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INFINITE RANK ONE ACTIONS AND NONSINGULAR
CHACON TRANSFORMATIONS

ALEXANDRE I. DANILENKO

Abstract. Let G be a discrete countable Abelian group. We construct
an infinite measure preserving rank one action T = (Tg) of G such

that (i) the transformation Tg has infinite ergodic index but Tg × T2g

is not ergodic for any element g of infinite order, (ii) Tg1 × · · · × Tgn
is conservative for every finite sequence g1, . . . , gn ∈ G. In the case
G = Z this answers a question of C. Silva. Moreover, we show that (i)
every weakly stationary nonsingular Chacon transformation with 2-cuts

is power weakly mixing and (ii) every weakly stationary nonsingular
Chacon∗ transformation with 2-cuts has infinite ergodic index but is
not power weakly mixing.

0. Introduction

Let T be an invertible nonsingular transformation of a Lebesgue space
(X,µ). T is conservative if for any subset A ⊂ X of positive measure there
exists n > 0 such that µ(TnA∩A) > 0. If all Cartesian powers of T are ergodic,
then T is said to have infinite ergodic index (see [KP] for the first example of
an infinite measure preserving map with this property). If, moreover, for any
finite sequence n1, . . . , np of nonzero integers, the product Tn1 × · · · × Tnp is
ergodic, then T is called power weakly mixing. Examples of non-power weakly
mixing infinite measure preserving transformations with infinite ergodic index
are presented in [AFS2] and [G–W]. However, these examples are such that
either T×T 2 or T×T 2×· · ·×T 7 is non-conservative. Note that another family
of such examples was given in [Da], where for any discrete Abelian group G
and AT-flow V , a nonsingular action T = (Tg)g∈G of G was constructed such
that

• Tg has infinite ergodic index but Tg × T2g is non-conservative (and
hence Tg is not power weakly mixing) for any element g ∈ G of infinite
order and
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• the associated flow of T is V .
We refer the reader to [HO1] for the definition of the associated flow and to
[CW] for the definition of AT-flows.

In this connection C. Silva asks:
(A) Is there a non-power weakly mixing infinite measure preserving trans-

formation T with infinite ergodic index and such that the Cartesian
products Tn1 × · · · × Tnp are all conservative?

We also state a related question of V. Bergelson:
(B) Is there an infinite measure preserving transformation T with infinite

ergodic index but such that T × T−1 is not ergodic?
In the first section of this paper we demonstrate the following theorem, which
answers (A) if we take G = Z. The question (B) remains open.

Theorem 0.1. Let G∞ stand for the set of G-elements of infinite order.
There exists an infinite measure preserving (C,F )-action T of G such that the
following properties are satisfied:

(i) The transformation Tg has infinite ergodic index for every g ∈ G∞.
(ii) The transformation Tg × T2g is not ergodic for any g ∈ G.
(iii) The transformation Tg1 × · · · × Tgn is conservative for every finite

sequence g1, . . . , gn of elements from G.
(iv) Tg is not conjugate to T 2

g for any g ∈ G∞.

Notice that a topological version of Theorem 0.1 also holds (see Remark 1.3).
Nonsingular Chacon transformations with 2-cuts (i.e., with three copies of

the n-th column in the (n + 1)-th column and a single spacer between the
second and the third copies) appeared first in [JuS1] and were studied later
in [AFS2], [HaS] and [JuS2]. The main theorem of [HaS] states that every λ-
weakly stationary symmetric nonsingular Chacon transformation has ergodic
Cartesian square, where λ is the equi-distribution on {0, 1, 2} (see Section 2
for the definitions). A stronger result was obtained in [AFS2] for stationary
symmetric Chacon transformations. It was shown that they are power weakly
mixing. However, as was noticed by the authors of [AFS2], their methods do
not work with the transformations considered in [HaS]. Thus it was an open
problem whether or not the higher Cartesian products of weakly stationary
Chacon maps are ergodic. We solve this problem in the second (final) part of
this paper as follows.

Theorem 0.2. Every weakly stationary nonsingular Chacon transforma-
tion with 2-cuts is power weakly mixing.

It is worthwhile to note that this theorem not only extends and strength-
ens the above results from [HaS] and [AFS2] but also provides a new short
proof. This is achieved by utilizing the ‘algebraic’ (C,F )-techniques instead
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of the classical ‘geometric’ cutting-and-stacking. The (C,F )-construction was
suggested in [Da] and used also in [DaS] to produce rank one infinite measure
preserving or nonsingular actions with various (unusual from a ‘probability
preserving point of view’) properties of weak mixing and multiple recurrence.
A similar construction was utilized earlier by A. del Junco [Ju] in the prob-
ability preserving setting. However, in all our examples of (C,F )-maps with
infinite ergodic index from [Da], [DaS] and Section 1 of this paper, we had
#Cn →∞ (this corresponds to the case of unbounded cuts) and rather com-
plex arrangement of spacers. Thus for the first time in Theorem 0.2, the
(C,F )-techniques proved to be effective in analyzing ergodic properties of
nonsingular Chacon transformations with bounded cuts and ‘classical’ config-
uration of spacers.

By slightly modifying the definition of Chacon maps we introduce Chacon∗

transformations and establish the following result.

Theorem 0.3. Every weakly stationary nonsingular Chacon∗ transforma-
tion T1 with 2-cuts has infinite ergodic index but is not power weakly mixing.
(We show that T1 × T 3

1 is not conservative.)

We also note that in [AFS1] and [G–W, § 3] (resp. in [AFS2]) some other
2-cuts (and 3-cuts) modifications of the Chacon map with infinite invariant
measure were shown to have infinite ergodic index, but be non-power weakly
mixing. However, purely nonsingular (i.e., of Krieger type III) examples were
not constructed there. At the same time we notice that both classes of Chacon
maps from Theorems 0.2 and 0.3 include transformations of any of the Krieger
types II∞, IIIλ, 0 < λ ≤ 1, and a continuum of pairwise non-orbit equivalent
maps of type III0.

