
COMMUTATOR CLOSED GROUPS

BY

Introduction

The commutator operation is a useful tool of group theory. However,
only very little is known about mappings that carry every element g of G into
the commutator x o g for fixed x. If the group has the property that a cer-
tain power of each of such mappings maps every element onto 1, then G is an
engel group, the aspects of which have been investigated by Zorn [1], Levi
[1], Baer [1], Gruenberg [1], [2] and the author [1]. We will investigate here
another class of groups, namely those groups, where the set of the mappings
indicated above is a semigroup with respect to the usual product operation.
Actually, corresponding to the different ways of commutator bracketing, we
have two definitions"

G is right commutator closed, if for
any two elements a, b of the group G
there is an element c e G such that
a b g c o g holds for all g e G.

G is left commutator closed, if for any
two elements a, b of the group G
there is an element c e G such that
(gob) a g c holds for all g e G.

These two classes of groups contain for instance the two-engel groups con-
sidered by Levi [1], for in these groups we have the identities

xo(yoz) (yox) oz; (zoy) ox zo(xoy)

which give us directly the element c needed. Unlike the two-engel groups,
however, the finite right commutator closed groups may be nilpotent of any
class wanted, as Example 1 in Section 5 shows. It will be shown, that right
and left commutator closed groups are metabelian (Theorem 1.4). Right
commutator closed groups are nilpotent whenever G/C(G’) is finitely gener-
ated (Theorem 2.1). This may be considered as best possible because there
are infinitely generated right commutator closed groups that are neither
residually nilpotent nor locally nilpotent (and therefore not Z-A-groups
either); see the examples in Section 5. Right commutator closed groups
are left commutator closed (Lemma 1.3); see Section 3 for left commutator
closed groups that are not right commutator closed.
Not every subgroup of a right (left) commutator closed group is itself

right (left) commutator closed; a counterexample is Example 2 in Section 5.
So we define the corresponding local properties as follows:

The group G is locally right (left) commutator closed, if any finitely generated
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subgroup of G is contained in a finitely generated right (left) commutator closed
subgroup of G.

Please note that right commutator closed groups need not be locally right
commutator closed, as shown by Example 2 in Section 5. To avoid this
inconvenience seems to be impossible since we deal with a closure property.

In this paper we see that the consequence arising from conditions that are
only different with respect to "right" and "left" may in fact be different.
In an earlier paper [2] the author could prove that the statement "a(n+l) g

1 for all geG" is a consequence of"g(n) oa 1 for all geG". There
was no indication, however, whether in the same way g o

(n+l) a 1 for all
g e G if a o

(n)
g 1 for all g e G, and this paper does not add hope for this--

to the knowledge of the author, undecided--conjecture.

Definitions and notations

xoy x(1) oy xo
(1) y x-ly-lxy.

X
(n) (X (n--l) (n) o(n--l)oy xo oy); x y (x y) oy forn > 1.

x B is the subgroup generated by all x b with b e B.
A o B is the subgroup generated by all a B with a e A.
Z(G) center of G.
C(A) centralizer of A.
N(A) normalizer of A.
The series

G= G_G_ _G_ "",

where G G_ o G for n > 1, is called the lower central series, while the series

1 Z(G)

_
Z2(G) cc__ Zk(G) ...,

where Zn(G)/Zn_(G) Z(G/Zn_(G)) or n > 1 and not a limit ordinal,
Zn(G) Uk<n Z(G) if n is a limit ordinal, is called the upper central series.
The group G is nilpotent, if the lower central series ends after a finite num-

ber of steps with 1. This is equivalent to the fact that G is a finite member
of the upper central series. G is nilpotent of (finite) class c, if Gc+ 1; this
is equivalent to Zc( G) G.
G is a Z-A-group, if G is some (possibly transfinite) term of the upper cen-

tral series.
G is residually nilpotent if 1 is the intersection of all normal subgroups of

G with nilpotent quotient group (and this is equivalent to =1 G 1).

1. The general case

THEOREM 1.1. The following properties of the group G are equivalent"
G is right commutator closed.

(ii) To every pair x, y of elements in G there exists an element z e G such that

(x o g)-(y o g) z g

for every g e G.
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(iii) To every finite set of elements xl x. x, in G there exists an ele-
ment z G such that

( o (. o (... o (x o ) z o

for every g G.
(iv) To every finite set of elements xl x2 x, in G and to every sequence

ml m, m of integers there exists an element z G such that

(x )(x ) (x ) z
]or every g G.

