Ob(C), I ⊂ A1 and I ·mA1 = 0. Then for each smooth linear
algebraic group H over W there is a canonical short exact sequence of groups

(3.4) 0→ I ⊗k Lie(Hk)
expH−→ Ĥ(A1) α−→ Ĥ(A0)→ 0

where the exponential map expH is defined in [17, §3.5]. There it is also shown
that if H = G, then for all x ∈ I ⊗k Lie(Gk), for all π1 ∈ EG(A1) and for all
γ ∈ Γ

π1(γ) expG(x)π1(γ)−1 = expG (ad(ρ)(γ)x) .

Moreover, if H is a smooth subgroup scheme of G over W , then

expG
∣∣∣
I⊗Lie(Hk)

= expH .

Proof of Theorem 2.8. Because of Theorem 2.7 we only have to show that
FG has the centralizer lifting property. Since J is supposed to be smooth over
W , it is enough to prove the following claim.

Claim. ZĜ(π) = Ĵ (R) for all R ∈ Ob(C) and for all π ∈ EG(R).

Proof of Claim. We prove the claim by induction. The claim is certainly
true for R = k since in this case π = ρ and ZĜ(π) is the trivial group. Suppose
now we have a short exact sequence

0→ tA1−→A1
α−→A0 → 0
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where A0, A1 ∈ Ob(C), t ·mA1 = 0 and tA1
∼= k. Then, as in (3.4), for each

smooth linear algebraic group H over W there is a short exact sequence of
groups

(3.5) 0→ tA1 ⊗k Lie(Hk)
expH−→ Ĥ(A1) α−→ Ĥ(A0)→ 0 .

Let π1 ∈ EG(A1), π0 = απ1 ∈ EG(A0), and assume by induction that
ZĜ(π0) = Ĵ (A0). By condition (b) of Theorem 2.8, Ĵ (A1) ⊆ ZĜ(π1). Let
h ∈ ZĜ(π1) with image h0 = αh in ZĜ(π0) = Ĵ (A0). Since J is smooth
over W by condition (a) of Theorem 2.8, there exists h1 ∈ Ĵ (A1) ⊆ ZĜ(π1)
with αh1 = h0. Then hh−1

1 lies in the kernel of α. Hence there exists
x ∈ tA1 ⊗k Lie(Gk) with expG(x) = hh−1

1 . Since we assumed tA1
∼= k as

k-vector spaces, let ta ∈ tA1 be the element sent to 1 ∈ k under this isomor-
phism. Then x has the form x = ta⊗ z for a unique z ∈ Lie(Gk), and for all
γ ∈ Γ we have

expG(ta⊗ z) = hh−1
1

(∗)
= π1(γ)hh−1

1 π1(γ)−1

= expG (ad(ρ)(γ)x) = expG (ta⊗ zγ)

where zγ is defined as in (3.2), and the equality (∗) is true because hh−1
1 ∈

ZĜ(π1). Hence
z = zγ = ad(ρ)(γ) z

for all γ ∈ Γ, and z lies in the centralizer of ρ in Lie(Gk). This implies by
condition (c) of Theorem 2.8 that z ∈ Lie(Jk). Hence x ∈ tA1 ⊗k Lie(Jk),
and hh−1

1 = expG(x) = expJ (x) ∈ Ĵ (A1). Therefore, h ∈ Ĵ (A1), which
completes the proof of the claim, and hence the proof of Theorem 2.8. �

4. Subfunctors

In this section we continue to use the notations of Sections 2 and 3. Our
objective is to prove the following result.

Theorem 4.1. Let G and H be smooth linear algebraic groups over W ,
and suppose G is a subgroup of H. Suppose the functor F̂H is representable.
Then F̂G is a subfunctor of F̂H if and only if the natural map on the tangent
spaces tFG = FG(k[ε]) → FH(k[ε]) = tFH is injective. In this case, F̂G is
representable.

Here F̂G is a subfunctor of F̂H if and only if the natural map

ιG,H,R : EG(R)→ EH(R)

induces an injection

(4.1) ιG,H,R : F̂G(R)→ F̂H(R)
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for all R ∈ Ob(Ĉ). After proving Theorem 4.1, we will consider the cases in
which G is special linear, symplectic, or orthogonal, respectively, and H =
GLn.

Let us begin with some well-known constructions with one-cocycles and
deformations. Suppose we have an exact sequence

0→ I−→A1
α−→A0 → 0

with A0, A1 ∈ Ob(C), I ⊂ A1 and I ·mA1 = 0. Then, as in (3.4), we have a
short exact sequence of groups

(4.2) 0→ Lie(Gk)⊗ I exp−→Ĝ(A1) α−→Ĝ(A0)→ 0 .