Acknowledgement. I would like to thank C. Silva for drawing my atten-
tion to questions (A) and (B). I also thank the referee for useful remarks.

1. Infinite measure preserving (C,F )-actions

Our main purpose in this section is to prove Theorem 0.1. We first recall
the construction of (C,F )-actions from [Da]. Two finite subsets C1 and C2 of
G are called independent if

(C1 − C1) ∩ (C2 − C2) = {0}.

This means that if c1 + c2 = c′1 + c′2 for some ci, c′i ∈ Ci, i = 1, 2, then c1 = c′1
and c2 = c′2. Let (Cn)∞n=1 and (Fn)∞n=0 be two sequences of finite G-subsets
such that F0 = {0} and for each n > 0 the following properties are satisfied:

Fn−1 + Cn ⊂ Fn, #Cn > 1,(1.1)

Fn−1 and Cn are independent.(1.2)
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We put Xn := Fn×
∏
k>n Ck, endow Xn with the (compact) product topology

and define a continuous embedding Xn → Xn+1 by setting

(fn, cn+1, cn+2, . . . ) 7→ (fn + cn+1, cn+2, . . . ).

Then X1 ⊂ X2 ⊂ · · · . Let X :=
⋃
nXn stand for the topological inductive

limit of the sequence Xn. Clearly, X is a locally compact non-compact totally
disconnected metrizable space without isolated points and Xn is clopen in X.
Assume in addition that

(1.3) given g ∈ G, there is m ∈ N with g + Fn−1 + Cn ⊂ Fn for all n > m.

Given g ∈ G and n ∈ N, we set

D(n)
g := (Fn ∩ (Fn − g))×

∏
k>n

Ck and R(n)
g := D

(n)
−g .

Clearly, D(n)
g and R

(n)
g are clopen subsets of Xn. Moreover, D(n)

g ⊂ D
(n+1)
g

and R
(n)
g ⊂ R(n+1)

g . Define a map T
(n)
g : D(n)

g → R
(n)
g by setting

T (n)
g (fn, cn+1, . . . ) := (fn + g, cn+1, . . . ).

Clearly, this map is a homeomorphism. Put

Dg :=
∞⋃
n=1

D(n)
g and Rg :=

∞⋃
n=1

R(n)
g .

Then a homeomorphism Tg : Dg → Rg is well defined by Tg � D
(n)
g = T

(n)
g . It

follows from (1.3) that Dg = Rg = X for each g ∈ G.
Given f ∈ Fn, we set [f ]n := {x = (xi)i≥n ∈ Xn | xn = f} and call [f ]n an

n-cylinder. Clearly, [f ]n =
⊔
c∈Cn+1

[f + c]n+1, where
⊔

denotes the union of
disjoint subsets.

To make this paper independent of [Da] we list here all the properties of
(Tg)g∈G that will be used in the sequel. They are rather simple and the reader
can easily prove them (see also [Da, Proposition 1.3]).

(P1) T = (Tg)g∈G is a minimal free action of G on X. We call this action
the (C,F )-action associated with (Cn, Fn)n≥1.

(P2) Tg[f ]n = [g + f ]n for all g ∈ G and f ∈ Fn ∩ (Fn − g), n ≥ 0.
(P3) Two points x, y ∈ X are T -orbit equivalent if and only if they have the

same ‘tails’, i.e., there are n ≤ m with x = (xi)i≥n, y = (yi)i≥n ∈ Xn

and xi = yi for all i ≥ m. Furthermore, y = Tgx for g =
∑
i≥n(yi−xi).

(P4) There is a unique (ergodic) σ-finite non-atomic T -invariant measure
on X such that µ(X0) = 1. We call this measure the Haar measure
for T . The Haar measure of every cylinder is finite.

(P5) µ is finite if and only if

lim
n→∞

#Fn
#C1 · · ·#Cn

<∞.
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(P6) The family of T -‘towers’ {Tg[0]n | g ∈ Fn}, n ∈ N, generates the
topology and hence the Borel σ-algebra on X. Hence (X,µ, T ) is
funny rank one (by definition).

Remark 1.1. In the case G = Z, it is easy to notice a similarity between
the (C,F )-construction and the classical cutting-and-stacking construction of
rank one transformations. Indeed, Fn−1 (or, more precisely, the set of (n−1)-
cylinders) corresponds to the levels of the (n − 1)-tower and Cn corresponds
to the locations of the copies of Fn−1 inside the n-th tower Fn. (The copies
Fn−1 +c, c ∈ Cn, are disjoint by (1.2) and they sit inside Fn by (1.1).) The re-
maining part of Fn, i.e., Fn\(Fn−1+Cn), is the set of spacers in the n-th tower.
Next, (1.3) says that the number of spacers over the highest copy of Fn−1 in
Fn and the number of spacers under the lowest copy of Fn−1 in Fn tend both
to infinity as n→∞. Notice that it is not common for the classical construc-
tion to put spacers under the lowest copy of towers. However, because of this
(i.e., due to (1.3)) the (C,F )-actions have some advantages. They are defined
everywhere (not only a.e.) on a ‘good’ topological space and are continuous.
In the next section, which is devoted to nonsingular Chacon transformations,
we will change slightly the (C,F )-construction to imitate the classical Cha-
con map. For those transformations, (1.3) will not be satisfied. (See also
Remark 2.3 below.) However, in this section we work with general count-
able Abelian groups G. Then the (C,F )-construction may be regarded as a
’modified’ arithmetical equivalent of the cutting-and-stacking construction. It
works even when the classical geometrical concept of tower seems to have no
sense, for instance, if G has no invariant ordering like any group with torsions
or if G has infinitely many generators like Q, Z∞0 , etc. As for other arguments
in favor of (C,F )-actions we mention that their orbit structure is explicit (see
(P3)). This fact facilitates the study of conservativeness and ergodicity of the
actions since these properties are orbit equivalent, i.e., they are properties of
the orbit equivalence relation. Finally, since this paper is about dynamical
properties of Cartesian products of transformations, it is worthwhile to note
that the (C,F )-construction ‘respects’ Cartesian products. Namely, the prod-
uct of two (C,F )-actions (T (i)

g )g∈Gi associated with (C(i)
n , F

(i)
n )n, i = 1, 2, is

the (C,F )-action of G1 ×G2 associated with (C(1)
n × C(2)

n , F
(1)
n × F 2

n)n.

