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THE JOIN OF ALGEBRAIC CURVES

TADEUSZ KRASIŃSKI

Abstract. An effective description of the join of algebraic curves in

the complex projective space Pn is given.

1. Introduction

Let Pn be the n-dimensional projective space over C. Denote by G(1,Pn)
the Grassmannian of all projective lines in Pn. By the Plücker embedding
G(1,Pn) ↪→ P

(n+1
2 )−1 the Grassmannian is an algebraic subset of P(n+1

2 )−1.
For any projective line L ⊂ Pn we will denote by [L] the corresponding point
of G(1,Pn), and for any P,Q ∈ Pn, P 6= Q, we will denote by PQ the unique
projective line in Pn spanned by P and Q. Likewise, for any projective
subspaces L,K ⊂ P

n we will denote by Span(L,K) the unique projective
subspace in Pn spanned by L and K.

If X is an algebraic subset of Pn then Sing(X) is the set of singular points
of X. For P ∈ X − Sing(X) we denote by TPX ⊂ Pn the embedded tangent
space to X at P .

Let X,Y ⊂ Pn be two varieties in Pn, i.e., irreducible algebraic subsets
of Pn. The definition of the join of X and Y is as follows (see [H, p. 88], [Z,
p. 15], [FOV, Def. 1.3.5]). Define the subsets of the Grassmannian

J 0(X,Y ) := {[PQ] ∈ G(1,Pn) : P ∈ X, Q ∈ Y, P 6= Q},

J (X,Y ) := J 0(X,Y ) – the closure of J 0(X,Y ) in G(1,Pn),

and the corresponding subsets of the projective space

J0(X,Y ) :=
⋃

[L]∈J 0(X,Y )

L,

J(X,Y ) :=
⋃

[L]∈J (X,Y )

L.
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J (X,Y ) and J(X,Y ) are algebraic subsets of G(1,Pn) and Pn, respectively.
J (X,Y ) is called the variety of lines joining X and Y , and J(X,Y ) is called
the join of X and Y . In the case X = Y the set J(X,Y ) is called the secant
variety of X and is denoted by Sec(X) or X2.

If X ∩ Y = ∅ then we have J (X,Y ) = J 0(X,Y ). In the case X ∩ Y 6= ∅,
the inclusion J 0(X,Y ) ⊂ J (X,Y ) is, in general, strict. Thus there arises the
following question: Which additional projective lines besides those containing
points P ∈ X, Q ∈ Y, P 6= Q, are in J (X,Y )? In this paper we give a
complete solution of this problem in the case when X and Y are arbitrary
projective curves (in particular for X = Y ).

The key notion in the solution is the relative tangent cone CP (X,Y ) to
a pair of algebraic or analytic sets X,Y in a given common point P ∈ X ∩
Y . (In [FOV, Section 2.5] this cone is denoted by LJoinP (X,Y ).) It is a
generalization of one of the Whitney cones, namely C5(V, P ) ([W1, p. 212],
[W3, p. 211]), to the case of a pair of sets. The cone CP (X,Y ) was introduced
by Achilles, Tworzewski and Winiarski [ATW] in the analytic case when X
and Y meet at a point. This notion was used in the new improper intersection
theory in algebraic and analytic geometry ([FOV], [T], [CKT], [Cy]). It is easy
to show (see Proposition 4.1) that for varieties X,Y ⊂ Pn

J(X,Y ) = J0(X,Y ) ∪
⋃

P∈X∩Y
CP (X,Y ).

Thus the question is reduced to the problem of describing CP (X,Y ). If P is
an isolated intersection point of two analytic curves X and Y , Ciesielska [C]
proved that the cone CP (X,Y ) is a finite sum of two-dimensional hyperplanes.
(In the case X = Y this was proved by Briançon, Galligo and Granger [BGG].)
In Theorem 3.4 we give an effective formula for the relative tangent cone
CP (X,Y ) in the general case when X,Y are arbitrary analytic curves and
P ∈ X ∩Y (and even in the case X = Y ). This formula is expressed in terms
of local parametrizations of X and Y at P .

In the last section we summarize all results in Theorem 4.2, which gives a
detailed description of the join of algebraic curves.

2. Relative tangent cones to analytic sets

Since the relative tangent cone is a local notion, we will work in Cn and
in the case when X,Y are analytic sets. First we consider the case when the
point P is the origin, i.e., P = 0. We start with the notion of the ordinary
tangent cone to an analytic set.