Proof. Assume G is right commutator closed. Then to every pair a, b
of elements in G there exists aa element c ia G such that (a (b g) c g
for every g e G. Hence

--1 --1 --1 --1a g a) (a-’b-gba) (b-ig-’b)g (c g c)g,

g- b-gb ab-’g-’ba- ac-’g-ca-,
b o g)- ba- o g) ca-So for x b and y ba- we have found the element z. But for eve pair

x, y there exists a pair a, b satisfying these two equations; and the element
z needed for (ii) can be found. Hence (ii) is consequence of (i). By (ii)
there is au operatioa of all elements in G/Z(G) defined as follows:

(xy) o g (x g) (y g).

For if we let y 1 in (ii) we obtain an element such that

(x o g)- o g for all g e G.
Hence

(x g)(y o g) (. g)-(y o g) z g

for all g e G and a certain z e G. The element z exists by (ii) and is defined
rood Z(G). This yields xy z. By (ii) (letting y 1) evew element
has an inverse with respect to this operation , and clearly the operation
is associative. Then equatio (ii) says that G/Z(G) is a group with respect
to operation , and (iv) follows. Furthermore we deduce

(iv’) The set of all x g coincides with x G.

If we use the equation

x ( ) ( e)( z e)-(x )
n- 1 times, we are able to give the commutator

(x (... (x g)...))
the form of a product of simple commutators a g with a independent of g.
Therefore (iii) follows from (iv). But (i) is just a special case of (iii).
This proves the equivalence of all four properties.
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LEMMA 1.2. If the group G is right commutator closed, then x G x if and
only if x 1.

Proof. By Theorem 1.1(iv’) and (iv), x is contained ia G o x if and only
if x w o x for a certain w e G. But this yields w-lx-lw 1, proving x 1.

LEMMA 1.3. Right commutator closed groups are left commutator closed.

Proof. By Theorem 1.1(iv) there exists for every element x e G another
element , such that

xog (og)-I go for allgG.

As G is right commutator closed, there is an element z e G such that

o(og) zog for allgG.
Therefore

(gox) oy= (og) oy= o(og) zog= go for allgG,

which proves the lemma.
Remark. See Theorem 3.3 for a partial converse.

THEOREM 1.4. Left commutator closed groups and right commutator closed
groups are metabelian.

Proof. By Lemma 1.3 it suffices to show that left commutator closed
groups are metabelian.
Now assume that for any two elements a, b of G there exists an element c

such that (goa) ob gocforallgeG. Lettingg a we see that c and
a commute. Furthermore

--1aga o a a(g o a)a-and

Therefore

Consequently

--1 --1aga o c a(g o c)a

a(g o a)-a-b-la(g o a)a-lb a(g o a)a- o b

aga- o a) o b

--1aga o c

a(g o c)a-
a((goa) ob)a-
a(g o a)-Ib-(g o a)ba-1.

b-a g o a) a-lb ab- g o a) ba-,
(aob-1) o(goa) 1 for alla, b,gG.
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Now
g (f o a) g b (f a)-lgb-lg-1 (f o a) gb

(g o a)(fg o a)-l(fgb a)(gb o a)-by z-(y z)z (yz z)(z z) -1.
This implies by (1)

(g o a)-(g-l(f a)g b)(g a)

(g a)-(g a)(fg o a)-(fgb a)(gb o a)-l(g a)

(g a) (fg a)-I (fgb a) (gb o a)-I
--1g (foa)gob.

By yx z x- (y o z)x(x z) and the preceding argument we obtain

((fg a) b) (g-l(f a)g)(g a)) b

(letting y f, x g and z a)

(g a)-l((g-l(f a)g) b)(g a)((g a) o b)

(letting y g-l(f a)g, x g a and z b)

((g-(foa)g)ob)((goa)ob).
But

fg c g-l(f c)g(g c) g-l( (f a) b)g( (g a) b),

and this implies
g-l( (f a) b)g (g-(f a)g) b,

g-lb-l f a bg b-g- f a gb

(2) (b-1 g-l) (f a) 1

Therefore the group G is metabelian.

for all a, b, f, g e G.

LEMMA 1.5. If the group G is right (left) commutator closed, then the nor-
malizer of the subgroup U of G is right (left) commutator closed, whenever the
minimum condition is satisfied for subgroups isomorphic to U in G.