The following lemma is a particular case of [Da, Lemma 2.4]. However, for
the reader’s convenience we sketch its proof. Recall that R∗+ stands for the
set of (strictly) positive reals.

Lemma 1.2. Let T be a (C,F )-action of G on (X,µ) and µ the Haar
measure for T . Let δ : G → R

∗
+ be a map with

∑
h∈G δ(h) < 0.5 and g ∈ G.
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If for infinitely many—say ‘good’—numbers n and every pair f, f ′ ∈ Fn there
exist a subset A ⊂ [f ]n and l ∈ Z such that TlgA ⊂ [f ′]n and µ(A) > δ(f −
f ′)µ([f ]n), then the transformation Tg is ergodic.

Proof. Let A1, A2 ⊂ X be subsets of positive finite measure. Since any
subset of finite measure is approximated in measure up to any positive number
by a finite union of cylinders (see (P6)), there exist n > 0 and f1, f2 ∈ Fn such
that [fi]n is 0.99-full of Ai, i.e., µ(Ai∩[fi]n) > 0.99µ([fi]), i = 1, 2. For m > n,
we consider the partition of [fi]n into m-cylinders: [fi]n =

⊔
c∈C [fi + c]m,

where C := Cn+1 + · · · + Cm. When m increases, these partitions refine
and generate the entire Borel σ-algebra on [fi]n. Fix ε > 0. By a standard
measure theoretical fact, the total measure of those m-cylinders in [fi]n that
are (1−ε)-full of Ai goes to µ(Ai∩ [fi]n) as m→∞. Since this limit is strictly
greater than 0.5µ([fi]n), there are subsets D1, D2 ⊂ C (‘names’ of these m-
cylinders) such that #Di > 0.5#C and µ(Ai ∩ [fi + c]m) > (1− ε)µ([fi + c]m)
for all c ∈ Di. Now let ε := 0.5δ(f1 − f2) and m be large and ‘good’. Take
any d ∈ D1 ∩ D2 (the intersection is not empty) and apply the condition of
the lemma to f1 + d and f2 + d, which belong both to Fm by (1.1). Then
there are a subset A ⊂ [f1 + d]m and l ∈ Z such that TlgA ⊂ [f2 + d]m and
µ(A) > δ(f1 − f2)µ([f1 + d]m). By the choice of ε, it is easy to deduce that
µ(A ∩A1) > 0 and µ(Tlg(A ∩A1) ∩A2) > 0. �

Proof of Theorem 0.1. To define T we are going to construct in a special
way the corresponding sequences (Fn)n>0 and (Cn)n>0. This will be done
inductively. Suppose that we already have C1, F1, . . . , Cn−1, Fn−1. Our pur-
pose is to construct Cn and Fn. Let Fn−1 − Fn−1 = {f (n)

i |i = 1, . . . , kn}
with f

(n)
1 = 0. Fix a map δ : G→ R

∗
+ with

∑
g∈G δ(g) < 0.5. Select integers

d
(n)
0 , . . . , d

(n)
kn

in such a way that d(n)
0 = 0 and d(n)

i > δ(f (n)
i )d(n), i = 1, . . . , kn,

where d(n) := d
(n)
1 + · · ·+d

(n)
kn

. Let S = {σp | p ∈ N} stand for the set of finite
sequences of elements (possibly equal) from G∞. Consider the n-th sequence
σn = (g(n)

1 , . . . , g
(n)
ln

). We will distinguish two cases.

(I) Suppose first that there are unequal elements among g(n)
j , j = 1, . . . , ln.

(In fact, this condition will not be used while constructing Cn and Fn. We
will need it later for the proof of (iii).) Then we set

Aj := {0, qng(n)
j }, j = 1, . . . , ln, and

Cn :=
ln⋃
j=1

(hj,ng
(n)
j +Aj),
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where qn and hj,n are some integers chosen so that (1.2) and the following
two conditions hold:

the sets hj,ng
(n)
j +Aj , j = 1, . . . , ln, are mutually

disjoint (hence #Cn = 2ln.),
(1.4)

2Cn − Cn is independent of
∑
i<n

(2Ci − Ci).(1.5)

Recall that for any subset E ⊂ G, we let 2E := {2g | g ∈ E}. To find such
integers we first observe that

Cn − Cn =
⋃
j

Bj ∪
⋃
j 6=j′

(hj,ng
(n)
j − hj′,ng(n)

j′ + · · · ) and(1.6)

2Cn − Cn − 2Cn + Cn(1.7)

=
⋃
j1,j2

Bj1,j2 ∪
⋃

(j1,j2) 6=(j′1,j
′
2)

(gj1,j2,j′1,j′2 + · · ·︸ ︷︷ ︸),
where Bj := Aj−Aj , Bj1,j2 := 2Bj1−Bj2 , gj1,j2,j′1,j′2 := 2hj1,ng

(n)
j1
−hj2,ng

(n)
j2
−

2hj′1,ng
(n)
j′1

+ hj′2,ng
(n)
j′2

and the sets that we replaced by ‘. . . ’ are all contained
in

B :=
⋃

j1,j2,j′1,j
′
2

(2Aj1 −Aj2 − 2Aj′1 +Aj′2).

Denote the set (Fn−1 − Fn−1) ∪
∑
i<n(2Ci − Ci − 2Ci + Ci) by Ln.

