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BOUNDARY CONTINUITY FOR QUASIMINIMIZERS ON
METRIC SPACES

JANA BJÖRN

Abstract. A pointwise estimate near a boundary point is obtained
for quasiminimizers of the energy integral on a doubling metric measure

space admitting a Poincaré inequality. Wiener type conditions sufficient
for the (Hölder) continuity of quasiminimizers at a boundary point are
also given.

1. Introduction

In Rn, the problem of minimizing the p-energy integral∫
Ω

|∇u(x)|p dx,

among all functions u with prescribed boundary data is, for 1 < p < ∞,
equivalent to solving the Dirichlet problem for its Euler equation

div(|∇u|p−2∇u) = 0,

and the theory of partial differential equations can be used to obtain qual-
itative information about the minimizer. For non-differentiable variational
integrals, there is no Euler equation and the approach of partial differential
equations is not possible. Instead, variational methods such as those based
on De Giorgi classes [4] have to be used; see, e.g., Giaquinta–Giusti [8].

In [9], Giaquinta and Giusti introduced the notion of quasiminimizers as
a tool for a unified treatment of variational integrals, elliptic equations and
systems, obstacle problems and quasiregular mappings. They proved several
fundamental properties of quasiminimizers such as local Hölder continuity,
the Harnack inequality and the maximum principle. The boundary behaviour
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of quasiminimizers was studied by Ziemer [22], who obtained Wiener type
conditions that are sufficient for continuity at a boundary point.

In recent years, several papers have been written on Sobolev spaces and the
calculus on metric measure spaces without a differentiable structure; see, e.g.,
Haj lasz [10], Heinonen–Koskela [13], Cheeger [2], Shanmugalingam [19], [20]
and Franchi–Haj lasz–Koskela [5]. In these papers it is shown that first order
Sobolev spaces can be defined without the notion of partial derivatives and
a version of the p-energy integral can be considered. This theory of Sobolev
spaces on abstract metric measure spaces unifies, and has applications in,
several areas of analysis, such as weighted Sobolev spaces, calculus on Rie-
mannian manifolds, subelliptic operators associated with vector fields, and
potential theory on graphs.

In the setting of metric spaces, the approach with quasiminimizers is par-
ticularly useful, as the Euler equation for the p-energy integral need not exist.
Local properties of quasiminimizers of the p-energy integral on metric spaces
are studied in Kinnunen–Shanmugalingam [14]. In particular, it is shown that
if the space is doubling and admits a Poincaré inequality, then quasiminimiz-
ers are locally Hölder continuous and satisfy the Harnack inequality and the
maximum principle.

The aim of this paper is to obtain a pointwise estimate for quasiminimizers
of the p-energy integral on metric measure spaces and to give sufficient con-
ditions for their continuity and Hölder continuity at a boundary point. We
show that if the measure µ on the metric space is doubling and the space
admits a p1-Poincaré inequality for some p1 < p, then every quasiminimizer
u of the p-energy integral with boundary data w satisfies

osc
B(x0,ρ)

u ≤ osc
B(x0,r0)

w(1)

+ C1 osc
Ω
w exp

(
−1

8

∫ r0

ρ

exp
(
−C0

(
r−p1µ(B(x0, r))

Cp1(B(x0, r) \ Ω)

)p/(p−p1))
dr

r

)
,

where Cp1 is the p1-capacity on X; see Theorem 2.11 and (16).
Pointwise capacitary estimates for p-harmonic functions in Rn were first

proved by Maz′ya in [16] (for p = 2) and [17] (for p > 1), and used to
obtain the sufficiency part of the Wiener criterion. Similarly, our estimate
(1) implies sufficient conditions for the continuity and Hölder continuity of
quasiminimizers at a boundary point; see Theorem 2.12 and the comment
following it. In particular, we obtain (Hölder) continuity if the complement
of Ω is p1-fat or has a corkscrew at x0. Due to the p1-capacity and the
exponential in the integrand, these conditions are more restrictive than the
Wiener criteria for solutions of various classes of elliptic equations that have
been obtained, for example, in the papers [21], [15], [17], [6], [12], [3], and [1],
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and which are of the form∫ 1

0

(
Cp(B(x0, r) \ Ω)
r−pµ(B(x0, r))

)1/(p−1)
dr

r
=∞.

For quasiminimizers in Rn, there are two sufficient conditions for continuity
at a boundary point, both due to Ziemer [22]. One of them, which more
resembles the classical Wiener criterion, can be generalized to our setting.
Namely, we prove that there exists Λ such that if

(2)
∫ 1

0

(
Cp1(B(x0, r) \ Ω)
r−p1µ(B(x0, r))

)Λ
dr

r
=∞,

then every quasiminimizer of the p-energy integral on Ω with continuous
boundary data is continuous at the boundary point x0; see Theorem 2.13 and
the remarks following it. At the same time, Ziemer’s method, which is used
to obtain the sufficient condition (2), does not give any pointwise estimates or
conditions for Hölder continuity at a boundary point. From this point of view,
our Theorems 2.11 and 2.12 seem to be new, even in the Euclidean setting.

2. Definitions and results

Throughout the paper, X = (X, d, µ) will be a metric space equipped with a
Borel regular measure µ satisfying 0 < µ(B) <∞ for all balls B = B(x0, r) =
{x ∈ X : d(x, x0) < r} in X with 0 < r <∞. Later, we shall impose further
restrictions on the space X.

In [13], Heinonen and Koskela introduced upper gradients as a substitute
for the modulus of the usual gradient. The advantage of this new notion
is that it can easily be generalized to the metric space setting. In order to
give an exact definition of upper gradients we first need to introduce some
terminology.

A path in X is a continuous map γ from an interval I ⊂ R to X, or the
image γ(I) ⊂ X of such a map. If γ is rectifiable, we automatically assume
that it is parameterized by the arclength ds, so that I = [0, lγ ], where lγ is
the length of γ.