Suppose ξ ∈ EG(A1). Let ξ0 = αξ ∈ EG(A0). Suppose X is in the group of
one-cocycles Z1(Γ,Lie(Gk)⊗I). Then there exists an element X(ξ) ∈ EG(A1)
defined by

(4.3) X(ξ)(γ) = exp(X(γ)) ξ(γ)

for γ ∈ Γ. We have αX(ξ) = ξ0, and (X + X ′)(ξ) = X(X ′(ξ)) if X ′ ∈
Z1(Γ,Lie(Gk) ⊗ I). If X is the one-coboundary γ 7→ zγ − z associated to an
element z ∈ Lie(Gk)⊗ I, and h = exp(z), then

(4.4) X(ξ)(γ) = h−1exp(zγ) ξ(γ) = h−1 ξ(γ) h ξ(γ)−1 ξ(γ) = h−1 ξ(γ) h .

Thus X(ξ) is conjugate to ξ by h−1 ∈ Ĝ(A1). It follows that we have a map

(4.5)
Tξ : H1(Γ,Lie(Gk)⊗ I) → FG(α)−1([ξ0])

〈X〉 7→ [X(ξ)]

where 〈X〉 is the cohomology class of X.

Lemma 4.2. Suppose, as above, that ξ ∈ FG(α)−1([ξ0]). Then Tξ is sur-
jective. Let X be an element of Z1(Γ,Lie(Gk) ⊗ I), and define ξ′ = X(ξ).
Then T−1

ξ (Tξ(〈X〉)) = 〈X〉 if and only if ZĜ(ξ′)→ ZĜ(ξ0) is surjective, where
ZĜ(ξ′), as in Definition 2.5, is the centralizer of ξ′ in Ĝ(A1).

Proof. Suppose [ξ′] ∈ FG(α)−1([ξ0]). Then there exists g0 ∈ Ĝ(A0) such
that ξ0 = αξ = g0αξ

′g−1
0 . Since G is smooth over W , g0 lifts to an element

g ∈ Ĝ(A1) with αg = g0. For ξ′′ = gξ′g−1 we have [ξ′′] = [ξ′] and αξ′′ = ξ0 =
αξ. It follows that ξ′′ = X(ξ) for a unique cocycle X ∈ Z1(Γ,Lie(Gk) ⊗ I).
Hence Tξ is surjective.

Suppose now that X ∈ Z1(Γ,Lie(Gk) ⊗ I), ξ′ = X(ξ), and that ZĜ(ξ′) →
ZĜ(ξ0) is surjective. Let X1 be an element of Z1(Γ,Lie(Gk) ⊗ I) such that
Tξ(〈X〉) = Tξ(〈X1〉). We have to show that 〈X〉 = 〈X1〉 in H1(Γ,Lie(Gk)⊗I).
Let ξ1 = X1(ξ). Since Tξ(〈X〉) = Tξ(〈X1〉), one has

(4.6) ξ′ = g ξ1 g
−1
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for some g ∈ Ĝ(A1). From αξ′ = ξ0 = αξ1 we see that g0 = αg lies in ZĜ(ξ0).
By assumption, there is an element g1 ∈ ZĜ(ξ′) such that αg1 = g0. Replacing
g by g−1

1 g, we can assume that αg is the identity element of Ĝ(A0). Hence
g = exp(z) for some z ∈ Lie(Gk)⊗ I. Define

L(γ) = g ξ1(γ) g−1 ξ1(γ)−1 = exp(z − zγ)

for γ ∈ Γ. Now (4.6) shows for γ ∈ Γ that

exp(X(γ)) ξ(γ) = g ξ1(γ) g−1 = L(γ) ξ1(γ) = exp(z − zγ +X1(γ)) ξ(γ) .

This shows that γ 7→ exp(X1 − X) is the map γ 7→ exp(zγ − z). Hence
the injectivity of exp proves that X1 − X is the element γ 7→ zγ − z of
B1(Γ,Lie(Gk)⊗ I), so 〈X〉 = 〈X1〉 in H1(Γ,Lie(Gk)⊗ I) as claimed.