The sets Bj and Bj1,j2 do not depend on hs,n, s = 1, . . . , ln. Moreover, it
is easy to see that their elements can be written as qn(ag(n)

j + bg
(n)
j′ ) for some

a, b ∈ Z, |a| ≤ 2, |b| ≤ 1 and j, j′ ∈ {1, . . . , ln}. Hence we can select qn in such
a way that

(1.8)

{
either qn(ag(n)

j + bg
(n)
j′ ) = 0,

or qn(ag(n)
j + bg

(n)
j′ ) /∈ Ln

for all a, b, j, j′ as above. Now we consider the other sets that arise in the
decompositions (1.6) and (1.7), i.e., the sets which depend on hj,n. Every
such set is the translation of a subset of B by gj1,j2,j′1,j′2 for some j1, j2, j′1, j

′
2

with j1 6= j′1 or j2 6= j′2, i.e., (j1, j2) 6= (j′1, j
′
2). It is an easy exercise for the

reader to show that, given any finite subset K ⊂ G, there exists a family of
integers 0 = h1,n < h2,n < · · · < hln,n such that (1.4) holds and gj1,j2,j′1,j′2 /∈ K
for all j1, j2, j′1, j

′
2 with (j1, j2) 6= (j′1, j

′
2). In our case we take K := B+Ln. It

follows that the sets from (1.6) and (1.7) that are under consideration do not
intersect Fn−1 − Fn−1 and

∑
i<n(2Ci − Ci − 2Ci + Ci), respectively. Due to

this fact and (1.8) we deduce (1.2) and (1.5) from (1.6) and (1.7), respectively.
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(II) Now we consider the second case, where g(n)
1 = · · · = g

(n)
ln

=: g(n). Let

A′i := {0, qng(n) + f
(n)
i }, i = 1, . . . , kn, and

Cn :=
kn⋃
i=1

d
(n)
1 +···+d(n)

i −1⋃
s=d

(n)
0 +···+d(n)

i−1

(hs,ng(n) +A′i),

where qn and hs,n are some integers chosen so as to satisfy (1.2), (1.5) and
the following condition:

the sets hs,ng(n) +A′i, d
(n)
0 + · · ·+ d

(n)
i−1 ≤ s < d

(n)
1 + · · ·+ d

(n)
i ,(1.9)

i = 1, . . . , kn, are mutually disjoint (and hence #Cn = 2d(n)).

We will show how to make such a choice. As in (I), we write

Cn − Cn =
⋃
i

B′i ∪
⋃
s 6=s′

((hs,n − hs′,n)g(n) + · · · ),(1.10)

2Cn − Cn − 2Cn + Cn =
⋃
i1,i2

B′i1,i2∪(1.11)

⋃
(s1,s2) 6=(s′1,s

′
2)

((2hs1,n − hs2,n − 2hs′1,n + hs′2,n)g(n) + · · · ),

where B′i := A′i−A′i, B′i1,i2 := 2B′i1−B
′
i2

and all the subsets that we replaced
by ‘. . . ’ are contained in B′ :=

⋃
i1,i2,i′1,i

′
2
(2A′i1 − A′i2 − 2A′i′1 + A′i′2

). The
sets B′i and B′i1,i2 do not depend on hs,n, s = 0, . . . , d(n) − 1. Moreover, any
nontrivial element of either of these sets can be written as aqng(n) +f ′, where
a ∈ Z, 0 < |a| ≤ 3 and f ′ belongs to the sum of three copies of Fn−1 − Fn−1.
Since a 6= 0, we can choose qn large so that

B′i ∩ (Cn − Cn) = B′i1,i2 ∩
∑
j<n

(2Cj − Cj) = {0}

for all i, i1, i2. Now consider the other sets that arise in the decomposi-
tions (1.10) and (1.11). Every such set is a translation of a subset of B′ by
(2hs1,n−hs2,n−2hs′1,n+hs′2,n)g(n) for some s1, s2, s

′
1, s
′
2 with (s1, s2) 6= (s′1, s

′
2).

Now we let hs,n := q̃n(10s − 1), 0 ≤ s < d(n), where q̃n is an integer to be
specified below. It is straightforward to check that

| 2hs1,n + hs2,n − 2hs′1,n + hs′2,n| < q̃n implies s1 = s′1 and s2 = s′2.

It remains to select q̃n large enough so that (1.9) holds and the sets from
(1.10) and (1.11) that are under consideration do not intersect Fn−1 − Fn−1

and
∑
i<n(2Ci − Ci − 2Ci + Ci), respectively. Then (1.2) and (1.5) follow in

the same way as in (I). We need (1.5) to be satisfied in both cases for the
proof of (ii).
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Thus we constructed Cn. Now any sufficiently ‘large’ finite set satisfy-
ing (1.1) and such that #Fn

#C1···#Cn > n can be taken as Fn (see (P5)). Denote
by T the corresponding (C,F )-action and by µ the Haar measure for T . We
claim that (i)–(iv) from the statement of Theorem 0.1 hold for T .

(i) Fix p ∈ N and g ∈ G∞. As we already mentioned in Remark 1.1, it is
easy to see that T × · · · × T (p times) is the (C,F )-action of Gp associated
with the sequence (Cpn, F

p
n)n. The upper indices here denote the Cartesian

powers. Hence we can apply Lemma 1.2 to establish that the transformation
Tg × · · · ×Tg (p times) is ergodic. Take any n so that σn = (g′, . . . , g′︸ ︷︷ ︸

p times

), where

g′ is a multiple of g. Notice that there exist infinitely many such numbers
n. Given any f = (f1, . . . , fp) and f̂ = (f̂1, . . . , f̂p) ∈ F pn−1, there exist
i1, . . . , ip ∈ {1, . . . , kn} such that f − f̂ = (f (n)

i1
, . . . , f

(n)
ip

). Then we define a
subset A ⊂ [f ]n−1 ⊂ Xp as a union of n-cylinders

A :=
⊔

s1,...,sp

[f1 + hs1,ng
′]n × · · · × [fp + hsp,ng

′]n,

where the indices s1, . . . , sp run as follows:

d
(n)
0 + · · ·+ d

(n)
im−1 ≤ sm < d1 + · · ·+ d

(n)
im
, m = 1, . . . , p.