The p-modulus of a family Γ of paths in X is

Modp(Γ) = inf
ρ

∫
X

ρp dµ,

where the infimum is taken over all nonnegative Borel functions ρ on X such
that the path integral

∫
γ
ρ ds is ≥ 1 for all locally rectifiable paths in Γ. We

say that a property holds on p-almost every path if the family of paths for
which it does not hold has p-modulus zero.
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Definition 2.1. A Borel function g on X is an upper gradient of a real-
valued function u on X if for all rectifiable paths γ : [0, lγ ]→ X

(3) |u(γ(0))− u(γ(lγ))| ≤
∫
γ

g ds.

If (3) holds only for p-almost every path in X, then g is called a p-weak upper
gradient of u.

Following Shanmugalingam [19], we define a version of Sobolev type spaces
on the metric space X. Note that there are several other definitions of Sobolev
type spaces on metric spaces; see, e.g., Haj lasz [10], Heinonen–Koskela [13],
Cheeger [2] and Franchi–Haj lasz–Koskela [5]. However, it has been shown,
e.g., in Franchi–Haj lasz–Koskela [5] and Shanmugalingam [19], that under
some reasonable hypotheses (including Euclidean spaces) most of these defi-
nitions lead to the same space. From now on, p will be a fixed number with
1 < p <∞.

Definition 2.2. Let

‖u‖N1,p =
(∫

X

|u|p dµ
)1/p

+ inf
g

(∫
X

gp dµ

)1/p

,

where the infimum is taken over all upper gradients of u or, equivalently, over
all p-weak upper gradients of u. The Newtonian space on X is the quotient
space

N1,p(X) = {u : ‖u‖N1,p <∞}/∼,
where u ∼ v if and only if ‖u− v‖N1,p = 0.

The space N1,p(X) equipped with the norm ‖ ·‖N1,p is a Banach space and
a lattice; see Shanmugalingam [19]. Corollary 3.7 in [20] shows that every
u ∈ N1,p has a minimal p-weak upper gradient gu in the sense that gu ≤ g
holds µ-a.e. for all p-weak upper gradients of u. Note also that the proof of
Lemma 1.7 in Cheeger [2] together with Lemma 2.1 in Shanmugalingam [19]
shows that if u, v ∈ N1,p(X), then the function |u|gv+ |v|gu is a p-weak upper
gradient of uv. The following lemma shows that, as long as u ∈ N1,p(X), the
notion of p-weak upper gradient is independent of p.

Lemma 2.3. If u ∈ N1,p(X), then for µ-a.e. x ∈ X,

gu(x) = inf
g
g̃(x),

where the infimum is taken over all upper gradients g of u and

g̃(x) = lim sup
r→0

1
µ(B(x, r))

∫
B(x,r)

g dµ.
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Proof. The inequality g̃u(x) ≤ infg g̃(x) is immediate. Conversely, let Γ be
the collection of paths on which (3) fails for gu. By Lemma 2.1 in Shanmu-
galingam [19] there exists a non-negative Borel function ρ ∈ Lp(X,µ) such
that

∫
γ
ρ ds = ∞ for all γ ∈ Γ. Then the functions gε = gu + ερ are upper

gradients of u, and hence

inf
g
g̃(x) ≤ g̃ε(x) ≤ g̃u(x) + ερ̃(x).

Since ρ̃(x) is finite µ-a.e. (because ρ ∈ Lp(X,µ)), letting ε → 0 shows that
infg g̃(x) ≤ g̃u(x) for µ-a.e. x ∈ X. The fact that g̃u(x) = gu(x) µ-a.e. finishes
the proof. �

Definition 2.4. The p-capacity of a set E ⊂ X is

Cp(E) = inf
u
‖u‖pN1,p ,

where the infimum is taken over all u ∈ N1,p(X) such that u ≥ 1 on E. We
say that a property holds p-quasieverywhere (p-q.e.) if the set of points for
which it does not hold has p-capacity zero.

The p-capacity is the right gauge for distinguishing between two Newtonian
functions. In particular, Corollary 3.3 in Shanmugalingam [19] together with
the lattice property of N1,p(X) shows that if u, v ∈ N1,p(X) and u ≤ v µ-a.e.
then u ≤ v p-q.e.

In order to give a definition of quasiminimizers of the energy integral on a
set E ⊂ X we need a Newtonian space with zero boundary values. Let

N1,p
0 (E) = {u ∈ N1,p(X) : u = 0 p-q.e. on X \ E}.

Corollary 3.9 in [19] implies that N1,p
0 (E) equipped with the norm ‖·‖N1,p is a

closed subspace of N1,p(X). Note also that if Cp(X \ E) = 0, then N1,p
0 (E) =

N1,p(X). We shall therefore always assume that Cp(X \ E) > 0.

Definition 2.5. Let w ∈ N1,p(X). We say that u is a quasiminimizer
of the p-energy integral on Ω with boundary data w if u − w ∈ N1,p

0 (Ω) and
there exists a constant Q > 0 such that for all v ∈ N1,p

0 (Ω)∫
v 6=0

gpu dµ ≤ Q
∫
v 6=0

gpu+v dµ.

To guarantee good properties of the space N1,p and the quasiminimizers,
we shall impose two additional conditions on the space X.

Definition 2.6. If λ > 0 and B = B(x0, r) is a ball, we let λB denote
the ball B(x0, λr). We say that the measure µ (or the space X) is doubling,
if there exists C > 0 such that

µ(2B) < Cµ(B)
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for all balls B in X.

Definition 2.7. We say that the space X admits a weak (q, p)-Poincaré
inequality if there exist C > 0 and λ ≥ 1 such that

(4)
(∫

B

|u− uB |q dµ
)1/q

≤ Cr
(∫

λB

gp dµ

)1/p

holds for all balls B = B(x0, r) in X and all pairs (u, g), where u is an
integrable function on X and g is an upper gradient of u. Here and in what
follows, we use the notation

uB =
∫
B

u dµ =
1

µ(B)

∫
B

u dµ.

By the Hölder inequality, a weak (q, p)-Poincaré inequality implies weak
(q′, p′)-Poincaré inequalities with the same λ for all q′ ≤ q and p′ ≥ p. On the
other hand, by Theorem 5.1 in Haj lasz–Koskela [11], a weak (1, p)-Poincaré in-
equality implies a weak (q, p)-Poincaré inequality for some q > p and possibly
a new λ. The argument in the proof of Lemma 2.3 shows that if the Poincaré
inequality (4) holds for all upper gradients, then it holds for all p-weak upper
gradients as well.

