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A SPECTRAL MULTIPLIER THEOREM FOR H1 SPACES
ASSOCIATED WITH SCHRÖDINGER OPERATORS WITH

POTENTIALS SATISFYING A REVERSE HÖLDER
INEQUALITY

JACEK DZIUBAŃSKI

Abstract. Let {Tt}t>0 be the semigroup of linear operators generated
by a Schrödinger operator −A = ∆ − V on Rd, where V is a nonneg-
ative nonzero potential satisfying a reverse Hölder inequality, and let∫∞
0 λ dEA(λ) be the spectral resolution of A. We say that a function f

is an element of H1
A if the maximal function Mf(x) = supt>0 |Ttf(x)|

belongs to L1. We prove that if a function F satisfies a Mihlin condition

with exponent α > d/2 then the operator F (A) =
∫∞
0 F (λ) dEA(λ) is

bounded on H1
A.

1. Introduction

Let A = −∆ + V be a Schrödinger operator on Rd, d ≥ 3, where V is a
nonnegative nonzero potential that satisfies the reverse Hölder inequality with
exponent q ≥ d/2; that is, there exists a constant C0 such that for every ball
B(x, r)

(1.1)

(
1

|B(x, r)|

∫
B(x,r)

V (y)q dy

)1/q

≤ C0

|B(x, r)|

∫
B(x,r)

V (y) dy.

Let {Tt}t>0 be the semigroup of linear operators generated by −A, and let
Tt(x, y) denote the integral kernels of these operators. Since V (x) ≥ 0 and
V ∈ Lqloc(Rd),

(1.2) 0 ≤ Tt(x, y) ≤ (4πt)−d/2 exp
(
−|x− y|2/(4t)

)
.
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We say that a function f is in the space H1
A if the maximal function

Mf(x) = sup
t>0
|Ttf(x)| = sup

t>0

∣∣∣∣∫
Rd

Tt(x, y)f(y) dy
∣∣∣∣

belongs to L1(Rd), and we set

(1.3) ‖f‖H1
A

= ‖Mf‖L1(Rd).

Let
∫∞

0
λ dEA(λ) be the spectral resolution for the operator A. For a bounded

function F on R+ we define the operator F (A) by setting

F (A)f =
∫ ∞

0

F (λ) dEA(λ)f.

For s ≥ 0 let C(s) denote the space of functions F on R for which

‖F‖C(s) =

{∑s
k=0 supλ∈R

∣∣F (k)(λ)
∣∣ if s ∈ Z,∥∥F ([s])

∥∥
Lip (s−[s])

+
∑[s]
k=0 supλ∈R

∣∣F (k)(λ)
∣∣ if s /∈ Z,

is finite.
Our goal is to prove the following theorem.

Theorem 1.4. Let F be a bounded continuous function on R+. If for
some α > d/2 and some nonzero function ψ ∈ C∞c (0,∞) there exists a con-
stant C > 0 such that

(1.5) ‖ψ(·)F (t·)‖C(α) ≤ C for every t > 0,

then F (A) is a bounded operator on H1
A.

We recall that the classical Hörmander multiplier theorem [13] applied to
the Laplace operator −∆ on Rd implies that if for some α > d/2 a bounded
continuous function F defined on R+ satisfies

sup
t>0
‖ψ(·)F (t·)‖H(α) <∞,

where ‖ · ‖H(α) is the Sobolev norm, then the operator F (−∆) is of weak type
(1, 1) and bounded on Lp(Rd), 1 < p <∞. Moreover, F (−∆) is bounded on
the classical Hardy space H1(Rd).

The spaces H1
A we consider in the present paper are substantially larger

than the classical Hardy spaces. It was proved in [7] that every element f of
H1
A can be decomposed into a sum of special atoms, defined as follows. Let

m(x, V ) be given by

(1.6) m(x, V )−1 = sup

{
r > 0 :

1
rd−2

∫
B(x,r)

V (y) dy ≤ 1

}
.