(For consistency of notation we let i0 := 0.) Counting the number of these
n-cylinders, we get

µp(A)
µp([f ]n−1)

=
d

(n)
i1
· · · d(n)

ip

2p(d(n))p
≥ δ(f (n)

i1
) · · · δ(f (n)

ip
).

Moreover, by (P2) and the definition of Cn (see case (II)),

(T qng′ × · · · × T
qn
g′ )A =

⊔
s1,...,sp

[f̂1 + (hs1,ng
′ + qng

′ + f
(n)
i1

)]n × · · ·

× [f̂p + (hsp,ng
′ + qng

′ + f
(n)
ip

)]n ⊂ [f̂ ]n−1,

where s1, . . . , sp run as above. To apply Lemma 1.2, it remains to define a map
δ̂ : Gp → R

∗
+ by setting δ̂(g1, . . . , gp) := δ(g1) · · · δ(gp) for all g1, . . . , gp ∈ G.

Clearly,
∑
g∈Gp δ̂(g) < 0.5p ≤ 0.5. Hence by Lemma 1.2, Tg × · · · × Tg (p

times) is ergodic. Thus, Tg has infinite ergodic index.
(ii) We will show now that given g ∈ G, k ∈ Z, n ∈ N and d ∈ Cn \ {0},

the subsets (Tkg×T2kg)([0]n× [d]n) and [0]n× [0]n are disjoint. Indeed, if this
is not true, then there exist x, x′, y′ ∈ [0]n and y ∈ [d]n such that Tkgx = x′

and T2kgy = y′. By (P3), for some r > n, we have{
kg + xn+1 + · · ·+ xr = x′n+1 + · · ·+ x′r,

2kg + d+ yn+1 + · · ·+ yr = y′n+1 + · · ·+ y′r,
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where xi, yi, x
′
i, y
′
i ∈ Ci are the i-th coordinates of x, y, x′, y′, respectively,

n < i ≤ r. It follows that
r∑

i=n+1

(2xi − yi) = d+
r∑

i=n+1

(2x′i − y′i).

We deduce from (1.5)—recall once more that this is satisfied in both cases (I)
and (II)—that d = 0, a contradiction.

(iii) First of all we notice that a transformation is conservative whenever a
power of it is conservative. Secondly, a transformation is conservative if and
only if its direct product with the identity transformation is conservative. In
view of this, it is enough to demonstrate that Tg1 × · · · × Tgp is conservative
for every (g1, . . . , gp) ∈ S. If g1 = · · · = gp, then Tg1 × · · · × Tgp is ergodic by
(i) and hence conservative since µ is non-atomic (see (P4)). Hence it remains
to consider the case when there are unequal elements among g1, . . . , gp. We
find n such that σn = (g′1, . . . , g

′
p) is a multiple of (g1, . . . , gp). (Notice that

there exist infinitely many such n. The corresponding families of n-cylinders
generate the entire Borel σ-algebra on Xp.) Recall that the corresponding Cn
was defined in (I). Take any f = (f1, . . . , fp) ∈ F pn−1 and set

A :=
p⊔

j1,...,jp=1

[f1 + hj1,ng
′
1]n × · · · × [fp + hjp,ng

′
p]n.

Then A ⊂ [f ]n−1 and µp(A) = 2−pµp([f ]n−1). Moreover, by (P2) and the
definition of Cn, we get (Tg′1 × · · · × Tg′p)A ⊂ [f ]n−1. It is now standard to
conclude that Tg1 × · · · × Tgp is conservative.

(iv) follows immediately from (i) and (ii). �

Remark 1.3. Notice that we also established the following topological
properties of T :

(i) The homeomorphism Tg×· · ·×Tg (p times) is topologically transitive
(i.e., the orbit of every open set is dense) for every g ∈ G∞ and p ∈ N.

(ii) The homeomorphism Tg × T2g is not topologically transitive for any
g ∈ G.

(iii) The homeomorphism Tg1×· · ·×Tgn is topologically recurrent for every
finite sequence g1, . . . , gn of elements from G.

(iv) Tg is not topologically conjugate to T2g for any g ∈ G∞.

2. Nonsingular Chacon transformations

In this section we will prove Theorems 0.2 and 0.3. Recall first the definition
of nonsingular (C,F )-actions from [Da]. For sequences (Cn)∞n=1 and (Fn)∞n=0

satisfying (1.1)–(1.3), let κn and τn be measures on Cn and Fn, respectively,
such that κn(Cn) = 1 and κn(c) > 0 for all c ∈ Cn. Moreover, let

(2.1) τn−1 ∗ κn = τn � Fn−1, n ∈ N.
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The convolution here is well defined if we consider τn−1 and κn as measures
on G supported on Fn−1 and Cn, respectively. It follows from (1.2) that
(τn−1 ∗ κn)(f + c) = τn(f)κn(c) for all f ∈ Fn−1 and c ∈ Cn. We will as-
sume always that the infinite product measure

⊗∞
n=1 κn is non-atomic, i.e.,∏∞

n=1 maxc∈Cn κn(c) = 0. Now equip Xn = Fn ×
∏
k>n Ck with the prod-

uct measure µn := τn ⊗
⊗

k>n κk. It follows from (2.1) that the canonical
embeddings (Xn, µn) → (Xn+1, µn+1) are all measure preserving. Hence an
inductive limit µ of the system (µn)∞n=1 is well defined. Clearly, µ is a σ-finite
measure on X. It is worthwhile to notice that the equivalence class of µ is
determined completely by (κn)∞n=1. It does not depend on a particular choice
of τn, n ∈ N, satisfying (2.1). Moreover, for any sequence of (κn)∞n=1 there
exists a sequence (τn)∞n=0 satisfying (2.1).