It is shown in Shanmugalingam [20] that the p-energy functional v 7→∫
X
gpw+v dµ, where w ∈ N1,p(X) is fixed and v ∈ N1,p

0 (Ω), is convex and
lower semicontinuous. If X is doubling and admits a (1, p)-Poincaré inequality
and we also assume that Ω is bounded and Cp(X \ Ω) > 0, then the p-
energy functional is coercive on N1,p

0 (Ω). Indeed, let vn ∈ N1,p
0 (Ω) satisfy

‖vn‖N1,p →∞, as n→∞. Then gvn ≤ gw+vn +gw and Proposition 3.2 below
applied to a sufficiently large ball B together with Lemma 3.3 below implies∫

X

gpw+vndµ ≥
∫
X

gpvndµ− ‖w‖
p
N1,p

≥
(

1 +
Cµ(B)

Cp(B \ Ω)

)−1

‖vn‖pN1,p − ‖w‖pN1,p →∞,

where Cp(B \ Ω) > 0 and C depends only on p, X and B. In Shanmu-
galingam [20], the coercivity of the energy functional was proved under slightly
stronger assumptions. Standard arguments from functional analysis (using
the local sequentional weak compactness of N1,p

0 (Ω) and the Mazur lemma)
then yield the existence of a minimizer of the p-energy integral on Ω (i.e., a
function satisfying Definition 2.5 with Q = 1); see Shanmugalingam [20].

In Kinnunen–Shanmugalingam [14], it is shown that if X is doubling and
admits a weak (1, p1)-Poincaré inequality for some p1 < p, then quasimini-
mizers of the p-energy integral are locally Hölder continuous in Ω and satisfy
the Harnack inequality and the maximum principle.
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Example 2.8. Using Lemma 3.2 in Shanmugalingam [20] it is not difficult
to verify that every minimizer u of the integral functional u 7→

∫
Ω
F (gu) dµ

with a nondecreasing function F satisfying Ctp ≤ F (t) ≤ C ′tp is a quasimin-
imizer of the p-energy integral.

Example 2.9. It is shown in Cheeger [2] that for a doubling space X
with a (1, p)-Poincaré inequality it is possible to define a “gradient” Du of
u ∈ N1,p(X), which has all the properties of the usual gradient ∇u in Rn.
Moreover, for µ-a.e. x ∈ X, |Du| is comparable to gu. It is then easily
verified that every minimizer u of the integral functional u 7→

∫
Ω
F (Du) dµ

with C|ξ|p ≤ F (ξ) ≤ C ′|ξ|p is a quasiminimizer of the p-energy integral. Note
that we do not require any regularity or monotonicity of F .

Similarly, if A(ξ) is a vector-valued function such that A(ξ) · ξ ≥ C|ξ|p and
|A(ξ)| ≤ C ′|ξ|p−1, then every weak solution of the differential equation∫

Ω

A(Du) ·Dϕdµ = 0 for all ϕ ∈ N1,p
0 (Ω)

is a quasiminimizer of the p-energy integral. Again, the function A need not
satisfy any regularity or monotonicity conditions.

Next, we introduce a new capacity on X which will appear in the point-
wise estimate for quasiminimizers; cf. Section 6.16 in Heinonen–Kilpeläinen–
Martio [12]. Lemma 3.3 below shows that the capacities capp and Cp are
essentially equivalent.

Definition 2.10. Let B ⊂ X be a ball and E ⊂ B. We define the
capacity

capp(E, 2B) = inf
u

∫
2B

gpu dµ,

where the infimum is taken over all u ∈ N1,p
0 (2B) such that u ≥ 1 on E.

We are now ready to state the main results of this paper. We shall use the
notation

M(r, r0) =
(

ess sup
B(x0,r)

u− ess sup
B(x0,r0)

w
)

+
,

where 0 < r ≤ r0, a+ = max{a, 0}, and u ∈ N1,p(X) is a quasiminimizer of
the p-energy integral on Ω with the boundary data w ∈ N1,p(X). Let also

γ(p1, r) =
r−p1µ(B(x0, r))

capp1
(B(x0, r) \ Ω, B(x0, 2r))

.

Our first result is a pointwise estimate for quasiminimizers of the p-energy
integral near a boundary point; cf. Maz′ya [16] and [17].
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Theorem 2.11. Let X be a doubling metric measure space admitting a
weak (1, p1)-Poincaré inequality for some p1 < p. Then there exist C0, C1 > 0
such that if u ∈ N1,p(X) is a quasiminimizer of the p-energy integral on Ω
with the boundary data w ∈ N1,p(X), then

M(ρ, r0) ≤ C1M(r0, r0) exp
(
−1

8

∫ r0

ρ

exp
(
−C0γ(p1, r)p/(p−p1)

) dr
r

)
.

As a consequence of Theorem 2.11 we obtain the following sufficient condi-
tion for the Hölder continuity of quasiminimizers of the p-energy integral at
a boundary point.

Theorem 2.12. Let X be a doubling metric measure space admitting a
weak (1, p1)-Poincaré inequality for some p1 < p. Then there exists C0 > 0
such that if w ∈ N1,p(X) is Hölder continuous at x0 ∈ ∂Ω,

lim inf
ρ→0

1
| log ρ|

∫ 1

ρ

exp
(
−C0γ(p1, r)p/(p−p1)

) dr
r
> 0,

and u ∈ N1,p(X) is a quasiminimizer of the p-energy integral on Ω with the
boundary data w, then u is Hölder continuous at x0.

A sufficient condition for the continuity of quasiminimizers of the p-energy
integral at a boundary point can also be obtained from the estimate in The-
orem 2.11. However, this condition is more restrictive than the following
condition which is obtained directly by a different method; cf. Ziemer [22].