Let X be an analytic set in a neighbourhood U of 0 ∈ Cn such that 0 ∈ X.
The tangent cone C0(X) of X at 0 is defined to be the set of v ∈ Cn with the
following property: There exist sequences (xν)ν∈N of points of X and (λν)ν∈N
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of complex numbers such that

xν → 0 and λνxν → v when ν →∞.
One can find properties of the tangent cones to analytic sets in [W2], [W3],
and [Ch]. The tangent cone is an algebraic cone in Cn of dimension dim0X.

Let X,Y be analytic subsets of a neighbourhood U of 0 ∈ Cn such that 0 ∈
X ∩Y . The relative tangent cone C0(X,Y ) of X and Y at 0 is defined to be
the set of v ∈ Cn with the following property: There exist sequences (xν)ν∈N
of points of X, (yν)ν∈N of points of Y and (λν)ν∈N of complex numbers such
that

xν → 0, yν → 0, λν(yν − xν)→ v when ν →∞.
Immediately from the definition we obtain:
(1) C0(X,Y ) is a cone with vertex at 0.
(2) If Y = {0}, then C0(X,Y ) = C0(X),.
(3) C0(X,Y ) = C0(Y,X).
(4) C0(X,Y ) depends only on the germs of X and Y at 0.
(5) C0(X1 ∪X2, Y ) = C0(X1, Y ) ∪ C0(X2, Y ) if X1, X2 are analytic sets

containing 0.
The following two propositions are known. Since we will use facts from

the proofs, we give simple and elementary proofs of these propositions in the
analytic case. We will assume in the remainder of this section that X,Y are
analytic subsets of a neighbourhood U of 0 ∈ Cn such that 0 ∈ X ∩ Y .

Proposition 2.1 ([ATW, Property 2.9] in the case X ∩ Y = {0}). The
cone C0(X,Y ) is an algebraic cone in Cn.

Proof. By the Chow theorem it suffices to prove that C0(X,Y ) is an an-
alytic subset of Cn. We will apply the elementary Whitney method ( [W1,
Th. 5.1], used there in the case X = Y ), although one can also use the method
of blowing-ups. Define the holomorphic functions

αjk : Cn × Cn × Cn → C, j, k = 1, . . . , n,

αjk(x,y,v) :=
∣∣∣∣ yj − xj yk − xk

vj vk

∣∣∣∣ ,
where x = (x1, . . . , xn), y = (y1, . . . , yn) and v = (v1, . . . , vn).

The functions αjk all vanish if and only if x = y or v is a multiple of y−x.
Set

B := {(x,y,v) : x,y ∈U, αjk(x,y,v) = 0, j, k = 1, . . . , n}.
This is an analytic subset of U × U × Cn, and hence so is

B′ := B ∩ (X × Y × Cn).

The set ∆ := {(x,x) : x ∈ X ∩ Y } ⊂ U × U is also analytic. Thus

B′′ := (B′ − (∆× Cn)) ∩ (U × U × Cn)
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is an analytic set in U × U × Cn. Therefore

C ′0(X,Y ) := B′′ ∩ ({(0,0)} × Cn)

is analytic in U × U × Cn. Since v ∈ C0(X,Y ) if and only if (0,0,v) ∈
C ′0(X,Y ), it follows that C0(X,Y ) is an analytic subset of Cn. �

Proposition 2.2 (cf. [FOV, Prop. 2.5.5]). dimC0(X,Y ) 6 dim0X +
dim0 Y.

Proof. Since C0(X,Y ) depends only on the germs of X and Y at 0, we may
assume that dimX = dim0X and dimY = dim0 Y . Consider the analytic
set B′′ ⊂ U ×U ×Cn, defined in the proof of the previous proposition. If we
denote by π the projection U×U×Cn → U×U , then π(B′′) ⊂ X×Y and over
each point (x,y) ∈ (X × Y )−∆ we have (π|B′′)−1(x,y) = {(x,y, λ(y − x)) :
λ ∈ C} and hence dim(π|B′′)−1(x,y) = 1. Since

(1) B′′ = (π|B′′)−1(X × Y −∆),

we have
dimB′′ = dimX + dimY + 1.

By the same equality (1) no irreducible component of B′′ is contained in
∆× Cn, and in particular in (0,0)× Cn. Hence

dimC ′0(X,Y ) = dim(B′′ ∩ ({(0,0)} × Cn)) 6 dimX + dimY. �

Remark 2.3. Under some additional assumptions on X and Y the above
inequality becomes an equality. Namely, in [ATW] it was proved that if X ∩
Y = {0} then dimC0(X,Y ) = dim0X + dim0 Y. Of course, this is no longer
true in the general case.