Then Rd =
⋃
n∈Z Bn, where

Bn =
{
x : 2n/2 ≤ m(x, V ) < 2(n+1)/2

}
.
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We say that a function a is an H1
A atom associated to a ball B(y0, r) of center

y0 ∈ Rd and radius r > 0, if

supp a ⊂ B(y0, r),(1.7)

‖a‖L∞ ≤ |B(y0, r)|−1
,(1.8)

if y0 ∈ Bn, then r ≤ 21−n/2,(1.9)

if y0 ∈ Bn and r ≤ 2−1−n/2, then
∫
a(x) dx = 0.(1.10)

The atomic norm in the space H1
A is defined by

(1.11) ‖f‖H1
Aatom = inf

{∑
|cj |
}
,

where the infimum is taken over all decompositions f =
∑
j cjaj , where the

aj are H1
A atoms and the cj are scalars. It was proved in [7] that the norm

‖ ‖p
H1
Aatom

is equivalent to the norm ‖ ‖H1
A

; that is, there exists a constant
C > 0 such that

(1.12)
1
C
‖f‖H1

A
≤ ‖f‖H1

Aatom ≤ C‖f‖H1
A
.

Our H1
A atoms are scaled (1,∞) atoms from the local Hardy space h1, where

the scale and localization is adapted to the behavior of the potential V . The
atoms are supported on balls, satisfy the size condition (1.8), but for some
of them the mean zero condition is not needed. Therefore, in order to show
the boundedness of the operator F (A) on such atoms, we derive appropriate
estimates for kernels associated with the multiplier F (see Theorem 3.8). In
the case where V is a nonnegative polynomial, similar results were obtained
in [5] by using nilpotent Lie group methods. We recall that every nonnegative
polynomial V satisfies (1.1) for all q, 1 < q <∞.

The function m(x, V ) was introduced by Shen [16]. In the next section we
state some properties of the function which we will use in this paper.

The problem of finding sufficient conditions on a function F that guarantee
the boundedness of the operator F (L) on Lp(M), where L is a positive self-
adjoint operator (on L2(M)), has been investigated by many authors (cf. [1],
[2], [3], [10], [12], [14], [15], [17], [18]). E. Stein [17] showed that if −L is
the infinitesimal generator of a symmetric diffusion semigroup and F is of
Laplace transform type, then F (L) is bounded on Lp, 1 < p < ∞. In the
case where L is a sublaplacian on a stratified nilpotent Lie group, spectral
multiplier theorems where proved, for example, by A. Hulanicki and E. Stein
(see [8, p. 208]), M. Christ [1], G. Mauceri and S. Meda [14], D. Müller and
E. Stein [15], and W. Hebisch [11]. We also refer the reader to the papers [10]
and [18], where multipliers on Lp spaces in the case when L is a Schrödinger
operator were considered.
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2. Auxiliary lemmas

For t > 0 and V ≥ 0 satisfying (1.1) we define the Schrödinger operator
A{t} by setting

(2.1) A{t} = −∆ + V {t}, V {t}(x) = tV
(
t1/2x

)
.

Obviously, for every t > 0,

(2.2)

(
1

|B(x, r)|

∫
B(x,r)

V {t}(y)q dy

)1/q

≤ C0

|B(x, r)|

∫
B(x,r)

V {t}(y) dy,

with a constant C0 independent of t > 0. Moreover,

(2.3) m
(
t−1/2x, V {t}

)
= t1/2m(x, V ).

The following lemma is a simple consequence of (2.3) and a result of Shen [16,
Lemma 1.4].

Lemma 2.4. There exist constants C, k0 > 0 such that for every t > 0

C−1m
(
x, V {t}

)
≤ m

(
y, V {t}

)
≤ Cm

(
x, V {t}

)
(2.5)

if |x− y| ≤ 4
m
(
x, V {t}

) ,
m
(
y, V {t}

)
≤ C

(
1 + |x− y|m

(
x, V {t}

))k0

m
(
x, V {t}

)
,(2.6)

m
(
y, V {t}

)
≥

m
(
x, V {t}

)
C
(
1 + |x− y|m(x, V {t})

)k0/(k0+1)
.(2.7)

We shall denote by Γ{t}(x, y, τ) the fundamental solution of the operator
−∆ + V {t} + iτ , τ ∈ R.

Applying (2.2) and two results of Shen ([16, Theorem 2.7] and [16, p. 535]),
we obtain the following result.

Proposition 2.8. For every k > 0 there exists a constant Ck such that
for every t > 0

(2.9)
∣∣∣Γ{t}(x, y, τ)

∣∣∣
≤ Ck(1 + |τ |1/2|x− y|)−k

(
1 +m

(
x, V {t}

)
|x− y|

)−k
|x− y|2−d.