It is easy to verify that the (C,F )-action T is µ-nonsingular and ergodic.
Moreover, in view of (P3),

(2.2)
dµ ◦ Tg
dµ

(x) =
τn(yn)
τn(xn)

·
∏
k>n

κk(yn)
κk(xn)

,

if x = (xk)k≥n and Tgx = (yk)k≥n belong to Xn. Notice that only finitely
many multiplies in this product are different of 1. We call (X,µ, T ) the
nonsingular (C,F )-action associated with (Cn, Fn, κn).

We need a nonsingular counterpart of Lemma 1.2 (cf. [Da, Lemma 2.4]).

Lemma 2.1. Let δ, β : G → R
∗
+ be two maps and g ∈ G. If for all n

and any pair f, f ′ ∈ Fn there exist a subset A ⊂ [f ]n and l ∈ Z such that
TlgA ⊂ [f ′]n, µ(A) > δ(f − f ′)µ([f ]n) and

dµ ◦ Tlg
dµ

(x) ≥ β(f − f ′)µ([f ′]n)
µ([f ]n)

for a.a. x ∈ A,

then the transformation Tg is ergodic.

Proof. Let A1, A2 ⊂ X be subsets of positive finite measure. Repeating the
proof of Lemma 1.2 almost literally, we find n > 0 and f1, f2 ∈ Fn such that
that the n-cylinders [f1]n and [f2]n are 0.99-full of A1 and A2, respectively.
Moreover, given ε > 0, there exist m > n and subsets Di ⊂ Cn+1 + · · ·+ Cm
such that (κn+1 ∗ · · · ∗ κm)(Di) > 0.5 and [fi + d]m is (1− ε)-full of Ai for all
d ∈ Di, i = 1, 2. Recall that ∗ stands for the convolution of measures and κj
is considered as a probability on G supported on Cj , j = n+ 1, . . . ,m. Hence
D1 ∩D2 6= ∅. Take any d ∈ D1 ∩D2 and apply the conditions of the lemma
to f1 + d and f2 + d from Fm. Then there are a subset A ⊂ [f1 + d]m and
l ∈ Z such that [f1 + d]m is δ(f1 − f2)-full of A, TlgA ⊂ [f2 + d]m and

dµ ◦ Tlg
dµ

(x) ≥ β(f1 − f2)
µ([f2 + d]m)
µ([f1 + d]m)
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for a.a x ∈ A. Hence [f1 + d]m is (δ(f1 − f2)− ε)-full of A ∩A1 and

µ(Tlg(A ∩A1)) ≥ (δ(f1 − f2)− ε) · µ([f1 + d]m)β(f1 − f2) · µ([f2 + d]m)
µ([f1 + d]m)

.

Hence [f2 + d]m is (δ(f1 − f2) − ε) · β(f1 − f2)-full of TlgA1. It follows that
[f2 + d]m is ((δ(f1 − f2)− ε) · β(f1 − f2)− ε)-full of TlgA1 ∩ A2. Thus if ε is
small enough, then µ(TlgA1 ∩A2) > 0. �

In the remainder of this paper let G = Z. We are going to distinguish a
special subclass of ‘modified’ nonsingular (C,F )-actions of Z. To this end we
define a sequence (hn)∞n=1 of positive integers recursively by setting h1 := 1,
hn+1 := 3hn + 1. It is easy to verify that the sequences of sets Fn−1 :=
{0, 1, . . . , hn − 1} and Cn := {0, hn, 2hn + 1} satisfy (1.1)–(1.2) but do not
satisfy (1.3). Nevertheless, it not difficult to see that

⋂
g∈GDg =

⋂
g∈GRg =

X \D, where

D :=
⋃
n≥0

{x = (xk)k≥n ∈ Xn |either xk = 0 eventually

or xk = 2hk + 1 eventually}

(see Section 1 for the definition of Dg and Rg).
Next, given a sequence (κ′n)∞n=1 of distributions on {0, 1, 2} with non-atomic

product
⊗∞

n=1 κ
′
n and κ′n(i) > 0 for all i, we define measures κn on Cn as

follows: κn(0) := κ′n(0), κn(hn) := κ′n(1) and κn(2hn+1) := κ′n(2). Now take
any sequence τn of measures on Fn satisfying (2.1).

Definition 2.2. The corresponding dynamical system (X,µ, T ), or sim-
ply T1, is called the nonsingular 2-cuts Chacon transformation associated with
(Cn, Fn, κn)n. We call T

(1) symmetric if κ′n(0) = κ′n(2),
(2) stationary if κ′1 = κ′2 = · · · ,
(3) weakly stationary if for any distribution κ on {0, 1, 2} and every n > 0

there exists m > n with κ′m = · · · = κ′n+m = κ.

Since D is countable, µ(D) = 0. Hence T is well defined on a µ-conull
invariant subset X \ D. Being restricted to this subset, (X,µ, T ) enjoys all
the properties of ‘usual’ nonsingular (C,F )-actions.

Remark 2.3. It is worthwhile to give an alternative definition of T1 via a
more common inductive cutting-and-stacking process (see [JuS1], [HaS] and
[AFS2]). Assume that at the n-th step we have a column Yn = {I(i, n) |
i ∈ Fn} consisting of disjoint intervals I(i, n) ⊂ R such that

⊔
i∈Fn I(i, n) =

[0, τn(Fn)). This partially defines an injective transformation T1 by the affine
maps

T1 : I(j, n)→ I(j + 1, n), 0 ≤ j < 3hn.
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Now cut each I(j, n) into subintervals Ik(j, n) for k = 0, 1, 2 (numbered from
left to right) such that the proportions of their lengths are

κ′n+1(0) : κ′n+1(1) : κ′n+1(2).

Let Sn+1 be a new interval—spacer—which abuts with [0, νn(Fn)) over the
interval I(3hn, n) of length τn+1(2hn+1). We have 3 subcolumns Yn,k =
{Ik(i, n) | i ∈ Fn} of Yn, k = 0, 1, 2. Stack these from left to right and
extend the transformation by the affine maps

T1 : I0(3hn, n)→ I1(0, n),

T1 : I1(3hn, n)→ Sn+1 and

T1 : Sn+1 → I2(0, n).