Conversely, suppose X ∈ Z1(Γ,Lie(Gk) ⊗ I), T−1
ξ (Tξ(〈X〉)) = 〈X〉 and

ξ′ = X(ξ). Suppose g0 ∈ ZĜ(ξ0). We need to show there exists an element
g1 ∈ ZĜ(ξ′) with αg1 = g0. Since G is smooth over W , there is a g ∈ Ĝ(A1)
with αg = g0. Consider ξ1 = gξ′g−1. Then [ξ1] = [ξ′] in FG(α)−1([ξ0]). Since
T−1
ξ (Tξ(〈X〉)) = 〈X〉, we have ξ1 = X1(ξ) for some X1 ∈ Z1(Γ,Lie(Gk) ⊗ I)

such that 〈X〉 = 〈X1〉 in H1(Γ,Lie(Gk)⊗ I). Thus there is a z ∈ Lie(Gk)⊗ I
such that X1(γ) − X(γ) = zγ − z for γ ∈ Γ. Define h = exp(z). Then for
γ ∈ Γ we have

g ξ′(γ) g−1 = ξ1(γ) = exp(X1(γ)) ξ(γ)
= exp(zγ − z +X(γ)) ξ(γ) = h−1exp(zγ) ξ′(γ)
= h−1 ξ′(γ)h,

where the last equality follows as in (4.4). This shows that g1 = hg ∈ ZĜ(ξ′),
and since αh is the identity element of Ĝ(A0) we have αg1 = αg = g0. This
completes the proof of Lemma 4.2. �

Corollary 4.3. Suppose FG(α)−1([ξ0]) is non-empty. Then FG(α)−1([ξ0])
is a principal homogeneous set for H1(Γ,Lie(Gk)⊗ I) if and only if ZĜ(ξ′)→
ZĜ(ξ0) is surjective for all ξ′ ∈ α−1ξ0 ⊂ EG(A1).

Remark 4.4. If g ∈ Ĝ(A1) and ξ′ = gξg−1, then Tξ(〈X〉) = Tξ′(〈X〉g),
where 〈X〉g = 〈Xg〉 when Xg is the one-cocycle defined by exp(Xg(γ)) =
g exp(X(γ)) g−1 for all γ ∈ Γ. This follows from the equality Xg(ξ′)(γ) =
g X(ξ)(γ) g−1 for γ ∈ Γ.

Proof of Theorem 4.1. By definition, ιG,H,k[ε] is injective if F̂G is a sub-
functor of F̂H. So we will suppose for the rest of the proof that ιG,H,k[ε] is
injective, with the objective of proving that F̂G is a subfunctor of F̂H and that
it is representable.
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Suppose we have a short exact sequence

(4.7) 0→ tA1−→A1
α−→A0 → 0

where A0, A1 ∈ Ob(C), t · mA1 = 0 and tA1
∼= k as k-vector spaces. Let

ta ∈ tA1 be the element sent to 1 ∈ k under this isomorphism. Then every
element in Lie(Gk) ⊗ tA1 has the form z ⊗ ta for a unique z ∈ Lie(Gk). We
get an isomorphism of abelian groups

(4.8)
αG : H1(Γ,Lie(Gk)) → H1(Γ,Lie(Gk)⊗ tA1)

〈c〉 7→ 〈X〉

where X(γ) = c(γ)⊗ta for all γ ∈ Γ. We also have the following commutative
diagram

(4.9)

FG(k[ε])
ιG,H,k[ε]−→ FH(k[ε])

↓ τG ↓ τH
H1(Γ,Lie(Gk)) λ−→ H1(Γ,Lie(Hk))

where τG and τH are the isomorphisms from (3.3), ιG,H,k[ε]([π]) = [π], and
hence λ(〈c〉) = 〈c〉. Since by assumption ιG,H,k[ε] is injective, λ is also injective.

Since both functors F̂G and F̂H are continuous, to prove Theorem 4.1 it
is enough to prove that ιG,H,R from (4.1) is injective for R ∈ Ob(C). By
induction, we can assume that ιG,H,A0 is injective for A0 as in (4.7), and
we have to prove that ιG,H,A1 is injective. To show this, we can assume
EG(A1) is non-empty. Let ξ be an element of EG(A1). Define ξ0 = αξ,
ξ′ = ιG,H,A1(ξ) ∈ EH(A1), and ξ′0 = αξ′ = ιG,H,A0(ξ0). From Lemma 4.2 we
have a commutative diagram

(4.10)

H1(Γ,Lie(Gk)⊗ tA1)
φ−→ H1(Γ,Lie(Hk)⊗ tA1)

↓ Tξ ↓ Tξ′
FG(α)−1([ξ0])

ιG,H,A1−→ FH(α)−1([ξ′0])

in which the vertical homomorphisms are surjective, and φ = αH λα
−1
G , where

λ is the homomorphism defined in (4.9) and αG and αH are the isomorphisms
from (4.8). Since we have shown that λ is injective, so is φ. On the other hand,
since we have assumed F̂H is representable, Proposition 3.1 shows FH has the
centralizer lifting property. Therefore, Corollary 4.3 implies that Tξ′ in (4.10)
is bijective. Hence Tξ must be bijective as well, since it is surjective and φ
is injective. The commutativity of (4.10) now forces the morphism ιG,H,A1 to
be injective. By our previous remarks, this shows F̂G is a subfunctor of F̂H.
Since Tξ is bijective, Corollary 4.3 shows that FG has the centralizer lifting
property. Hence by Theorem 2.7, F̂G is representable. This completes the
proof of Theorem 4.1. �
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Lemma 4.5. Consider the short exact sequence of Lie algebras