Before stating the next proposition we make precise some notions concern-
ing analytic curves. By an analytic curve we mean an analytic set Γ of pure
dimension 1 in an open set U ⊂ C

n. For P ∈ Γ we denote by (Γ)P the
germ of Γ at P and by multP Γ the multiplicity of Γ at P. A parametriza-
tion of Γ at P is a holomorphic homeomorphism Φ : K(r) → U (where
K(r) := {z ∈ C : |z| < r} is an open disc) such that Φ(0) = P and
Φ(K(r)) = Γ∩U ′ (where U ′ ⊂ U is an open neighbourhood of P ). Then any
superposition Φ(tk), k ∈ N, is called a description of X at P . It is known
that any analytic curve Γ such that (Γ)P is irreducible has a parametrization.
If 0 6= Φ = (ϕ1, . . . , ϕn), and Φ(0) = 0, then we define

ord Φ := min(ordϕ1, . . . , ordϕn).

If Φ is a parametrization of Γ at 0 then we have

mult0 Γ = ord Φ.
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It is well known that if Γ is an analytic curve in a neighbourhood U of 0 ∈Cn
and Φ is its parametrization at 0 then C0(Γ) is a line Cv, where

v = lim
t→0

Φ(t)
tord Φ

.

We will shortly denote this property by

Φ(t)  
t→0

v,

or in the more condensed form Φ(t)  v. Note that for any vector w ∈Cv
there exists a change of parameter t → αt, α ∈ C, such that Φ(αt)  w.
Thus Φ gives the whole line Cv instead of just the vector v. Therefore we
will also use the notation Φ(t) w for any w ∈Cv.

Proposition 2.4. Assume that dim0(X ∪ Y ) > 0. For any vector 0 6=
v ∈C0(X,Y ) there exists an analytic curve Γ ⊂ X × Y having a parametriza-
tion Φ = (ΦX ,ΦY ) : K(r)→ X × Y at (0,0) such that

ΦY (t)− ΦX(t) v.

Proof. Consider the analytic set B′′ ⊂ U × U × Cn defined in the proof
of Proposition 2.1. We have P := (0,0,v) ∈ B′′. Since this point lies in the
closure of B′ − (∆ × Cn), there exists an analytic curve Γ′ ⊂ B′′ passing
through P such that Γ′ − {P} ⊂ B′ − (∆ × Cn). Take a parametrization
(ΦX(t),ΦY (t),v(t)), t ∈ K(r), at P of one irreducible component of (Γ′)P .
We have (ΦX(0),ΦY (0),v(0)) = (0,0,v). Since for any t ∈ K(r), ΦY (t) −
ΦX(t) and v(t) are linearly dependent and v(t)→ v when t → 0 we have
ΦY (t)− ΦX(t) v. �

Proposition 2.5 ([ATW, Prop. 2.10] in the case X∩Y = {0}). C0(X)+
C0(Y ) ⊂ C0(X,Y ).

Proof. Let 0 6= v ∈C0(X), 0 6= w ∈C0(Y ). Since C0(X) is a cone, we have
−v ∈C0(X). Take analytic curves Γ ⊂ X and Γ′ ⊂ Y having parametrizations
Φ(t) and Ψ(t) at 0, t ∈ K(r), such that Φ(t)  −v and Ψ(t)  w. Since
Φ(tord Ψ) ∈ X and Ψ(tord Φ) ∈ Y for sufficiently small t and

Ψ(tord Φ)− Φ(tord Ψ) v + w,

we conclude v + w ∈C0(X,Y ). �

We will need in the sequel the following proposition which was proved in
[ATW, Prop. 2.10]. For completeness we shall give another proof of it using
Proposition 2.4.

Proposition 2.6. If C0(X) ∩ C0(Y ) = {0} then

C0(X,Y ) = C0(X) + C0(Y ).
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Proof. It suffices to prove

C0(X,Y ) ⊂ C0(X) + C0(Y ).

Take 0 6= w ∈C0(X,Y ). We may assume that w /∈C0(X)∪C0(Y ). By Propo-
sition 2.4 there exists an analytic curve Γ ⊂ X × Y having a parametrization
Φ = (ΦX ,ΦY ) : K(r)→ X × Y at (0,0) such that

ΦY (t)− ΦX(t) w.

Since w /∈C0(X) and w /∈C0(Y ), we have

(2) ord ΦY = ord ΦX < +∞.
Let

ΦX(t) v1, 0 6= v1∈C0(X),

ΦY (t) v2, 0 6= v2∈C0(Y ).

Since C0(X)∩C0(Y ) = {0}, v1and v2 are linearly independent. Hence, using
(2), we have

ΦY (t)− ΦX(t) v2 − v1.