Moreover, there exist constants C, δ > 0 such that for every t > 0

(2.10)
∣∣∣Γ{t}(x, y + h, τ)− Γ{t}(x, y, τ)

∣∣∣ ≤ C|h|δ(
1 + |τ |1/2|x− y|

)3 |x− y|d−2+δ

for |h| ≤ |x− y|/4.
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Theorem 2.11. For every l ∈ N there exists a constant Cl such that for
every t > 0

(2.12)
∣∣∣∣m(x, V {t})2l (

−∆ + V {t}
)−l

f(x)
∣∣∣∣ ≤ ClMlf(x),

where M is the classical Hardy–Littlewood maximal operator.

Proof. The proof is by induction on l (cf. [19]). Let

Γ{t}(x, y) = Γ{t}(x, y, 0).

Fix x ∈ Rd, and set r = m(x, V {t})−1. Applying (2.9) with k = 3, we obtain∣∣∣∣(−∆ + V {t}
)−1

f(x)
∣∣∣∣ =

∣∣∣∣∫ Γ{t}(x, y)f(y) dy
∣∣∣∣

≤ C
∫
B(x,r)

|x− y|2−d|f(y)| dy

+ C

∫
B(x,r)c

|x− y|2−d−3m
(
x, V {t}

)−3

|f(y)| dy

≤ Cm
(
x, V {t}

)−2

Mf(x),

which proves (2.12) for l = 1.
Assume now that m

(
y, V {t}

)2l (−∆ + V {t}
)−l

f(y) ≤ ClMlf(y). We have∣∣∣∣(−∆ + V {t}
)−l−1

f(x)
∣∣∣∣ =

∣∣∣∣∫ Γ{t}(x, y)
(
−∆ + V {t}

)−l
f(y) dy

∣∣∣∣
≤
∫
Cl

∣∣∣Γ{t}(x, y)
∣∣∣m(y, V {t})−2l

Mlf(y) dy

=
∫
B(x,r)

+
∫
B(x,r)c

= I1 + I2.

Using (2.5) and (2.9), we get

I1 ≤ C
∫
B(x,r)

|x− y|2−dm
(
x, V {t}

)−2l

Mlf(y) dy

≤ Cm
(
x, V {t}

)−2l−2

Ml+1f(x).

Applying (2.7) and (2.9) (with k = 3 + 2lk0/(k0 + 1)), we obtain

I2 ≤ C
∫
B(x,r)c

|x− y|2−d−km
(
x, V {t}

)−k
m
(
y, V {t}

)−2l

Mlf(y) dy

≤ C
∫
B(x,r)c

|x− y|2−d−k+2lk0/(k0+1)m
(
x, V {t}

)−k−2l+2lk0/(k0+1)

Mlf(y) dy

≤ Cm
(
x, V {t}

)−2l−2

Ml+1f(x). �
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3. Estimates of kernels

Let
∫∞

0
λ dEA{t}(λ) be the spectral resolution for A{t}. Obviously, if for a

bounded continuous function G on R+ the operator

G
(
A{t}

)
=
∫ ∞

0

G(λ) dEA{t}(λ)

has an integral kernel G(A{t})(x, y), that is, if

G
(
A{t}

)
f(x) =

∫
Rd

G
(
A{t}

)
(x, y)f(y) dy,

then the integral kernel G(tA)(x, y) of the operator G(tA) is given by

(3.1) G(tA)(x, y) = t−d/2G
(
A{t}

)(
t−1/2x, t−1/2y

)
.

We denote by T {t}s (x, y) the integral kernels of the semigroup {T {t}s }s>0 gen-
erated by the Schrödinger operator −A{t}.

For an integral kernel K(x, y) and b > 0 we define

‖K(x, y)‖ω(b) = sup
x∈Rd

∫
|K(x, y)| (1 + |x− y|)b dy

+ sup
y∈Rd

∫
|K(x, y)| (1 + |x− y|)b dx.

The following theorem is a consequence of (1.2) and results of W. Hebisch [9,
Theorem 2.10].

Theorem 3.2. Given b, s > 0 with s > b + d/2 there exists a constant
C = C(b, s, d) such that for every function ξ ∈ C(s) with supp ξ ⊂ (1/4, 4)
and for every t > 0 we have

(3.3)
∥∥∥ξ (A{t}) (x, y)

∥∥∥
ω(b)
≤ C‖ξ‖C(s).

Corollary 3.4. For every M > 0 there exist constants C, s > 0 such
that for every ξ ∈ C(s) with supp ξ ⊂ (1/4, 4) and for every t > 0 we have

(3.5)
∣∣∣ξ (A{t}) (x, y)

∣∣∣ ≤ C‖ξ‖C(s) (1 + |x− y|)−M .