(4.11) 0→ Lie(Gk)−→Lie(Hk) π−→c→ 0,

where γ ∈ Γ acts on these Lie algebras through the adjoint action ad(ρ) as
described in Remark 3.4. Then the following are equivalent:

(i) The natural map tFG → tFH is injective.
(ii) The map Lie(Hk)Γ π−→cΓ is surjective.
(iii) The sequence 0 → Lie(Gk)−→π−1(cΓ) π−→cΓ → 0 splits as a sequence

of kΓ-modules.

Proof. The equivalence of (i) and (ii) follows from the long exact group
cohomology sequence associated to (4.11):

0−→ [Lie(Gk)]Γ −→ [Lie(Hk)]Γ π−→ cΓ −→ H1(Γ,Lie(Gk))
ιG,H,k[ε]−→

H1(Γ,Lie(Hk)) −→· · · .

Assume now (ii). Then there exists a section s : cΓ → [Lie(Hk)]Γ of k-vector
spaces with π s = id. Since Γ acts trivially on both the domain and the
codomain of s, s is a section of kΓ-modules. Thus we can use s to define
a splitting of the sequence of kΓ-modules given in part (iii). Conversely, if
(iii) holds, let s : cΓ → π−1(cΓ) be a splitting of the sequence in part (iii)
which is a kΓ-module homomorphism. Then for every x ∈ cΓ, s(x) is in
[π−1(cΓ)]Γ = [Lie(Hk)]Γ. Since π(s(x)) = x, the map [Lie(Hk)]Γ π−→cΓ in part
(ii) is surjective. �

Corollary 4.6. If the sequence (4.11) splits as a sequence of kΓ-modules,
then tFG is a subspace of tFH .

Proof. Suppose s : c → Lie(Hk) is a splitting of (4.11) which is a kΓ-
module homomorphism. Then for every x ∈ cΓ, s(x) is in [Lie(Hk)]Γ. Since
π(s(x)) = x, this implies part (ii), and hence part (i), of Lemma 4.5. �

We now use the criteria in Theorem 4.1, Lemma 4.5, and Corollary 4.6 to
study some classical cases when H = GLn. In the following, gln,k denotes the
Lie algebra of GLn over k.

4.1. Special linear groups and symplectic groups.

Lemma 4.7. Suppose ρ : Γ→ SLn(k) is a continuous representation of Γ
into the special linear group SLn(k) such that F̂GLn,ρ is representable. If p
does not divide n, then F̂SLn,ρ is a subfunctor of F̂GLn,ρ. If the only elements
in GLn(k) centralizing the image of ρ are scalars, then F̂SLn,ρ is a subfunctor
of F̂GLn,ρ if and only if p does not divide n.
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Proof. For G = SLn,

Lie(Gk) = {M ∈ Matn(k)
∣∣ Trace(M) = 0} .

Thus π in the sequence (4.11) is given by the trace, and c = k with trivial
Γ-action. Hence cΓ = c. If p does not divide n, then π([gln,k]Γ) = cΓ. If
p divides n and the only elements in GLn(k) centralizing the image of ρ are
scalars, then π([gln,k]Γ) = 0. Hence the statement follows by Theorem 4.1
and Lemma 4.5. �

Lemma 4.8. Suppose p is odd, and ρ : Γ → Sp2m(k) is a continuous
representation of Γ into the symplectic group Sp2m(k) such that F̂GL2m,ρ is
representable. Then F̂Sp2m,ρ is a subfunctor of F̂GL2m,ρ.

Proof. Any 2m-dimensional perfect skew-symmetric form over W can be
represented, with respect to a suitable basis, by the 2m× 2m matrix

(4.12) S =
(

0 Im
−Im 0

)
.

We define the symplectic algebraic group Sp2m of rank m over W by

Sp2m(B) = {A ∈ GL2m(B)
∣∣ ATSA = S}

for all W -algebras B, where AT denotes the transpose of the matrix A. Then
Sp2m is smooth over W for all odd p. For G = Sp2m,

Lie(Gk) = {M ∈ Mat2m(k)
∣∣MTS = −SM}

=
{(

X Y
Z L

) ∣∣ X = −LT , Y = Y T , Z = ZT
}
,

where X,Y, Z, L ∈ Matm(k). Then π in the sequence (4.11) is given by

π

((
X Y
Z L

))
=
(
X + LT Y − Y T
Z − ZT L+XT

)

for each 2m× 2m matrix
(
X Y
Z L

)
∈ gl2m,k, and

c = {M ∈ Mat2m(k)
∣∣MTS = SM} .