Thus w = v2 − v1 ∈ C0(X) + C0(Y ). �

Let now X,Y be analytic subsets of a neighbourhood U of a point P ∈ Cn
such that P ∈ X ∩ Y . We define the relative tangent cone CP (X,Y ) of X
and Y at P by

CP (X,Y ) := P + C0(X − P, Y − P ).

3. Relative tangent cones to analytic curves

In the case X,Y are analytic curves we can give a more detailed description
of C0(X,Y ). The aim of this section is to give an effective formula for C0(X,Y )
in terms of local parametrizations of X and Y.

First, we formulate a useful lemma which is a simple generalization of
Proposition 2.4.

Lemma 3.1. Let X,Y be analytic curves in a neighbourhood of 0 ∈Cn such
that 0 ∈ X ∩ Y and the germs (X)0, (Y )0 are irreducible. Let Φ(t) and Ψ(τ),
t, τ ∈ K(r), be parametrizations of X and Y at 0. Then for any v ∈C0(X,Y )
there exists an analytic curve Γ ⊂ K(r) × K(r) having a parametrization
Θ(s) = (t(s), τ(s)) : K(r′)→ K(r)×K(r) at (0,0) such that

Φ(t(s))−Ψ(τ(s)) v.

Moreover, we have the same result if Φ and Ψ are only descriptions of X and
Y at 0.

Proof. The result follows from Proposition 2.4 and the fact that the map-
ping (Φ,Ψ) is an analytic cover. �
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Now we prove a key proposition for a description of relative tangent cones.
This proposition was proved by Ciesielska [C] in the case X ∩ Y = {0}, but
the idea of her proof can be used in the more general case 0 ∈ X ∩ Y .

Proposition 3.2. Let X,Y be analytic curves in a neighbourhood of
0 ∈Cn such that 0 ∈ X ∩ Y . Then

C0(X,Y ) + C0(X) = C0(X,Y ).

Proof. We may assume that the germs (X)0, (Y )0 are irreducible. It suf-
fices to prove that

(3) C0(X,Y ) + C0(X) ⊂ C0(X,Y ).

Since X,Y are analytic curves and (X)0, (Y )0 are irreducible at 0, we have
two possible cases:

Case 1. C0(X) ∩ C0(Y ) = {0}. Then, by Proposition 2.6, C0(X,Y ) =
C0(X) + C0(Y ). Hence we get (3).

Case 2. C0(X) = C0(Y ). After a linear change of coordinates in Cn we
may assume that C0(X) = Ce1, where e1 := (1, 0, . . . , 0). Put k := mult0X,
l := mult0 Y. Let Φ and Ψ be parametrizations of X and Y at 0, respectively.
Since C0(X) = C0(Y ) = Ce1, we may assume that

Φ(t) = (tk, φ2(t), . . . , φn(t)), t ∈ K(r), ordφi > k, i = 2, . . . , n,(4)

Ψ(τ) = (τ l, ψ2(τ), . . . , ψn(τ)), τ ∈ K(r), ordψi > l, i = 2, . . . , n.(5)

Consider the descriptions of X and Y

Φ̃(t) := Φ(tl) = (tkl, φ2(tl), . . . , φn(tl)), t ∈ K(r̃),

Ψ̃(τ) := Ψ(τk) = (τkl, ψ2(τk), . . . , ψn(τk)), τ ∈ K(r̃),

where r̃ is a sufficiently small positive number.
Take now 0 6= v = (v1, . . . , vn)∈C0(X,Y ) and w = (w,0, . . . , 0)∈C0(X).

From Lemma 3.1 there is an analytic curve Γ ⊂ K(r̃) × K(r̃) having a
parametrization Θ(s) = (t(s), τ(s)) : K(r′) → K(r̃) × K(r̃) at (0,0) such
that

Φ̃(t(s))− Ψ̃(τ(s)) v.

Define
N := ord(Φ̃(t(s))− Ψ̃(τ(s))).

Then

v = lim
s→0

Φ̃(t(s))− Ψ̃(τ(s))
sN

.

Since Θ is a parametrization of a curve we have that t(s) or τ(s) is not
identically zero. Without loss of generality, we may assume that t(s) 6≡ 0
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and ord t(s) 6 ord τ(s). Put p := ord t(s). Hence N > pkl. Without loss of
generality, we may assume that t(s) = sp. We define

t̃(s) := sp +
w

kl
sp+N−pkl.

We claim that
Φ̃(t̃(s))− Ψ̃(τ(s)) v + w.