Theorem 2.13. Let X be a doubling metric measure space admitting a
weak (1, p1)-Poincaré inequality for some p1 < p. Then there exists Λ > 0
such that if w ∈ N1,p(X) is continuous at x0 ∈ ∂Ω,∫ 1

0

(
capp1

(B(x0, r) \ Ω, B(x0, 2r))
r−p1µ(B(x0, r))

)Λ
dr

r
=∞,

and u ∈ N1,p(X) is a quasiminimizer of the p-energy integral on Ω with the
boundary data w, then u is continuous at x0.

Remark 2.14. The proof shows that Theorem 2.13 is true for all Λ sat-
isfying

Λ >
1
p1

+
p

σ(p− p1)
,

where σ is the exponent from the weak Harnack inequality (Theorem 4.6).

Remark 2.15. By Lemma 3.3 below, γ(p1, r) is for sufficiently small r
comparable to

(5)
capp1

(B(x0, r), B(x0, 2r))
capp1

(B(x0, r) \ Ω, B(x0, 2r))
,
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which is the reciprocal of the relative capacity of B(x0, r) \ Ω appearing in
many Wiener criteria. Lemma 3.3 also shows that for small r

(6) γ(p1, r) ≤
Cr−p1µ(B(x0, r))
Cp1(B(x0, r) \ Ω)

and γ(p1, r) ≤
Cµ(B(x0, r))
µ(B(x0, r) \ Ω)

,

so that Theorems 2.11 and 2.13 yield (1) and (2) in the introduction.
Finally, (5) and (6) show that the conditions in Theorems 2.12 and 2.13

are satisfied, e.g., if one of the following conditions holds for some C > 0 and
all sufficiently small r:

(i) The complement of Ω has a corkscrew at x0, i.e., the set B(x0, r) \ Ω
contains a ball with radius Cr, or, more generally,

µ(B(x0, r) \ Ω) ≥ Cµ(B(x0, r)).

(ii) The complement of Ω is p1-fat at x0, i.e.,

capp1
(B(x0, r) \ Ω, B(x0, 2r)) ≥ C capp1

(B(x0, r), B(x0, 2r)).

Note also that by Theorem 1.2 in [1] every set which is uniformly p-fat (i.e.,
p-fat at all its boundary points) is also uniformly p1-fat for some p1 < p.

Example 2.16. Let X be a doubling metric measure space admitting a
weak (1, p1)-Poincaré inequality for some p1 < p. Assume moreover that X
is geodesic and that all geodesic curves are “open” in the sense that they do
not contain the first and the last point. Then every ball B = B(z0, r) in
X is regular, i.e., every quasiminimizer of the p-energy integral on B with
continuous boundary data is continuous up to the boundary. Indeed, let x0 ∈
∂B and let γ be a geodesic curve connecting z0 and x0. By the assumptions,
x0 cannot be the last point of γ. Hence for all sufficiently small ρ > 0 there
exists x ∈ γ such that d(x0, x) = ρ and d(z0, x) = r + ρ. It follows that
B(x, ρ) ⊂ B(x0, 2ρ) \B, i.e., the complement of B has a corkscrew at x0.

3. Sobolev type inequalities and capacity

In this section we will prove two Sobolev type inequalities for Newtonian
functions. We start by mentioning some properties of Newtonian functions
which will be needed later. By χA we denote the characteristic function of a
set A.

By Proposition 3.1 in Shanmugalingam [19], every u ∈ N1,p(X) is abso-
lutely continuous on p-almost every curve, i.e., the function u ◦ γ : I → R is
absolutely continuous on I for p-almost all rectifiable paths γ in X. A set
V ⊂ X is p-path open if for p-almost every path γ in X the set γ−1(V ) is
open in R. Note that if u is absolutely continuous on p-almost every curve,
then the set {x ∈ X : u(x) > k} is p-path open for all k.

Let u, u1 and u2 be absolutely continuous on p-almost every curve in X,
u = u1 on V and u = u2 on X \ V for some p-path open set V ⊂ X.
If g1 and g2 are p-weak upper gradients of u1 and u2, respectively, then
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g1 + g2χX\V and g1χV + g2 are p-weak upper gradients of u; see Lemma 3.2
in Shanmugalingam [20]. In particular, if u2 = 0, then g1χV is a p-weak upper
gradient of u.

Unless otherwise stated, C denotes a positive constant whose exact value
is unimportant and depends only on the fixed parameters, such as X, d, µ
and p. The following proposition is a generalization of the classical Sobolev
inequality.

Proposition 3.1. Let X be a doubling metric measure space admitting
a weak (q, p)-Poincaré inequality. Then there exists C > 0 such that if B =
B(x0, r) is a ball in X, 0 < r < (1/3) diamX and u ∈ N1,p

0 (B), then(∫
B

|u|q dµ
)1/q

≤ Cr
(∫

B

gpu dµ

)1/p

.

Proof. The arguments are as in the proof of Lemma 2.8 in Kinnunen–
Shanmugalingam [14]; cf. Theorem 13.1 in Haj lasz–Koskela [11]. Let u2B =∫

2B
u dµ. Then(∫

2B

|u|q dµ
)1/q

≤
(∫

2B

|u− u2B |q dµ
)1/q

+ |u2B |.

By the Hölder inequality and the fact that u vanishes on 2B \B, we have

|u2B | ≤
∫

2B

|u|χB dµ ≤
(∫

2B

|u|q dµ
)1/q(

µ(B)
µ(2B)

)1−1/q

.

As r < (1/3) diamX, the set X \ (3/2)B is nonempty and the Poincaré in-
equality implies that there exists a point x′ on the sphere

{
x ∈ X : d(x, x0) =

3r/2
}

. Then the set 2B \B contains the ball B′ = B
(
x′, r/2

)
, 2B ⊂ 7B′, and

the doubling property of µ implies

µ(B)
µ(2B)

≤ 1− µ(B′)
µ(2B)

≤ γ < 1.

The last three estimates and the weak (q, p)-Poincaré inequality now give

(
1−γ1−1/q

)(∫
2B

|u|q dµ
)1/q

≤
(∫

2B

|u−u2B |q dµ
)1/q

≤ Cr
(∫

2B

gpu dµ

)1/p

.

As u and gu vanish outside B, the ball 2B in the above integrals can be
replaced by B. �

The following inequality was first proved by Maz’ya in the Euclidean set-
ting; see, e.g., [18]. The original proof goes through in the metric space setting
and is given here for the reader’s convenience.