It follows that c is a k-subspace of gl2m,k, which is stable under conjugation
by elements in Sp2m(k). Thus c is a kΓ-submodule of gl2m,k. Moreover, since
Lie(Gk)∩ c = {0}, the sequence (4.11) splits as a sequence of kΓ-modules, and
thus Lemma 4.8 follows from Corollary 4.6. �
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4.2. Orthogonal groups.

Lemma 4.9. Suppose p is odd, and let O(q) be the orthogonal group over
W corresponding to an n-dimensional perfect symmetric quadratic form q over
W . Let ρ : Γ→ O(q)(k) be a continuous representation of Γ into O(q)(k) such
that F̂GLn,ρ is representable. Then F̂O(q),ρ is a subfunctor of F̂GLn,ρ.

Proof. Any n-dimensional perfect symmetric quadratic form q over W is
equivalent to a diagonal quadratic form given by a matrix

(4.13) Qη =
(
In−1 0

0 η

)
,

where η is a unit in W . (In fact, every such Qη is equivalent either to Q1 or to
Qω for a fixed non-square ω in W .) We define the corresponding orthogonal
algebraic group On,η over W by

On,η(B) = {A ∈ GLn(B)
∣∣ ATQηA = Qη}

for all W -algebras B. Then On,η, and therefore O(q), is smooth over W for
all odd p. For G = On,η,

Lie(Gk) = {M ∈ Matn(k)
∣∣MTQη = −QηM}

=
{(

X y
z 0

) ∣∣ X = −XT , yT = −ηz
}
,

where X ∈ Matn−1(k), and y and zT are column vectors of length n−1. Then
π in the sequence (4.11) is given by

π

((
X y
z w

))
=
(

X +XT y + ηzT

z + η−1yT 2w

)
for each n× n-matrix

(
X y
z w

)
∈ gln,k, and

c = {M ∈ Matn(k)
∣∣MTQη = QηM} .

It follows that c is a k-subspace of gln,k, which is stable under conjugation
by elements in On,η(k). Thus c is a kΓ-submodule of gln,k. Moreover, since
Lie(Gk)∩ c = {0}, the sequence (4.11) splits as a sequence of kΓ-modules, and
thus Lemma 4.9 follows from Corollary 4.6. �

5. Orthogonal deformation functors

Hypothesis 5.1. Suppose k is a finite field of odd characteristic p. We
denote the n-dimensional symmetric bilinear pairing over W corresponding to
the matrix Qη, η ∈ W ∗, in equation (4.13) by 〈−,−〉η. We assume that V is
a continuous n-dimensional representation of Γ over k such that there exists
a symmetric perfect Γ-invariant bilinear pairing

〈−,−〉V : V × V → k .
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Thus there is a unit ηV ∈ W ∗ such that if the Γ-action on V is ignored, V
is isometric to the vector space kn with the pairing 〈−,−〉ηV over k. Hence
there is an orthogonal basis {vi}ni=1 of V over k such that the action of Γ on
V is given by a continuous homomorphism

ρ = ρV : Γ→ On,ηV (k) .

Definition 5.2. Suppose (V, 〈−,−〉V ) is isometric to (kn, 〈−,−〉ηV ),
where ηV ∈ W ∗. An orthogonal lift of (V, 〈−,−〉V ) over R ∈ Ob(Ĉ) is a
triple (M, 〈−,−〉M , φ), where M is a free R-module of rank n with a contin-
uous Γ-action and

〈−,−〉M : M ×M → R

is a symmetric perfect Γ-invariant bilinear pairing. The morphism φ : k⊗RM
→ V is a fixed isomorphism of representations of Γ over k which, on ignoring
the Γ-action, induces an isometry between the pairings k ⊗R 〈−,−〉M and
〈−,−〉V . We require that, on ignoring the Γ-action, there is an isometry
between (M, 〈−,−〉M ) and (Rn, 〈−,−〉ηV ) whose reduction mod mR is an
isometry between (V, 〈−,−〉V ) and (kn, 〈−,−〉ηV ) when we identify V with
k⊗RM via φ. In particular, there is an orthogonal basis {mi}ni=1 ofM as a free
R-module such that 〈mi,mi〉M = 1 for i = 1, . . . , n−1, and 〈mn,mn〉M = ηV .
We call such a basis an ηV -orthogonal basis of M .