In fact, for the first coordinate we have

lim
s→0

(t̃(s))kl − (τ(s))kl

sN

= lim
s→0

(t̃(s))kl − (t(s))kl + (t(s))kl − (τ(s))kl

sN
= w + v1

and for i = 2, . . . , n

lim
s→0

(φi(t̃(s)l)− ψi(τ(s)k)
sN

= lim
s→0

φi(t̃(s)l)− φi(t(s)l) + φi(t(s)l)− ψi(τ(s)k)
sN

= vi. �

From this proposition we obtain the first description of relative tangent
cones to analytic curves (cf. [BGG, Prop. IV.1], [C, Cor. 3.2]).

Corollary 3.3. Let X,Y be analytic curves in a neighbourhood of 0 ∈Cn
such that 0 ∈ X ∩ Y , and let (X)0, (Y )0 be irreducible germs at 0. Then one
of the following two cases may occur:

1. C0(X,Y ) = C0(X) = C0(Y ).
2. C0(X,Y ) is a finite union of two-dimensional hyperplanes.

Proof. If C0(X) ∩ C0(Y ) = {0}, then, by Proposition 2.6, C0(X,Y ) =
C0(X) + C0(Y ) is a two-dimensional hyperplane. If C0(X) = C0(Y ), then
taking an (n−1)-dimensional hyperplane H through 0, transversal to C0(X),
we easily obtain from Proposition 3.2 that

(6) C0(X,Y ) = C0(X,Y ) ∩H + C0(X).

Since, by Proposition 2.2, dimC0(X,Y ) 6 2, we have by (6) dimC0(X,Y ) ∩
H 6 1. But C0(X,Y ) ∩ H is also an algebraic cone. Hence C0(X,Y ) ∩ H
is either {0} or a finite number of lines. Thus, by (6), C0(X,Y ) is equal to
C0(X) in the first case, and is a finite sum of two-dimensional hyperplanes in
the second case. �

Now we give a formula for the C0(X,Y ) in terms of parametrizations of
X and Y (cf. the proof of Proposition IV.1 in [BGG]). First we fix some
notations. By e1, . . . , en we denote the standard basis of Cn. For vectors
v,w ∈ Cn we denote by Lin(v,w) the hyperplane in Cn generated by v and
w. Given a power series χ(s) 6≡ 0, we denote by in(χ(s)) its initial form;
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i.e., if χ(s) = βps
p + · · · with βp 6= 0, then in(χ(s)) = βps

p. (We also put
in(0) := 0.)

Theorem 3.4. Let X,Y be analytic curves in a neighbourhood U of the
point 0 ∈ Cn such that 0 ∈ X ∩ Y , and let (X)0, (Y )0 be irreducible germs.
Let

Φ(t) = (tk, φ2(t), . . . , φn(t)), t ∈ K(r), ordφi > k, i = 2, . . . , n,(7)

Ψ(τ) = (τ l, ψ2(τ), . . . , ψn(τ)), τ ∈ K(r), ordψi > l, i = 2, . . . , n,(8)

be parametrizations of X and Y at 0. Assume that l 6 k. Let ε1, . . . , εl be the
roots of unity of degree l. For i = 1, . . . , l we define

ni :=

{
ord(Φ(tl)−Ψ(εitk)) if Φ(tl)−Ψ(εitk) 6≡ 0,
0 if Φ(tl)−Ψ(εitk) ≡ 0,

(9)

vi := lim
t→0

Φ(tl)−Ψ(εitk)
tni

.

Then
C0(X,Y ) = Lin(v1, e1) ∪ · · · ∪ Lin(vl, e1).

Proof. Instead of the parametrizations Φ and Ψ, we shall use descriptions
of X and Y . Define

Φ̃(t) := Φ(tl) = (tkl, φ2(tl), . . . , φn(tl)), t ∈ K(r1/l),

Ψ̃(τ) := Ψ(τk) = (τkl, ψ2(τk), . . . , ψn(τk)), τ ∈ K(r1/k).

Obviously, (Φ̃(K(r1/l))0 = (X)0, (Ψ̃(K(r1/k))0 = (Y )0. From the form of Φ̃
and Ψ̃ we see that

C0(X) = C0(Y ) = Ce1.

Take the hyperplane

H := {(x1, . . . , xn) ∈ Cn : x1 = 0},
which is transversal to C0(X) = C0(Y ). From Proposition 3.2 we easily obtain

C0(X,Y ) = C0(X,Y ) ∩H + C0(X).

Since C0(X,Y ) is an analytic cone in Cn of dimension 6 2, it follows from
this equality that C0(X,Y )∩H is either {0} or a finite system of lines. Thus
it suffices to prove that

C0(X,Y ) ∩H =
l⋃
i=1

Cvi.