BOUNDARY CONTINUITY FOR QUASIMINIMIZERS ON METRIC SPACES 393

Proposition 3.2. Let X be a doubling metric measure space admitting a
weak (1, p)-Poincaré inequality. Then there exist C > 0 and λ ≥ 1 such that
if B is a ball in X, u ∈ N1,p(X) and S =

{
x ∈ (1/2)B : u(x) = 0

}
, then∫

B

|u|p dµ ≤ C

capp(S,B)

∫
λB

gpu dµ.

Proof. By splitting u into its positive and negative parts and considering
them separately, we can assume that u ≥ 0 in B. Let

ū =
(∫

B

up dµ

)1/p

.

Denote the radius of B by r and let η be a 2/r-Lipschitz function (i.e., a
Lipschitz continuous function with Lipschitz constant 2/r) vanishing outside
B such that 0 ≤ η ≤ 1 and η = 1 on (1/2)B. Then the function v = η(1−u/ū)
is admissible in the definition of capp(S,B) and gv ≤ (1−u/ū)gη+gu/ū. Hence

capp(S,B) ≤
∫
B

gpv dµ ≤
22p−1

rpūp

∫
B

|u− ū|p dµ+
2p−1

ūp

∫
B

gpu dµ.

Next,(∫
B

|u− ū|p dµ
)1/p

≤
(∫

B

|u− uB |p dµ
)1/p

+ |ū− uB |µ(B)1/p.

By Theorem 5.1 in Haj lasz–Koskela [11], X admits a weak (p, p)-Poincaré
inequality with some λ, which can be used to estimate the right-hand side of
the last inequality. The first term is estimated directly and for the second
term we have

|ū− uB |µ(B)1/p =
∣∣‖u‖Lp(B) − ‖uB‖Lp(B)

∣∣
≤ ‖u− uB‖Lp(B) ≤ Cr

(∫
λB

gpu dµ

)1/p

.

The last three inequalities now give

capp(S,B) ≤ C

ūp

∫
λB

gpu dµ,

and the proposition follows. �

The following lemma shows that the capacities capp and Cp are essentially
equivalent and gives a precise estimate for the capacity of a ball.

Lemma 3.3. Let X be a doubling metric measure space admitting a weak
(1, p)-Poincaré inequality and let E ⊂ B = B(x0, r) with 0 < r <(1/6)diamX.
Then there exists C > 0 such that

µ(E)
Crp

≤ capp(E, 2B) ≤ Cµ(B)
rp



394 JANA BJÖRN

and
Cp(E)

C(1 + rp)
≤ capp(E, 2B) ≤ 2p−1

(
1 +

1
rp

)
Cp(E).

In particular, for bounded sets E, Cp(E) = 0 if and only if capp(E, 2B) = 0
for some ball B containing E.

Proof. If v is admissible in the definition of capp(E, 2B), then by Proposi-
tion 3.1 with q = p,

µ(E) ≤
∫

2B

|v|p dµ ≤ Crp
∫

2B

gpv dµ,

and

Cp(E) ≤
∫
X

|v|p dµ+
∫
X

gpv dµ ≤ C(1 + rp)
∫

2B

gpv dµ.

Taking infimum over all admissible v yields the left inequalities in the lemma.
Conversely, let η be a 1/r-Lipschitz function vanishing outside 2B such

that 0 ≤ η ≤ 1 and η = 1 on B. If u ∈ N1,p(X) is admissible in the definition
of Cp(E), then η and uη are admissible in the definition of capp(E, 2B), and
hence

capp(E, 2B) ≤
∫

2B

gpη dµ ≤
µ(2B)
rp

≤ Cµ(B)
rp

,

and

capp(E, 2B) ≤
∫

2B

gpuη dµ ≤
∫

2B

(|u|gη + ηgu)p dµ

≤ 2p−1

rp

∫
X

|u|p dµ+ 2p−1

∫
X

gpu dµ.

Taking infimum over all u ∈ N1,p(X) finishes the proof. �

4. Proofs of the results

We shall first show that quasiminimizers satisfy a Caccioppoli type estimate
on level sets, as in the De Giorgi classes; cf. Definition 4.5 below. These
estimates will be used to obtain pointwise estimates for quasiminimizers in
terms of their Lp-norm and then iterated to prove their (Hölder) continuity. In
this section, the general constant C is allowed to also depend on the constant
Q in the definition of quasiminimizers.

Proposition 4.1. Let u ∈ N1,p(X) be a quasiminimizer of the p-energy
integral on Ω with the boundary data w ∈ N1,p(X). Let x0 ∈ X and A(k, r) =
{x ∈ B(x0, r) : u(x) > k}. Then for 0 < r1 < r2 and k ≥ ess supB(x0,r2) w we
have

(7)
∫
A(k,r1)

gpu dµ ≤
C

(r2 − r1)p

∫
B(x0,r2)

(u− k)p+ dµ.
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Proof. Let η be a 1/(r2−r1)-Lipschitz function vanishing outside B(x0, r2),
such that 0 ≤ η ≤ 1 and η = 1 on B(x0, r1). Let v = −η(u − k)+. Then,
as u = w ≤ k p-q.e. on B(x0, r2) \ Ω and η = 0 outside B(x0, r2), we have
v ∈ N1,p

0 (Ω). Also, u + v = (1 − η)(u − k)+ + k on A(k, r2) and u + v = u
outside A(k, r2). The set A(k, r2) is p-path open, and hence the function
(1− η)gu + (u− k)+gη + guχX\A(k,r2) is a p-weak upper gradient of u+ v. It
then follows from the quasiminimizing property of u that∫

A(k,r1)

gpu dµ ≤
∫
v 6=0

gpu dµ ≤ Q
∫
v 6=0

gpu+v dµ

≤ Q
∫
A(k,r2)

(
(1− η)gu + (u− k)+gη

)p
dµ

≤ C
∫
A(k,r2)\A(k,r1)

gpu dµ+
C

(r2 − r1)p

∫
B(x0,r2)

(u− k)p+ dµ,

where C = 2p−1Q. Adding C times the left-hand side to both sides of the
inequality yields∫

A(k,r1)

gpu dµ ≤ θ
∫
A(k,r2)

gpu dµ+
θ

(r2 − r1)p

∫
B(x0,r2)

(u− k)p+ dµ,

where θ = C/(C + 1) < 1. The following lemma now finishes the proof. �

Lemma 4.2. Let f(r) be a nonnegative function defined on [R1, R2], where
R1 ≥ 0. Suppose that for all R1 ≤ r1 < r2 ≤ R2,

f(r1) ≤ θf(r2) +
A

(r2 − r1)α
+B,

where A,B ≥ 0, α > 0 and 0 ≤ θ < 1. Then there exists C > 0 depending
only on α and θ such that for all R1 ≤ r1 < r2 ≤ R2,

f(r1) ≤ C
(

A

(r2 − r1)α
+B

)
.