Two orthogonal lifts (M, 〈−,−〉M , φ) and (M ′, 〈−,−〉M ′ , φ′) are isomorphic
if there is an isomorphism M → M ′ of continuous representations of Γ over
R which carries φ to φ′, and, on ignoring the Γ-action, 〈−,−〉M to 〈−,−〉M ′ .
An orthogonal deformation of V over R is an isomorphism class of orthogonal
lifts of V .

Definition 5.3. Let F̂ ort = F̂ ort
V : Ĉ → Sets be the functor which sends

each object R of Ĉ to the set F̂ ort(R) of all orthogonal deformations of V over
R. Let F ort = F ort

V be the restriction of F̂ ort to C. We call F̂ ort the orthogonal
deformation functor.

Theorem 5.4. The two functors F̂ ort
V and F̂On,ηV ,ρ from Definition 2.2

are naturally isomorphic.

Proof. It is enough to prove that the orbit space EOn,ηV (R)/Ôn,ηV (R) can
be identified with the set of orthogonal deformations of (V, 〈−,−〉V ) over R
for all R ∈ Ob(Ĉ).

Let {vi}ni=1 be an ηV -orthogonal basis of V over k relative to ρ. Suppose
(M, 〈−,−〉M , φ) is an orthogonal lift of (V, 〈−,−〉V ) over R. By definition,
there is an ηV -orthogonal basis for M as a free R-module. Since φ induces
an isometry and On,ηV is smooth over W , we can find an ηV -orthogonal basis
{mi}ni=1 of M over R such that φ(1⊗mi) = vi for all i. With respect to this
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basis, the action of Γ on M is given by a continuous homomorphism

π : Γ→ On,ηV (R)

such that κOn,ηV ,R π = ρ. Hence π ∈ EOn,ηV (R). If (M ′, 〈−,−〉M ′ , φ′) is an
isomorphic orthogonal lift of (V, 〈−,−〉V ) over R, then the associated π′ : Γ→
On,ηV (R) must be in the orbit of π under the action of Ôn,ηV (R) by definition
of isomorphic orthogonal lifts.

Conversely, every π ∈ EOn,ηV (R) defines a representation M of Γ over R.
Since κOn,ηV ,R π = ρ, it follows that M can be extended to an orthogonal lift
of (V, 〈−,−〉V ) over R. If π′ ∈ EOn,ηV (R) lies in the same Ôn,ηV (R)-orbit as
π, then it is obvious that the associated orthogonal lift M ′ is isomorphic to
M . �

6. Versal Stiefel-Whitney classes and Hasse-Witt invariants

In this section we continue to use the notations and assumptions of Section
5. Thus V is a continuous n-dimensional orthogonal representation of Γ over
a finite field k of odd characteristic p. We will also assume that Γ satisfies
Mazur’s finiteness condition (Φp). Let G = On,ηV ; in particular, G is smooth
over the Witt vectors W . By Theorems 2.7 and 5.4, there is a versal orthogo-
nal deformation ring RG(Γ, ρ) and a versal orthogonal deformation UG(Γ, ρ),
which are unique up to a non-canonical isomorphism. Our goal is to attach to
UG(Γ, ρ) Stiefel-Whitney classes and Hasse-Witt invariants, and to consider
generalizations to this context of results comparing such invariants due to
Serre [15], Fröhlich [7], Esnault, Kahn and Vieweg [5], Saito [12], [13], and
Cassou-Noguès, Erez and Taylor [2].

Let R = RG(Γ, ρ). Then the module U = UG(Γ, ρ) is free of rank n over R,
and has a continuous action of Γ. There is a perfect symmetric Γ-invariant
bilinear pairing on U ,

〈−,−〉U : U × U → R .

Define Y = Spec(R). Define O(U) to be the sheaf of groups on the étale
topology of Y associated to the orthogonal group O(U) = R ⊗W On,ηV =
R⊗W G. Because p > 2, there is a central extension

(6.1) 1−→µ2−→Õ(U) π−→O(U)→ 1

of étale sheaves defined in the following way (see [12, §0] or [5, §1.9]). Define
Cl(U) to be the sheaf on the étale topology of Y which is associated to the
Clifford algebra of U . Let I be the involutory automorphism of Cl(U) induced
by −1 on U . Define t to be the involutory anti-automorphism of Cl(U)
induced by the identity on U , and let N : Cl(U) → Ga be the norm defined
by N(x) = t(x) · x. Define a subsheaf C(U)× of Cl(U)× by C(U)× = {x ∈
Cl(U)× : x is homogeneous and I(x)Ux−1 = U}. Define Õ(U) = Ker(N :
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C(U)× → Gm). The central extension (6.1) results on defining π : Õ(U) →
O(U) by π(x) = (u→ I(x)ux−1).