Proof. Set η(λ) = eλξ(λ). Obviously supp η ⊂ (1/4, 4) and ‖η‖C(s) ≤
Cs‖ξ‖C(s). Since ξ(A{t}) = T

{t}
1 ◦ η(A{t}), we have

(1 + |x− y|)M
∣∣∣ξ (A{t}) (x, y)

∣∣∣
≤
∣∣∣∣∫ T

{t}
1 (x, z) (1 + |x− z|)M η

(
A{t}

)
(z, y) (1 + |z − y|)M dz

∣∣∣∣ .
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Applying Theorem 3.2 with b = M and using (1.2) we obtain that there exist
constants s and C ′ such that

(1 + |x− y|)M
∣∣∣ξ (A{t}) (x, y)

∣∣∣ ≤ C ′‖η‖C(s) ≤ C ′Cs‖ξ‖C(s). �

We fix a real valued function ψ ∈ C∞c (1/2, 2) such that

(3.6)
∑
µ∈Z

ψ2
(
2−µλ

)
= 1 for λ > 0.

Let F be a continuous function on R+ that satisfies (1.5). We set

Qµ,t(λ) = F (λ)e−tλψ2
(
2−µλ

)
,

Q̃µ,t(λ) = Qµ,t (2µλ) = F (2µλ) e−t2
µλψ2(λ).

It follows from (3.1) that the integral kernels Qµ,t(x, y) of the operators
Qµ,t(A) satisfy

(3.7) Qµ,t(x, y) = 2µd/2Q̃µ,t
(
A{2

−µ}
)(

2µ/2x, 2µ/2y
)
.

Our goal in this section is to prove the following two theorems.

Theorem 3.8. Assume that F satisfies (1.5). Then there exists a con-
stant δ > 0 and a family of kernels Kµ(x, y) ≥ 0, µ ∈ Z, with ‖Kµ(x, y)‖ω(0) ≤
1, such that for every M > 0 there exists a constant CM such that

|Qµ,t(x, y)| ≤ CMKµ(x, y)
(

1 + 2µ/2|x− y|
)−δ
×(3.9)

×
(

1 + 2−µ/2m(x, V )
)−M (

1 + 2−µ/2m(y, V )
)−M

.

Theorem 3.10. There exist constants C, ε > 0 such that for every µ ∈ Z

(3.11)
∫
Rd

sup
t>0
|Qµ,t(x, y)−Qµ,t (x, y0)| dx ≤ C2εµ/2 |y − y0|ε .

Proof of Theorem 3.8. We set, for t > 0 and µ ∈ Z,

ϕµ,t(λ) = e−tλψ
(
2−µλ

)
, θµ(λ) = ψ

(
2−µλ

)
F (λ),

ϕ̃µ,t(λ) = ϕµ,t (2µλ) = e−t2
µλψ(λ), θ̃µ(λ) = θµ (2µλ) = ψ(λ)F (2µλ) .

Since for every k > 0 there exists a constant Ck independent of t and µ such
that ‖ϕ̃µ,t‖Ck(1/4, 4) ≤ Ck, Corollary 3.4 asserts that for every M > 0 there is
a constant CM such that for every µ ∈ Z and t > 0 we have

(3.12)
∣∣∣ϕ̃µ,t (A{2−µ}) (x, y)

∣∣∣ ≤ CM (1 + |x− y|)−M .

Moreover, by Theorem 3.2 there exist constants C, δ > 0 such that

(3.13)
∥∥∥θ̃µ (A{2−µ}) (x, y)

∥∥∥
ω(δ)
≤ C.
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Since

Q̃µ,t

(
A{2

−µ}
)

(x, y) =
∫
ϕ̃µ,t

(
A{2

−µ}
)

(x, z)θ̃µ
(
A{2

−µ}
)

(z, y) dz,

it follows that there is a constant C > 0 independent of µ such that

(3.14)
∥∥∥∥{sup

t>0

∣∣∣Q̃µ,t (A{2−µ}) (x, y)
∣∣∣}∥∥∥∥

ω(δ)

≤ C.

Let ζ ∈ C∞c (1/4, 4) be such that ζ(λ) = 1 for λ ∈ [1/2, 2]. Fix l (large) and
set ξ(λ) = λlζ(λ). Obviously, by Corollary 3.4,

(3.15)
∣∣∣ξ (A{2−µ}) (x, y)

∣∣∣ ≤ Cl (1 + |x− y|)−d−1
,

with Cl independent of µ. Moreover,

(3.16) ζ
(
A{2

−µ}
)

(x, y) =
((

A{2
−µ}
)−l

ξ
(
A{2

−µ}
))

(x, y).