By the definition of vi we have obviously
l⋃
i=1

Cvi ⊂ C0(X,Y ) ∩H.
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Take now any vector 0 6= w ∈ C0(X,Y ) ∩ H. By Lemma 3.1 there exists
an analytic curve Γ ⊂ K(r1/l) × K(r1/k) having a parametrization Θ(s) =
(t(s), τ(s)) : K(r′)→ K(r1/l)×K(r1/k) at (0,0) such that(

Φ̃(t(s))− Ψ̃(τ(s))
)
 w when s→ 0,

i.e., such that

(t(s)kl − τ(s)kl, φ2(t(s)l)− ψ2(τ(s)k), . . . , φn(t(s)l)− ψn(τ(s)k)) w

when s → 0. Since t(s) 6≡ 0 or τ(s) 6≡ 0 we may assume that t(s) 6≡ 0.
Changing the parameter s we may further assume that

t(s) = sp, p ∈ N.

Thus

(spkl − τ(s)kl, φ2(spl)− ψ2(τ(s)k), . . . , φn(spl)− ψn(τ(s)k)) w

when s → 0. Since w = (0, w2, . . . , wn) 6= 0, there exists j ∈ {2, . . . , n} such
that

(10) ord(φj(spl)− ψj(τ(s)k) < ord(spkl − τ(s)kl).

Denote by J the set of j ∈ {2, . . . , n} for which the above inequality holds.
Since ordφj > k and ordψj > l, we obtain from this inequality that τ(s) has
the form

τ(s) = αps
p + αp+1s

p+1 + · · · , αklp = 1.

Hence αkp = εi0 for some i0 ∈ {1, . . . , l}. We shall show that w = vi0 . We
consider the following cases:

Case 1. The coefficients αr all vanish for r > p, i.e., τ(s) = αps
p. Then

τ(s)k = αkps
pk = εi0s

pk. Hence we have w = vi0 .
Case 2. Not all the coefficients αr vanish for r > p. Let m be the smallest

positive integer such that αp+m 6= 0. Then

τ(s) = αps
p + αp+ms

p+m + · · · ,

τ(s)k = εi0s
pk + αspk+m + · · · , α 6= 0,(11)

ord(spkl − τ(s)kl) = pkl +m,(12)

ord(φj(spl)− ψj(τ(s)k) < pkl +m for j ∈ J,(13)

ord(φj(spl)− ψj(τ(s)k) > pkl +m for j /∈ J.(14)

Let us first note that for j ∈ {2, . . . , n} we have from (11) and the fact that
ordψj > l

(15) ord(ψj(τ(s)k)− ψj(εi0spk)) > pkl +m.
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From this and (13) we deduce for j ∈ J

in
(
φj(spl)− ψj(τ(s)k

)
(16)

= in
(
φj(spl)− ψj(εi0spk) + ψj(εi0s

pk)− ψj(τ(s)k
)

= in
(
φj(spl)− ψj(εi0spk)

)
,

and for j /∈ J we get from (14)

ord
(
φj(spl)− ψj(εi0spk)

)
(17)

= ord
(
φj(spl)− ψj(τ(s)k) + ψj(τ(s)k)− ψj(εi0spk)

)
> pkl +m.

Hence

(18) ord
(
Φ(spl)−Ψ(τ(s)k

)
= ord

(
Φ(spl)−Ψ(εi0s

pk)
)

= pni0 .

Now, we have

vi0 = lim
t→0

t−ni0
(
Φ(tl)−Ψ(εi0t

k)
)

= lim
s→0

s−pni0
(
Φ(spl)−Ψ(εi0s

pk)
)

= lim
s→0

s−pni0 (0, φ2(spl)− ψ2(εi0s
pk), . . . , φn(spl)− ψn(εi0s

pk))

= lim
s→0

s−pni0
(
0, in

(
φ2(spl)− ψ2(εi0s

pk)
)
, . . . , in

(
φn(spl)− ψn(εi0s

pk)
))
.

On the other hand, from definition of w and (18) we have

w = lim
s→0

(
Φ(spl)−Ψ(τ(s)k)

)
sord(Φ(spl)−Ψ(τ(s)k))

= lim
s→0

s−pni0
(
Φ(spl)−Ψ(τ(s)k)

)
= lim
s→0

s−pni0
(
spkl − τ(s)k, φ2(spl)− ψ2(τ(s)k), . . . , φn(spl)− ψn(τ(s)k)

)
= lim
s→0

s−pni0
(
in
(
spkl − τ(s)k

)
, in
(
φ2(spl)− ψ2(τ(s)k)

)
,

. . . , in
(
φn(spl)− ψn(τ(s)k)

))
.