The boundary map δ : H0(Y,O(U)) → H1(Y, µ2) in étale cohomology
associated to (6.1) is the spinor norm

(6.2) sp : O(U)→ H1(Y, µ2).

See [12, §0] for a discussion of properties of the spinor norm.
Define the first Stiefel-Whitney class sw1(U) ∈ H1(Γ, µ2(R)) by

(6.3) sw1(U) = det(U) ∈ Hom(Γ, µ2(R)) = H1(Γ, µ2(R)).

We associate a second Stiefel-Whitney class to each geometric point y of Y
in the following way. Because (6.1) is an exact sequence in the étale topology
on Y , it gives an exact sequence of groups

(6.4) 1−→µ2(κ(y))−→Õ(U)(κ(y)) π−→O(U)(κ(y))→ 1 ,

which is the same as

1−→µ2(κ(y))−→Õn,ηV (κ(y)) π−→On,ηV (κ(y))→ 1 .

Pulling back the orthogonal representation U over R = RG(Γ, ρ) via the
homomorphism R → κ(y) gives a representation ρU,y : Γ → On,ηV (κ(y))
which is well-defined up to isomorphism. Viewing ρU,y as an element of
H1(Γ, On,ηV (κ(y))), we let

(6.5) sw2(U, y) ∈ H2(Γ, µ2(κ(y))) = H2(Γ, {±1})

be the image of ρU,y under the boundary map in cohomology associated to the
sequence (6.4). In a similar way, we can define a second Stiefel-Whitney class
sw2(V ) ∈ H2(Γ, µ2(k)) = H2(Γ, {±1}) associated to the original orthogonal
representation V over k.

Theorem 6.1. For all geometric points y there is an equality sw2(U, y) =
sw2(V ) in H2(Γ, {±1}).

Proof. Let ks be a fixed separable closure of k. Define Rsh to be the strict
henselization of the local ring R = RG(Γ, ρ). Thus Rsh is the direct limit
lim
−→

A over all commutative diagrams

(6.6)
A

γ−→ ks

α↖ ↗β

R

of essentially étale R-algebras A in which α is the local homomorphism defin-
ing the R-algebra structure of A, γ is a local R-algebra homomorphism, and
β is the composition of the residue map R → k = R/mR with the inclusion
of k into a ks. For more details, see [8, Chapter IV, §18.8.6].
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The geometric point y → Y has as image a point y ∈ Spec(R). We now
construct an R-algebra homomorphism

(6.7) Rsh → (Ry)sh

where Ry is the localization of R at y.
Since Rsh is faithfully flat over R by [8, Prop. IV.18.8.8(iii)], the morphism

Spec(Rsh)→ Spec(R) is surjective. Hence we can find a prime ideal y′ of Rsh

over y, and the residue field κ(y′) is a separable algebraic extension of κ(y).
Fix an embedding of κ(y′) into a separable closure κ(y)s of κ(y). For each
diagram (6.6), let a be the ideal y′ ∩ A of A. This induces an embedding of
κ(a) into κ(y)s. The resulting diagram

(6.8)
Aa

γa−→ κ(y)s

αa↖ ↗βa

Ry

occurs in the direct limit defining (Ry)sh. A morphism between two diagrams
of the kind in (6.6) gives rise to a unique morphism between the corresponding
diagrams of the kind in (6.8). Hence by the definition of direct limits, there
is an Ry-algebra homomorphism ν : lim

−→
Aa → (Ry)sh, where the direct limit

on the left is over all diagrams (6.8) arising from diagrams (6.6) appearing
in the definition of Rsh. We thus have a natural R-algebra homomorphism
Rsh = lim

−→
A→ lim

−→
Aa, and the composition of this with ν gives the required

R-algebra homomorphism (6.7).
Since (6.1) is an exact sequence of sheaves in the étale topology, it gives

an exact sequence of stalks at the geometric points Spec(k) and Spec(κ(y)).
This gives the middle two exact rows in the following diagram:
(6.9)

1 −→ µ2(k) −→ Õn,ηV (k) −→ On,ηV (k) −→ 1
↑ ↑ ↑

1 −→ µ2(Rsh) −→ Õn,ηV (Rsh) −→ On,ηV (Rsh) −→ 1
↓ ↓ ↓

1 −→ µ2((Ry)sh) −→ Õn,ηV ((Ry)sh) −→ On,ηV ((Ry)sh) −→ 1
↓ ↓ ↓

1 −→ µ2(κ(y)) −→ Õn,ηV (κ(y)) −→ On,ηV (κ(y)) −→ 1

The maps from the second to the third rows result from (6.7). The maps from
the second to the first row, and from the third to the fourth row, result from
the fact that Rsh (resp. (Ry)sh) has residue field ks ⊂ k (resp. κ(y)s ⊂ κ(y)).
Finally, the vertical homomorphisms in the left column are all isomorphisms,
since the residue characteristic p is odd and µ2(k) = µ2(Rsh) = µ2((Ry)sh) =
µ2(κ(y)) = {±1}.