For fixed y ∈ Rd we put h(x) = ξ(A{2
−µ})(x, y). Therefore, by (3.15), (3.16),

and Theorem 2.11, we obtain

(3.17)
∣∣∣∣m(x, V {2−µ})2l

ζ
(
A{2

−µ}
)

(x, y)
∣∣∣∣ ≤ ClMlh(x) ≤ C ′l ,

where C ′l does not depend on µ, x, and y.
On the other hand, for every N > 0 there exists a constant CN such that∣∣∣ζ (A{2−µ}) (x, y)

∣∣∣ ≤ CN (1 + |x− y|)−2N
,

which combined with (3.17) gives

(3.18)
∣∣∣ζ (A{2−µ}) (x, y)

∣∣∣ ≤ Cl,N (1 +m
(
x, V {2

−µ}
))−l

(1 + |x− y|)−N .

Obviously,
Q̃µ,t

(
A{2

−µ}
)

= ζ
(
A{2

−µ}
)
Q̃µ,t

(
A{2

−µ}
)
.

Therefore, applying (3.18) we obtain

(3.19) (1 + |x− y|)δ
∣∣∣Q̃µ,t (A{2−µ}) (x, y)

∣∣∣
≤ Cl

(
1 +m

(
x, V {2

−µ}
))−l∫

(1 + |x− z|)−N
{

sup
t>0

∣∣∣Q̃µ,t (A{2−µ}) (z, y)
∣∣∣}×

× (1 + |x− z|)δ (1 + |z − y|)δ dz.
Setting

K̃ ′µ(x, y)

=
∫

(1 + |x− z|)−N+δ

{
sup
t>0

∣∣∣Q̃µ,t (A{2−µ}) (z, y)
∣∣∣} (1 + |z − y|)δ dz
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and using (3.14), we get

(3.20)
∥∥∥K̃ ′µ(x, y)

∥∥∥
ω(0)
≤ C,

with C independent of µ. Thus

(3.21)
∣∣∣Q̃µ,t (A{2−µ}) (x, y)

∣∣∣
≤ ClK̃ ′µ(x, y)

(
1 +m

(
x, V {2

−µ}
))−l

(1 + |x− y|)−δ .

Since
Q̃∗µ,t

(
A{2

−µ}
)

(x, y) = Q̃µ,t
(
A{2−µ}

)
(y, x)

is the integral kernel of the operator Q̃µ,t
(
A{2

−µ}
)

, we obtain

(3.22)
∣∣∣Q̃µ,t (A{2−µ}) (x, y)

∣∣∣
≤ ClK̃ ′′µ(x, y)

(
1 +m

(
y, V {2

−µ}
))−l

(1 + |x− y|)−δ .

Now (3.9) follows from (3.7), (2.3), (3.21), and (3.22). �

Lemma 3.23. There exist constants C, ε > 0 independent of µ such that

(3.24)
∫ ∣∣∣T {2−µ}1 (x, y + h)− T {2

−µ}
1 (x, y)

∣∣∣ dx ≤ C|h|ε.
Proof. Since the kernels T {2

−µ}
t (x, y) satisfy (1.2), it suffices to prove (3.24)

for |h| < 1. By a functional calculus,

T
{2−µ}
1 (x, y) = c

∫ ∞
−∞

eiτΓ{2
−µ}(x, y, τ) dτ.

Therefore, applying (2.10), we get

(3.25)
∣∣∣T {2−µ}1 (x, y + h)− T {2

−µ}
1 (x, y)

∣∣∣ ≤ C|h|δ

|x− y|d+δ
for |h| ≤ |x− y|

4
.

Using (1.2) and (3.25), we have∫ ∣∣∣T {2−µ}1 (x, y + h)− T {2
−µ}

1 (x, y)
∣∣∣ dx

≤
∫
|x−y|≤4|h|1/2

+
∫
|x−y|>4|h|1/2

≤ C|h|d/2 + C

∫
|x−y|>4|h|1/2

|h|δ

|x− y|d+δ
dx ≤ C|h|ε. �
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Proof of Theorem 3.10. Set

R̃µ,t(λ) = Q̃µ,t(λ)eλ = F (2µλ) e−t2
µλeλψ2(λ).