Using (12), (16), (14), (17) we finally obtain

vi0 = w.

This completes the proof. �

Remark 3.5. From the forms (7) and (8) of the parametrizations it follows
that C0(X) = C0(Y ) = Ce1. By Proposition 2.6 we see that only this case is
interesting. Moreover, the assumption on the form of the parametrizations is
not restrictive, because it is well-known that for any analytic curve X with
irreducible germ at 0 there exists a linear change of coordinates in Cn such
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that in the new coordinates C0(X) = Ce1 and there exists a parametrization
of X at 0 of the form (7).

From the above theorem it follows that under the same assumptions on
X and Y, the cone C0(X,Y ) is the union of at most min(mult0X,mult0 Y )
two-dimensional hyperplanes. It is easy to improve this result.

Corollary 3.6. Let X,Y be analytic curves in a neighbourhood U of the
point 0 ∈ Cn such that 0 ∈ X ∩ Y and (X)0, (Y )0 are irreducible germs.
Then:

1. If (X)0 = (Y )0 and this germ is nonsingular at 0, then

C0(X,X) = C0(X) = TPX.

2. In the remaining cases C0(X,Y ) is the union of r two-dimensional
hyperplanes, where

(19) 1 6 r 6 gcd(mult0X,mult0 Y ).

Proof. Using a linear change of coordinates in Cn we may assume that X
and Y satisfy all assumptions of Theorem 3.4.

The first part follows immediately from Theorem 3.4 because in this case
k = l = 1, Φ(t) = Ψ(t) = (t, ϕ2(t), . . . , ϕn(t)), ordϕi > 1, i = 1, . . . , n, and
v1 = 0.

We now prove the second part. From Theorem 3.4 we obtain

C0(X,Y ) = Lin(v1, e1) ∪ · · · ∪ Lin(vl, e1),

where

vi = lim
t→0

Φ(tl)−Ψ(εitk)
tni

, i = 1, . . . , l,

Φ(t),Ψ(t) are parametrizations of X and Y at 0 of the form (7) and (8), l 6 k,
εi, i = 1, . . . , l, are the roots of unity of degree l, and the numbers ni are given
by (9).

By analysing this formula in the two possible cases in this part, i.e., the
case when (X)0 6= (Y )0 and the case when (X)0 = (Y )0 and 0 is a singular
point of X, we easily obtain that r > 1.

Now, let D := gcd(mult0X,mult0 Y ) = gcd(k, l) and let η1, . . . , ηD be the
roots of unity of degree D. It is easy to see that for any εi there exists εj such
that εiεkj = ηp for some p ∈ {1, . . . , D}. Then by the substitution t 7→ εjt we
obtain

vi = lim
t→0

Φ((εjt)l)−Ψ(εi(εjt)k)
(εjt)ni

= εj
−ni lim

t→0

Φ(tl)−Ψ(ηptk)
tni

.

Thus there are at most D different lines among Cv1, . . . ,Cvl. Hence r 6
D. �
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Example 3.7.

1. The estimation from above in (19) is strict since for

X := {(t2, t3, 0) : t ∈ C} ⊂ C3,

Y := {(τ2, 0, τ3) : τ ∈ C} ⊂ C3.

we have by Theorem 3.4 k = l = 2 and v1 = [0, 1, 1], v2 = [0, 1,−1]. Hence
r = 2 and

C0(X,Y ) = Lin(v1, e1) ∪ Lin(v2, e1) = {(x, y, z) ∈ C3 : y2 − z2 = 0}.

2. The inequality in the upper bound for r in (19) is not an equality in
general since for

X := {(t2, t5, 0) : t ∈ C} ⊂ C3,

Y := {(τ2, 0, τ3) : τ ∈ C} ⊂ C3.

we have by Theorem 3.4 k = l = 2 and v1 = v2 = [0, 0, 1]. Hence r = 1.

4. The join of algebraic curves

In this section we answer the question posed in the introduction: Which
additional projective lines besides those containing points P ∈ X,Q ∈ Y, P 6=
Q, are in J (X,Y ) in the case when X and Y are algebraic curves? First,
we give a relation between the join of arbitrary varieties and relative tangent
cones.

Let X,Y be arbitrary algebraic subsets of Pn and P ∈ X ∩Y . Let U ⊂ Pn
be a canonical affine part of Pn such that P ∈ U, and let ϕ : U → C

n

the corresponding canonical map. Then we define the relative tangent cone
CP (X,Y ) to X and Y at P by

CP (X,Y ) := ϕ−1(Cϕ(P )(ϕ(X ∩ U), ϕ(Y ∩ U)).