The versal orthogonal deformation U gives a homomorphism γ : Γ →
O(U)(R) = On,ηV (R), and the composition of γ with the map On,ηV (R) →
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On,ηV (Rsh) is a group homomorphism γs : Γ → On,ηV (Rsh). Consider the
obstruction to lifting γs to the middle group Õn,ηV (Rsh) in the second row of
(6.9). By choosing a set-theoretic lift of Õn,ηV (Rsh) → On,ηV (Rsh), one can
in the usual way define a two-cocycle z : Γ×Γ→ µ2(Rsh) = {±1} whose class
in H2(Γ, {±1}) is the obstruction to lifting γs to Õn,ηV (Rsh). The diagram
(6.9) shows this obstruction is the same as the one associated to the first
(resp. last) row of (6.9) and the composition of γs with the homomorphisms
On,ηV (Rsh) → On,ηV (k) (resp. On,ηV (Rsh) → On,ηV (κ(y))). This is because
by choosing compatible sections from the right-most groups to the groups
forming the middle terms of the rows of (6.9), the two-cocycle z is carried
to the corresponding two-cocycles for the other rows. This implies Theorem
6.1. �

We now turn to the problem of associating Hasse-Witt invariants to U
which would generalize those considered by Serre and Fröhlich.

For simplicity we will suppose that Γ = Gal(L/L) for some p-adic local
field L. Let y be a point of Y such that κ(y) has characteristic 0. Since
Y = Spec(R) and R = RG(Γ, ρ) is a W -algebra, we find that κ(y) is an
algebra over the fraction field F (W ) of the Witt vectors W . Define Uy to be
the continuous orthogonal representation of Γ over κ(y) which results from
specializing U at y.

Problem 6.2. Can one construct a κ(y)-algebra By with continuous Γ-
action having the following properties?

(a) BΓ
y = κ(y).

(b) Let Γ act diagonally on By⊗κ(y)Uy, and define Dy = (By⊗κ(y)Uy)Γ.
Then dimκ(y)(Dy) = dimκ(y)(Uy) = n.

(c) The multiplication form By×By → By and the orthogonal pairing on
Uy × Uy → κ(y) give a perfect symmetric pairing

(6.10) 〈−,−〉y : Dy ×Dy → BΓ
y = κ(y).

Example 6.3. (Saito [12]) Suppose κ(y) = Qp, and that Uy is a crys-
talline representation of Γ = Gal(L/L). Then the ring By can be taken to be
Fontaine’s ring Bcris (cf. [6]).

If one can solve Problem 6.2 affirmatively, then one can consider the Hasse-
Witt invariants of the quadratic form in (6.10).

Let N = κ(y) · L be the compositum of κ(y) and L. Then there are
restriction maps

resNκ(y) : H2(κ(y), {±1}) → H2(N, {±1}) ,
resNL : H2(L, {±1}) → H2(N, {±1}) .
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One can compare the restriction of the Hasse-Witt invariants from κ(y) to N
with the restrictions of the Stiefel-Whitney classes from L to N .

For example, suppose κ(y) is a subfield of L. In [12, Theorem 1], Saito
makes some further hypotheses about Dy, which are satisfied in the context
of Example 6.3. He proves that under these hypotheses, there is a relation
between the first and second Hasse-Witt invariants of (6.10), the spinor norm
defined in (6.2) and the Stiefel-Whitney classes defined in (6.3) and (6.5).
This relationship generalizes the one proved by Fröhlich in [7].

The significance of Theorem 6.1 to Hasse-Witt invariants is that the Stiefel-
Whitney class terms which arise in Saito’s formulas do not depend on the
choice of the point y. This gives a relationship between the Hasse-Witt in-
variants of the Dy associated to all y for which κ(y) = Qp and Uy is crystalline,
for example.

The main question is whether one can generalize these results to a situation
in which κ(y) is not Qp, or more generally, to y for which κ(y) is not a subfield
of L. In general, the versal deformation ring R = RG(Γ, ρ) will be of dimension
larger than one, and this leads to representations of Γ over fields κ(y) which are
of positive transcendence degree over Qp. The κ(y)-algebra By one is looking
for in Problem 6.2 can thus be viewed as a generalization of Fontaine’s Bcris

for representations of Γ over such κ(y). Eventually, one would like a version
of Bcris which applies over all of Y = Spec(R), rather than to individual
specializations at points y ∈ Y .
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