Rename the new intervals by I(0, n+ 1), . . . , I(3hn+1, n+ 1). This defines the
column Yn+1. Notice that

⊔
i∈Fn+1

I(i, n+ 1) = [0, τn+1(Fn+1)). In the limit
we get a nonsingular transformation T1 on the interval [0, limn→∞ τn(Fn))
equipped with the Lebesgue measure. Our remark on (τn)n≥1 at the beginning
of this section can be interpreted now as follows: The lengths of spacers do
not affect the isomorphism class of T1.

As far as we know, only the following two families of 2-cuts Chacon transfor-
mations were studied in the literature: stationary symmetric transformations
([JuS1], [JuS2], [AFS2]) and λ-weakly stationary symmetric transformations,
where λ is the equi-distribution on {0, 1, 2} [HaS]. In this paper we deal with
the class of all weakly stationary 2-cuts Chacon maps, which includes these
two families.

Proof of Theorem 0.2. Let T be κ-weakly stationary. Put

δ := min(κ(0), κ(1), κ(2)) and β := δ/max(κ(0), κ(1), κ(2)).

We first prove that T1 has infinite ergodic index. (We note that this proof will
hold for the wider class of nonsingular (C,F )-transformations having the same
sequences Cn, Fn, κn but with arbitrary (hn)∞n=1 satisfying hn+1 ≥ 3hn + 1.)
Notice that if T is associated with (Cn, Fn, κn)n≥1, then T ×· · ·×T (p times)
is the nonsingular action of Zp associated with (Cpn, F

p
n , κ

p
n)n≥1. Here and

everywhere below the upper index p over a set or a measure means the p-fold
direct product of this set or this measure, respectively. For g = (g1, . . . , gp) ∈
Z
p, we set ‖g‖ :=

∑p
i=1 |gi|. Fix n ∈ N and find m > n with κ′m = · · · =

κ′m+phn+1
= κ.

Claim A. If f, f ′ ∈ F pn and ‖f − f ′‖ = 1, then for some c, c′ ∈ Cpm and
σ ∈ {−1, 1}, we have (T1 × · · · × T1︸ ︷︷ ︸

p times

)σhm [f + c]m = [f ′ + c′]m.
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If f ′ − f = (1, 0, . . . , 0), then put

c := (2hm + 1, hm, . . . , hm), c′ := (hm, 0, . . . , 0)

and σ := −1. It is straightforward to show that σ(hm, . . . , hm) = f ′−f+c′−c.
It remains to apply (P2). The other 2p − 1 cases are considered in a similar
way. Thus Claim A is proved.

Now for arbitrary elements f, f ′ ∈ F pn , we have s := ‖f − f ′‖ ≤ phn+1.
There exist f0, . . . , fs ∈ F pm with f0 = f, fs = f ′ and ‖fi+1 − f ′i‖ = 1,
i = 0, . . . , s − 1. Then we apply Claim A s times to find cm, c

′
m ∈ Cpm, . . . ,

cm+s−1, c
′
m+s−1 ∈ C

p
m+s−1 and σ1, . . . , σs ∈ {−1, 1} with

(T1 × · · · × T1︸ ︷︷ ︸
p times

)r[f + d+ cm + · · ·+ cm+s−1]m+s−1(2.3)

=[f ′ + d+ c′m + · · ·+ c′m+s−1]m+s−1,

for all d ∈ Cpn+1 + · · ·+ Cpm−1, where r := σ1hm + · · ·+ σshm+s−1. We let

A :=
⊔

d∈Cpn+1+···+Cpm−1

[f + d+ cm + · · ·+ cm+s−1]m+s−1.

Clearly, A ⊂ [f ]n. By (2.3), (T1 × · · · × T1)rA ⊂ [f ′]n. Since µp � Xp
n =

τpn ⊗
⊗

k>n κ
p
k and κpk(ck) ≥ δp for all m ≤ k < m+ s, it follows that

µp(A) =
∑

d∈Cpn+1+···+Cpm−1

µ([f + d+ cm + · · ·+ cm+s−1]m+s−1)

=
∑
d

τpn(f) · (κn+1 ∗ · · · ∗ κm−1)p(d) · κpm(cm) · · ·κpm+s−1(cm+s−1)

≥ δpsτpn(f)
∑
d

(κn+1 ∗ · · · ∗ κm−1)p(d) = δp ‖f−f
′‖µp([f ]n).

Next, for a.a. x ∈ [f + d+ cm + · · ·+ cm+s−1]m+s−1, we have by (2.2) that

dµp ◦ (T1 × · · · × T1)r

dµp
(x)

=
τpn(f ′) · (κn+1 ∗ · · · ∗ κm−1)p(d) · κpm(c′m) · · ·κpm+s−1(c′m+s−1)
τpn(f) · (κn+1 ∗ · · · ∗ κm−1)p(d) · κpm(cm) · · ·κpm+s−1(cm+s−1)

≥ βps · µ
p([f ′]n)
µp([f ]n)

.

Hence
dµp ◦ (T1 × · · · × T1)r

dµp
(x) ≥ βp ‖f

′−f‖ · µ([f ′]n)
µ([f ]n)

for a.a. x ∈ A. By Lemma 2.1, the p-fold Cartesian power of T1 is ergodic.
To prove that T1 is power weakly mixing, we argue in a similar way. How-

ever, instead of Claim A we need another statement (Claim B below). Let
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g = (g1, . . . , gp) ∈ Zp and gi 6= 0 for all i. Consider ternary expansions
gi =

∑Ji
j=0 ai,j3

j with ai,j ∈ {−1, 0, 1} and ai,Ji 6= 0, i = 1, . . . , p. We set
J := max1≤i≤p Ji + 1.