One can easily check that this definition does not depend on the choice of the
canonical affine part U of Pn. (In [FOV, Def. 4.3.6] there is another equivalent
definition of CP (X,Y ) using the affine cones X̂, Ŷ ⊂ Cn+1 generated by X
and Y .)

Since CP (X,Y ) is a union of projective lines passing through P we may
define

CP (X,Y ) := {[L] ∈ G(1,Pn) : L ⊂ CP (X,Y ) and P ∈ L}.

Proposition 4.1. Let X,Y be arbitrary algebraic subsets of Pn. Then

J (X,Y ) = J 0(X,Y ) ∪
⋃

P∈X∩Y
CP (X,Y ),

J(X,Y ) = J0(X,Y ) ∪
⋃

P∈X∩Y
CP (X,Y ).



736 TADEUSZ KRASIŃSKI

Proof. Note that the topology in G(1,Pn) can be described in the following
elementary way: If [L], [Li] ∈ G(1,Pn), i = 1, 2, . . . , then [Li] → [L] when
i → ∞ in G(1,Pn) if and only if there exist points Pi, Qi ∈ Li, i = 1, 2, . . . ,
Pi 6= Qi, P,Q ∈ L, P 6= Q, with homogeneous coordinates Pi = (xi0 : · · · : xin),
Qi = (yi0 : · · · : yin), P = (x0 : · · · : xn), Q = (y0 : · · · : yn) such that xij → xj
and yij → yj when i→∞ in C for j = 0, 1, . . . , n.

Take [L] ∈ J (X,Y ) − J 0(X,Y ). Then there exist [PiQi] ∈ G(1,Pn), i =
1, 2, . . . , Pi ∈ X, Qi ∈ Y , Pi 6= Qi, such that [PiQi]→ [L] when i→∞. Since
X,Y are compact sets we may assume that Pi → P ∈ X and Qi → Q ∈ Y.
Since [L] /∈ J 0(X,Y ), we have P = Q. Hence P ∈ X ∩ Y . Of course, P ∈ L.
From the above description of the topology in G(1,Pn) we easily obtain that
L ⊂ CP (X,Y ).

The opposite inclusion
⋃
P∈X∩Y CP (X,Y ) ⊂ J (X,Y ) is obvious. �

From the above proposition and the previous results we obtain the full
description of the join of algebraic curves in Pn.

Theorem 4.2. Let X,Y be irreducible curves in Pn. Then:
1. If X = Y then

J (X,X) = J 0(X,X) ∪
⋃

P∈Sing(X)

CP (X,X) ∪
⋃

P∈X−Sing(X)

[TP (X)],

J(X,X) = J0(X,X) ∪
⋃

P∈Sing(X)

CP (X,X) ∪
⋃

P∈X−Sing(X)

TP (X).

2. If X 6= Y and X ∩ Y = {P1, . . . , Pk} then

J (X,Y ) = J 0(X,Y ) ∪
k⋃
i=1

CPi(X,Y ),

J(X,Y ) = J0(X,Y ) ∪
k⋃
i=1

CPi(X,Y ).

Moreover, in both cases each CP (X,Y ) is a finite sum of projective two-
dimensional hyperplanes passing through P. They are effectively described as
follows: For a given point P ∈ X ∩ Y if X 6= Y , or for a singular point
P of X if X = Y , we decompose (X)P = (X1)P ∪ · · · ∪ (Xr)P , (Y )P =
(Y1)P ∪ · · · ∪ (Ys)P into irreducible curve-germs. Then

CP (X,Y ) =
⋃
i,j

CP (Xi, Yj).

Each CP (Xi, Yj) is described in the following way:
(i) If (Xi)P = (Yj)P and this germ is nonsingular, then

CP (Xi, Yj) = CP (Xi) = CP (Yj) = TPXi = TPYj .
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(ii) If (Xi)P 6= (Yj)P or one of these germs is singular, then:
(1) If CP (Xi) ∩ CP (Yj) = {P} then

CP (Xi, Yj) = Span(CP (Xi), CP (Yj)).

(2) If CP (Xi) = CP (Yj) then

CP (Xi, Yj) =
m⋃
l=1

Span(CP (Xi), PQl),

1 6 m 6 gcd(multP Xi,multP Yj),

where Ql := ϕ−1(ϕ(P ) + vl) (where ϕ : U → C
n is a canonical map

of Pn such that P ∈ U) and the vectors vl are calculated from the
local parametrization of the curves ϕ(Xi)−ϕ(P ) and ϕ(Yj)−ϕ(P ) at
0, as described in Theorem 3.4 (after a linear change of coordinates
in Cn).
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