Proof. See, e.g., Lemma 3.1 in Chapter V in Giaquinta [7]. �

Theorem 4.3. Let X be a doubling metric measure space admitting a
weak (1, p)-Poincaré inequality. Then there exists C > 0 such that if u ∈
N1,p(X) and the condition (7) holds for all k ≥ k∗ and 0 < r1 < r2 ≤ R <
(1/3) diamX, then for all k0 ≥ k∗

ess sup
B(x0,R/2)

u ≤ k0 + C

(∫
B(x0,R)

(u− k0)p+ dµ
)1/p

.

Proof. Let x0 be fixed and write B(r) = B(x0, r). Let 0 < r/2 ≤ ρ <
r ≤ R, r1 = (ρ + r)/2, and let η be a 2/(r − ρ)-Lipschitz function vanishing



396 JANA BJÖRN

outside B(r1) such that 0 ≤ η ≤ 1 and η = 1 on B(ρ). Let k > l ≥ k∗ and
v = η(u− k)+. Then∫

B(r)

(u− l)p+ dµ ≥
∫
A(k,ρ)

(u− l)p dµ ≥ (k − l)pµ(A(k, ρ))

and the Hölder inequality yields for q > p

∫
B(ρ)

(u− k)p+ dµ ≤
(∫

B(ρ)

(u− k)q+ dµ
)p/q

µ(A(k, ρ))1−p/q

(8)

≤
(∫

B(r1)

vq dµ

)p/q( 1
(k − l)p

∫
B(r)

(u− l)p+ dµ
)1−p/q

.

At the same time, as A(k, r1) is p-path open, the function

g = (ηgu + (u− k)gη)χA(k,r1)

is a p-weak upper gradient of v and gv ≤ g. By Theorem 5.1 in Haj lasz–
Koskela [11], X admits a weak (q, p)-Poincaré inequality for some q > p.
Hence, by Proposition 3.1 and the assumption (7),(∫

B(r1)

vq dµ

)p/q
(9)

≤ Crp1
µ(B(r1))1−p/q

∫
B(r1)

gpv dµ

≤ Crp1
µ(B(r1))1−p/q

(∫
A(k,r1)

gpu dµ+
2p

(r − ρ)p

∫
B(r1)

(u− k)p+ dµ
)

≤ Crp1
(r − ρ)pµ(B(r1))1−p/q

∫
B(r)

(u− k)p+ dµ.

The estimates (8) and (9) then yield∫
B(ρ)

(u− k)p+ dµ ≤
Crp1

(r − ρ)pµ(B(r1))1−p/q

∫
B(r)

(u− l)p+ dµ

×
(

1
(k − l)p

∫
B(r)

(u− l)p+ dµ
)1−p/q

.

Note that, by the doubling property of µ, the measures µ(B(ρ)), µ(B(r1))
and µ(B(r)) are comparable. Let ξ = 1− p/q > 0 and

u(k, ρ) =
(∫

B(ρ)

(u− k)p+ dµ
)1/p

.
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Then the last inequality can be written as

(10) u(k, ρ) ≤ Cr

(r − ρ)(k − l)ξ
u(l, r)1+ξ.

For n = 0, 1, . . ., let ρn = R(1/2+2−n−1) ≤ R and kn = k0 + d(1− 2−n) ≥ k∗,
where d > 0 will be chosen later. Then ρ0 = R, ρn ↘ R/2 and kn ↗ k0 + d.
We now show by induction that, with a suitable d,

(11) u
(
k0 + d, 1

2R
)
≤ u(kn, ρn) ≤ 2−µnu(k0, R)→ 0,

as n → ∞, where µ = (1 + ξ)/ξ. Indeed, (11) is trivially true for n = 0 and
assuming (11) for n ≥ 0, we have by (10) with r = ρn, ρ = ρn+1, k = kn+1

and l = kn,

u(kn+1, ρn+1) ≤ CR

(ρn − ρn+1)(kn+1 − kn)ξ
u(kn, ρn)1+ξ

≤ 2n+2C

(2−n−1d)ξ
2−µn(1+ξ)u(k0, R)1+ξ = 2−µ(n+1)u(k0, R),

provided that d = (22+ξ+µC)1/ξu(k0, R), where C is the same constant as in
the last inequality. �

Proposition 4.4. Let X be a doubling metric measure space admitting
a weak (1, p1)-Poincaré inequality for some p1 < p. Then there exist C > 0
and λ ≥ 1 such that if u ∈ N1,p(X) is a quasiminimizer of the p-energy
integral on Ω with the boundary data w ∈ N1,p(X), then for all x0 ∈ ∂Ω and
0 < 2λr ≤ r0 < (1/3) diamX,

M
(

1
2r, r0

)
≤ (1− 2−n(r)−2)M(2λr, r0),

where

n(r) = Cγ
(
p1,

1
2r
)p/(p−p1)

.

Proof. With x0, r and r0 fixed, write M = M(2λr, r0) and B = B(x0, r).
If M = 0 or M = ∞, there is nothing to prove. Assume that 0 < M < ∞
and define

kj = ess sup
B(x0,r0)

w +M(1− 2−j),

vj = (u− kj)+ − (u− kj+1)+.