Claim B. If f ∈ Zp and ‖f‖ = 1, then there exists σ ∈ {−1, 1} such that
σ3n+1g ∈ f +

∑n+J
j=n (Cpj − C

p
j ) for any n > 0.

Suppose that f = (1, 0, . . . , 0) and g1 > 0. The other cases are settled in a
similar way. We put σ := 1. Notice that

(2.4) Ci − Ci = {−2hi − 1,−hi − 1,−hi, 0, hi, hi + 1, 2hi + 1}.

Since 3n+1gi =
∑Ji
j=0 ai,j3

j+n+1 and 3i = 2hi−1 + 1 ∈ Ci−1−Ci−1, we obtain

3n+1gi ∈
n+Ji∑
j=n

(Cj − Cj), i = 1, . . . , p.

It remains to show that 3n+1g1 ∈ 1 +
∑n+J
j=n (Cj − Cj). It follows from our

assumptions on g1 that a1,J1 = 1. It is easy to check that

3J1+n+1 = 1 + (−hJ1+n − 1) + hJ1+n+1 ∈ 1 +
J1+n+1∑
j=J1+n

(Cj − Cj).

Hence

3n+1g1 =
J1−1∑
j=0

a1,j3j+n+1 +3J1+n+1 ∈
n+J1−1∑
j=n

(Cj−Cj)+1+
n+J1+1∑
j=n+J1

(Cj−Cj),

and Claim B is proved.

Now fix n and find m > n with κ′m = · · · = κ′m+phn+1J
. The remainder

of the proof is only a slight modification of the proof for the ergodicity of
T1 × · · · × T1. We leave it to the reader. �

We can easily modify the construction of Chacon maps to produce a family
of non-power weakly mixing 2-cuts nonsingular transformations with infinite
ergodic index. Recall that only infinite measure preserving transformations
with these properties are known so far [AFS2], [G–W]. As for purely non-
singular case (type III of Krieger), all known examples of non-power weakly
mixing maps with infinite ergodic index (see [Da]) have unbounded cuts.

Definition 2.4. We define nonsingular 2-cuts Chacon∗ transformations
almost exactly as in Definition 2.1 with the only difference that hn+1 = 11hn,
n > 0.

It is easy to see that T is well defined on a µ-conull invariant subset X \D∗,
where D∗ :=

⋃
n≥0{x = (xk)k≥n | xk = 0 eventually}.
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Proof of Theorem 0.3. Let T = (Tn)n∈Z be a weakly stationary nonsingu-
lar Chacon∗ map with 2-cuts. That T1 has infinite ergodic index, we already
demonstrated in the first part of the proof of Theorem 0.2 (this part is inde-
pendent on the choice of hn). We show that T1 × T3 is not conservative (and
hence T1 is not power weakly mixing) by contradiction. Suppose that

(Tm × T3m)([0]0 × [0]0) ∩ ([0]0 × [0]0) 6= 0

for a sufficiently large m > 0. Arguing as in the proof of Theorem 0.1(ii), we
deduce from (P3) that there exist n, n′ with

(2.5)

{
m =

∑n
i=1 di,

3m =
∑n′

i=1 d
′
i,

where di, d′i ∈ Ci − Ci and dn, d
′
n′ 6= 0. Since

k∑
i=1

|di| ≤
k∑
i=1

(2hi + 1) = 0.2(11k+1 − 1) + k − 1 < 0.21hk+1

for all sufficiently large k, we deduce from (2.4) and (2.5) that{
either m = α+ hn or m = α+ 2hn with |α| < 0.21hn and
either 3m = β + hn′ or 3m = β + 2hn′ with |β| < 0.21hn.

It is easy to verify that neither of the four possible alternatives is true. For
instance, if m = (1± 0.21)hn and 3m = (1± 0.21)hn′ , then

3 = 11n
′−n 1± 0.21

1± 0.21

and hence 1.6 · 11n
′−n > 3 > 0.6 · 11n

′−n. The left inequality implies n′ > n,
while the right one implies n ≥ n′, a contradiction. The other three cases are
handled in a similar way. �

We conclude this paper with a short discussion on how ‘representative’ the
above two classes of Chacon maps with 2-cuts are.

Recall that two nonsingular transformations are orbit equivalent if there ex-
ists a nonsingular isomorphism of the underlying measure spaces which maps
bijectively the orbits of the first transformation onto the orbits of the second
one. By the Dye theorem any two ergodic probability preserving transfor-
mations are orbit equivalent. As for nonsingular ergodic maps without an
equivalent probability measure, there is a one-to-one correspondence between
the orbit equivalent classes of such maps and the conjugacy classes of ergodic
nonsingular flows (see [HO1] for a detailed exposition of these results). Next,
an ergodic flow corresponds to a (C,F )-transformation if and only if it is an
AT-flow (see [CW] and [Da]). Unfortunately, there is no satisfactory char-
acterization of the ergodic flows corresponding to (C,F )-maps with bounded
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cuts (i.e., with the sequence #Cn bounded). We list some facts about the
orbit equivalence of (C,F )-transformations.

• There are ergodic transformations that are not orbit equivalent to any
nonsingular (C,F )-transformation (this follows from [Kr] and [CW]).
• There are nonsingular (C,F )-transformations that are not orbit equiv-

alent to any (C,F )-map with bounded cuts (this follows from [Kr] and
[GS2]).
• Any nonsingular (C,F )-transformation with bounded cuts is orbit

equivalent to a weakly stationary symmetric Chacon (and Chacon∗)
map with 2-cuts (this can be deduced from [GS1]).
• The class of flows associated with weakly stationary symmetric 2-cuts

Chacon (and Chacon∗) maps includes the flows with pure point spec-
trum θD for any θ ∈ R and a subgroup D of Q (this can be deduced
from [GS2] or [HO2]). In particular, there exist weakly stationary
symmetric 2-cuts Chacon (and Chacon∗) maps of any Krieger type
IIIλ, λ ∈ (0, 1], and even a continuum of pairwise non-orbit equiva-
lent such maps of type III0.
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