Applying the same arguments as in the proof of Theorem 3.8, we obtain that
(3.21) holds for R̃µ,t instead of Q̃µ,t; that is, there exists a constant C > 0
and kernels K̃ ′′µ(x, y) such that

(3.26)
∥∥∥K̃ ′′µ(x, y)

∥∥∥
ω(0)
≤ C,

(3.27) sup
t>0

∣∣∣R̃µ,t (A{2−µ}) (x, y)
∣∣∣ ≤ K̃ ′′µ(x, y).

Using (3.26), (3,27), Lemma 3.23 and the fact that

Q̃µ,t

(
A{2

−µ}
)

(x, y) =
∫
R̃µ,t

(
A{2

−µ}
)

(x, z)T {2
−µ}

1 (z, y) dz,

we have∫
sup
t>0

∣∣∣Q̃µ,t (A{2−µ}) (x, y)− Q̃µ,t
(
A{2

−µ}
)

(x, y0)
∣∣∣ dx

≤
∫∫ (

sup
t>0

∣∣∣R̃µ,t (A{2−µ}) (x, z)
∣∣∣)∣∣∣T {2−µ}1 (z, y)− T {2

−µ}
1 (z, y0)

∣∣∣ dz dx
≤ C |y − y0|ε .

Finally (3.11) follows from (3.7). �

4. Proof of Theorem 1.4

Let F be a continuous function on R+ that satisfies (1.5). By (1.12) it
suffices to prove that there exists a constant C > 0 such that for every H1

A

atom a

(4.1) ‖MF (A)a‖L1 ≤ C.

Let a be an H1
A atom associated to a ball B(y0, r). Obviously the operators

F (A) and M are bounded on L2(Rd). Therefore, by (1.8),

(4.2) ‖MF (A)a‖L1(B(y0,4r))
≤ C.

Let ψ(λ), Qµ,t(λ) be as in Section 3. Using (3.6) we conclude

(4.3) |MF (A)a(x)| = sup
t>0
|TtF (A)a(x)| ≤

∑
µ∈Z

sup
t>0
|Qµ,t(A)a(x)| .
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By Theorem 3.8 we have, for µ ≥ −2 log2 r,

∫
B(y0,4r)

c

(
sup
t>0
|Qµ,t(A)a(x)|

)
dx

≤ C
∫
B(y0,4r)

c

∫
B(y0,r)

Kµ(x, y)
(

2µ/2r
)−δ
|a(y)| dy dx

≤ C
(

2µ/2r
)−δ

.

Therefore

(4.4)
∑

µ≥−2 log2 r

∫
B(y0,4r)c

(
sup
t>0
|Qµ,t(A)a(x)|

)
dx ≤ C.

By virtue of (4.2), (4.3), and (4.4) it remains to show that there exists a
constant C > 0 such that

∑
µ<−2 log2 r

∫
B(y0,4r)c

(
sup
t>0
|Qµ,t(A)a(x)|

)
dx ≤ C.

Let n be the integer such that y0 ∈ Bn. We consider two cases.

Case 1 : r < 2−1−n/2. In this case a satisfies (1.10). Using (1.10) and
Theorem 3.10, we get

∑
µ<−2 log2 r

∫
B(y0,4r)c

(
sup
t>0
|Qµ,t(A)a(x)|

)
dx

≤
∑

µ<−2 log2 r

∫
B(y0,4r)c

(
sup
t>0

∣∣∣∣∣
∫
B(y0,r)

(Qµ,t(A)(x, y)

−Qµ,t(x, y0))a(y) dy

∣∣∣∣∣
)
dx

≤ C
∑

µ<−2 log2 r

∫
B(y0,r)

2εµ/2 |y − y0|ε |a(y)| dy

≤ C
∑

µ<−2 log2 r

∫
B(y0,r)

2εµ/2r−d |y − y0|ε dy ≤ C.
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Case 2 : 2−1−n/2 ≤ r ≤ 21−n/2. Applying Theorem 3.8, we get∑
µ<−2 log2 r

∫
B(y0,4r)c

(
sup
t>0
|Qµ,t(A)a(x)|

)
dx

≤ CM
∑

µ<−2 log2 r

∫
B(y0,4r)c

∫
B(y0,r)

Kµ(x, y)
(

1 + 2−µ/2m(y, V )
)−M
×

× |a(y)| dy dx.

Since m(y, V ) ∼ 2n/2 for y ∈ B(y0, r), we obtain∑
µ<−2 log2 r

∫
B(y0,4r)c

(
sup
t>0
|Qµ,t(A)a(x)|

)
dx ≤ C

∑
µ<n+2

2−M(n−µ)/2 ≤ C.
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