Let λ be as in Proposition 3.2. Then vj = 0 on λB \ Ω and guχT (kj ,kj+1,λr),
with T (k, l, r) = A(k, r) \ A(l, r), is a p-weak upper gradient of vj in λB.
Proposition 3.2 with p replaced by p1, the doubling property of µ and the
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Hölder inequality then imply∫
B

vp1
j dµ ≤ Cµ(B)

capp1

(
1
2B \ Ω, B

) ∫
λB

gp1
vj dµ

≤ Crp1γ
(
p1,

1
2r
)(∫

A(kj ,λr)

gpu dµ

)p1/p

µ(T (kj , kj+1, λr))1−p1/p.

Next, we estimate µ(A(kj+1, r)) as follows:∫
B

vp1
j dµ ≥ (kj+1 − kj)p1µ(A(kj+1, r)) =

Mp1

2p1(j+1)
µ(A(kj+1, r)).

Proposition 4.1 and the doubling property of µ yield(∫
A(kj ,λr)

gpu dµ

)p1/p

≤ C

rp1

(∫
2λB

(u− kj)p+ dµ
)p1/p

≤ C

rp1

(
ess sup

2λB
u− kj

)p1

µ(2λB)p1/p ≤ CMp1

2p1jrp1
µ(B)p1/p,

and putting together the last three inequalities, we get

µ(A(kj+1, r))
µ(B)

≤ Cγ
(
p1,

1
2r
)(µ(T (kj , kj+1, λr))

µ(B)

)1−p1/p

.

If n ≥ j+1, then A(kj+1, r) on the left-hand side can be replaced by A(kn, r),
and the inequality remains true. We get(

µ(A(kn, r))
µ(B)

)p/(p−p1)

≤ Cγ
(
p1,

1
2r
)p/(p−p1)µ(T (kj , kj+1, λr))

µ(B)
,

and summing up over j = 0, 1, . . . , n− 1, yields

(12)
(
µ(A(kn, r))

µ(B)

)p/(p−p1)

≤
Cγ
(
p1,

1
2r
)p/(p−p1)

n
.

Theorem 4.3 with k0 and R replaced by kn and r and the fact that u− kn ≤
2−nM on B give

ess sup
B(x0,r/2)

u ≤ kn + C

(∫
B

(u− kn)p+ dµ
)1/p

(13)

≤ ess sup
B(x0,r0)

w +M(1− 2−n) +
CM

2n

(
µ(A(kn, r))

µ(B)

)1/p

.

Using the estimate (12) we see that the last term on the right-hand side in
(13) is at most 2−n−1M , whenever n ≥ n(r) = Cγ

(
p1,

1
2r
)p/(p−p1). Inserting

the smallest integer n ≥ n(r) into (13) finishes the proof. �
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Proof of Theorem 2.11. With r0 fixed, write M(r) = M(r, r0). We can
assume that 0 < M(r0) < ∞. Let C and n(r) be as in Proposition 4.4,
C0 = C log 2, and

ω(r) = exp
(
−C0γ(p1, r)p/(p−p1)

)
= 2−n(2r).

For m = 1, 2, we divide the interval (0, r0) into two disjoint subsets as follows:

Im =
∞⋃
j=1

[(4λ)m−2j−1r0, (4λ)m−2jr0).

Then I1 ∪ I2 = (0, r0), and hence for some m,

(14)
∫ r0

ρ

ω(r)
dr

r
≤ 2

∫
(ρ,r0)∩Im

ω(r)
dr

r
.

For j = 1, 2, . . ., choose rj ∈ [(4λ)m−2j−1r0, (4λ)m−2jr0) so that

ω(rj) ≥
1

(4λ)m−2j−1r0

∫ (4λ)m−2jr0

(4λ)m−2j−1r0

ω(r) dr ≥
∫ (4λ)m−2jr0

(4λ)m−2j−1r0

ω(r)
dr

r
.

Then, as ω(r) ≤ 1 for all r, we have

(15)
∫

(ρ,r0)∩Im
ω(r)

dr

r
≤

∑
ρ≤rj≤r0/4λ

ω(rj) + C ′.

Proposition 4.4 yields for j = 1, 2, . . .

M((4λ)m−2j−1r0) ≤M(rj) ≤M(4λrj)(1− 2−n(2rj)−2)

≤M((4λ)m−2j+1r0)
(

1− ω(rj)
4

)
.

Iterating this estimate and using log(1− t) ≤ −t, we obtain for 0 < ρ < r0,

M(ρ) ≤M(r0) exp
(
−1

4

∑
ρ≤rj≤r0/4λ

ω(rj)
)
.

Finally, we use (14) and (15) to estimate the sum on the right-hand side. �

Proof of Theorem 2.12. As −u is a quasiminimizer of the p-energy integral
on Ω with the boundary data −w, it suffices to estimate (u(x)−w(x0))+. We
can assume that w(x0) = 0. As w is continuous at x0, by Theorem 4.3 we
have, for some R > 0 and all 0 < r0 ≤ R,

M(r0, r0) ≤M := ess sup
B(x0,R)

u+ <∞.
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By Theorem 2.11 we have for 0 < ρ < r0

ess sup
B(x0,ρ)

u+ ≤ ess sup
B(x0,r0)

w+ +M(ρ, r0)(16)

≤ ess sup
B(x0,r0)

w+ + C1M exp
(
−1

8

∫ r0

ρ

exp
(
−C0γ(p1, r)p/(p−p1)

) dr
r

)
.

By the assumptions, there exist α, β, C > 0 such that for all sufficiently small
ρ and r0

ess sup
B(x0,r0)

w+ ≤ Crβ0

and ∫ 1

ρ

exp
(
−C0γ(p1, r)p/(p−p1)

) dr
r
≥ α| log ρ|.

Note also that for all 0 < r0 < 1∫ 1

r0

exp
(
−C0γ(p1, r)p/(p−p1)

) dr
r
≤
∫ 1

r0

dr

r
= | log r0|.

Then, by (16), we have for sufficiently small ρ and r0

ess sup
B(x0,ρ)

u+ ≤ Crβ0 + C1Mρα/8r
−1/8
0 ,

and choosing r0 = ρα
′

with 0 < α′ < α shows that, after a redefinition on a
set of measure zero, u is Hölder continuous at x0. �

In the proof of Theorem 2.13 we shall need a weak Harnack inequality for
functions from the De Giorgi class, which we now introduce.

Definition 4.5. Let U be an open subset of X. The De Giorgi class
DGp(U) consists of all functions u ∈ N1,p(X) satisfying the condition (7) for
all k ∈ R, all balls B(x0, r2) ⊂ U and all 0 < r1 < r2.

The following weak Harnack inequality is established in [14, Theorem 7.1].

Theorem 4.6. There exist positive constants C and σ such that for every
ball B ⊂ X and every nonnegative function v such that −v ∈ DGp(B),(∫

B

vσ dµ

)1/σ

≤ C inf
B
v.

Proof of Theorem 2.13. Let w ∈ N1,p(X) be continuous at x0 and let u ∈
N1,p(X) be a quasiminimizer of the p-energy integral on Ω with the boundary
data w. Note that u = w p-q.e. on X \Ω. Assume that u is not continuous at
x0. Replacing u by −u if needed, we can assume that limr→0 ess supB(x0,r) u >
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w(x0) = 0. Then we can find positive constants k0 and M so that for all
sufficiently small r > 0

(17) 2k0 < ess sup
B(x0,r)

u < M.

Let σ be the exponent from the weak Harnack inequality (Theorem 4.6) and
let 0 < σ′ < σ and 0 < θ < 1. Let

ω(r) = ess sup
B(x0,10λr)

u− ess sup
B(x0,r)

u and l(r) = ess sup
B(x0,10λr)

u− ω(r)σ
′/σ.

As limr→0 ω(r) = 0, we have l(r) > k0 and

(18) ω(r)σ
′/σ = ess sup

B(x0,10λr)

u− l(r) ≤ ω(r)θσ
′/σ

for all sufficiently small r > 0.
As w is continuous at x0, we have ess supB(x0,r0) w < k0 for some r0 > 0,

and hence (u− k0)+ = 0 p-q.e. on B(x0, r0) \Ω. Proposition 3.2 then implies
for sufficiently small r > 0

capp1
(B(x0, r) \ Ω, B(x0, 2r))

∫
B(x0,2r)

(u− k0)p1
+ dµ(19)

≤ C
∫
B(x0,2λr)

gp1
(u−k0)+

dµ

≤ C
∫
A(l(r),2λr)

gp1
u dµ+ C

∫
T (k0,l(r),2λr)

gp1
u dµ,

where A(k, r) = {x ∈ B(x0, r) : u(x) > k} and T (k, l, r) = A(k, r) \ A(l, r).
The two integrals on the right-hand side in (19) will be estimated separately.
By the Hölder inequality, Proposition 4.1, and (18), we have∫

A(l(r),2λr)

gp1
u dµ ≤

(∫
A(l(r),2λr)

gpu dµ

)p1/p

µ(B(x0, 2λr))1−p1/p(20)

≤ Cµ(B(x0, r))
rp1

(∫
B(x0,10λr)

(u− l(r))p+ dµ
)p1/p

≤ Cµ(B(x0, r))
rp1

ω(r)p1θσ
′/σ.

Another application of the Hölder inequality implies

∫
T (k0,l(r),2λr)

gp1
u dµ ≤

(∫
A(k0,2λr)

gpu dµ

)p1/p

µ(T (k0, l(r), 2λr))1−p1/p.

(21)
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By Proposition 4.1 and (17), the integral term on the right-hand side can be
estimated as follows:(∫

A(k0,2λr)

gpu dµ

)p1/p

≤ C

rp1

(∫
B(x0,10λr)

(u− k0)p+ dµ
)p1/p

(22)

≤ Cr−p1Mp1µ(B(x0, r))p1/p.

In order to estimate µ(T (k0, l(r), 2λr)), we first observe that the function
v = ess supB(x0,10λr) u −max{u, k0} is nonnegative in B(x0, 10λr). A simple
calculation shows that (−v−k)+ = (u−k′)+ with k′ = k+ ess supB(x0,10λr) u
for all k ≥ k∗ = k0−ess supB(x0,10λr) u. At the same time, for k < k∗ we have
−v−k > −v−k∗ ≥ 0 on B(x0, 10λr). Hence, Proposition 4.1 with k replaced
by k′ implies that −v belongs to the De Giorgi class DGp(B(x0, 10λr)). It
then follows from the weak Harnack inequality (Theorem 4.6) that

µ(T (k0, l(r), 2λr))
(

ess sup
B(x0,10λr)

u− l(r)
)σ

≤
∫
B(x0,2λr)

vσ dµ ≤ Cµ(B(x0, 2λr))
(

ess sup
B(x0,10λr)

u− ess sup
B(x0,2λr)

u
)σ
.

This and (18) now yield

µ(T (k0, l(r), 2λr)) ≤ Cµ(B(x0, r))ω(r)σ−σ
′
.

Inserting this estimate, together with (20)–(22), into (19), we obtain

capp1
(B(x0, r) \ Ω, B(x0, 2r))
r−p1µ(B(x0, r))

∫
B(x0,2r)

(u− k0)p1
+ dµ(23)

≤ C
(
ω(r)p1θσ

′/σ +Mp1ω(r)(σ−σ′)(1−p1/p)
)
.

Next, by Theorem 4.3 and (17) we have for sufficiently small r > 0,

kp0 ≤
(

ess sup
B(x0,r)

u− k0

)p
≤ C

∫
B(x0,2r)

(u− k0)p+ dµ

≤ CMp−p1

∫
B(x0,2r)

(u− k0)p1
+ dµ,

and hence ∫
B(x0,2r)

(u− k0)p1
+ dµ ≥ CMp1−pkp1

0 > 0.

The estimate (23) with suitable choices of θ and σ′ then shows that for suffi-
ciently small r > 0 and all Λ > 1/p1 + p/σ(p− p1),(

capp1
(B(x0, r) \ Ω, B(x0, 2r))
r−p1µ(B(x0, r))

)Λ

≤ Cω(r).

The inequality
∫ 1

0
ω(r) dr/r ≤

∫ 10λ

1
ess supB(x0,r) u dr/r < ∞ finishes the

proof. �
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