Proof. Let N be the normalizer of U in G. The element x is contained in
N if and only if all the commutators x u (u x) are contained in U, where
u is in U. So if x and y are contained in N, then x u and y (x o u) (u x
and (u x) y) are contained in U for all u in U. As G is right (left) com-
mutator closed, there is an element zeG satisfying yo(xog) zog
((gox) oy goz) for all geG. Since zo U Uoz U, we have
--1 kz Uz U. But the descending chain of isomorphic subgroups z- Uzk with
positive integers/c is only finite by the minimum condition, so for certain/

we have z--kUz z--IUz+ Z
-1proving U Uz. Thus z is contained

in N, proving the lemma.
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We will denote by the endomorphism ring induced by G in (the abelian
normal subgroup) A the ring spanned by the automorphisms of A induced
by G. It will cause no confusion to denote by the element g e G at the same
time the mapping of a onto a g-lag for all a e A; and if u and v are endo-
morphisms, then a+ aa for all a e A as usual.

LEMMA 1.6. If G is right commutator closed, then in the endomorphism ring
induced by G in G’ the set of elements 1 g with g e G is an ideal J.

Proof. By Theorem 1.4 we know that G’ is abelian; so we may form the
commutative endomorphism ring P of G’ spanned by all the automorphisms
induced by GinG’. The set J of all 1- g, where geG, is an additive
subgroup of P by Theorem 1.1 (it). To show further that J is an ideal it
suffices to show gJ J for all g e G. However, if 1 h is an arbitrary
element ofJ, theng(1- h)= g- gh (1- gh)- (1- g)belongs to
JforallgeG. SoJisanidealofP.

2. roups G with finitely generated G/C(G’)
In this section we want to prove

THEOREM 2.1. If G is a right commutator closed group such that the quotient
group G/C(G’) is finitely generated, then G is nilpotent.

Proof. G is metabelian by Theorem 1.4. We want to show that for every
x in G there is an integer .n dependant only on x such that x() y 1 for all
y e G’. Then the Theorem follows by Gruenberg [2, Theorem 3.1, p. 449].
Assume now the existence of an element x + G, which does not satisfy an

equation of the form x() y 1 for all y G’. We consider the endomor-
phism ring X of G’ sapnned by 1 and x. Clearly X is a quotient ring of the
ring of polynomials in x with integral coefficients. We are especially inter-
ested in the polynomials in 1 x with constant term 1, for in the endomor-
phism ring P induced by G in G’ these correspond to automorphisms induced
by G in G’. Let the group of automorphisms induced by G in Gt, which
is essentially G/C(Gt), be generated by/c elements. Take ] -t- 1 irreducible
polynomials in 1 x with constant term 1, for instance P, P+. They
generate a subgroup of G/C(G’), which has a basis of/ elements and is abel-
inn. Hence, by suitable choice of the subscripts, we have

where 0 <_ n, not all n 0.
Now the ring of polynomials with integral coefficients is a unique factoriza-

tion domain, so the equation above, which is true in P and in X, cannot be
true in the ring of polynomials. As all P - 1 rood (1 x), the difference
of the right and the left side of (1) is divisible by 1 x, and we deduce from
(1) an equation of the form

(2) (1- x)(s + (1- x)f(- x))= o,
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where/ > 0 and s 0 are integers, f(1 x) is a polynomial in 1 x. If
s 4-1, then s W (1 x)f(1 x) is a unit of P, and (2) yields in P (and
therefore in X) (1 x) 0, contrary to the hypothesis on x. So s is not
equal to 1, 0, and 1. By Lemma 1.6 we know of the existence of an element
z in G such that (1 x)f(1 x) 1 z; furthermore there are z. such
that i(1- x)/(1- x)= 1- z. By formula (2)we have

(3) (1- x)z (1- x)k(1 nu si).

Now it is well known that in the set of integers 1 si there ae infinitely
many that are pairwise relatively prime. Take k - 1 such integers 1 -t- si;
then the corresponding elements z will satisfy an equation of the form

(4)

as the basis of G/C(G’) has only/ elements and z e G. We deduce from (3)

As the ring of integers is a unique factorization domain, we obtain from (5)

(6) z) .m 0,

wherem 0. Assumepdividesmandm pm’. Thenm’(1- x)kXis
a quotient ring of the polynomial ring in (1 x) modulo p. Now we take
k - 1 polynomials Q1, Q+I in (1 x) with the following properties:
they are irreducible rood p and have constant term 1; and they are different
mod p. As G/C(G’) is generated by k elements and the Q correspond to
automorphisms, there is an equation of the form

and because the ring of polynomials mod p is a unique factorization domain,
the coefficients of the terms (1 x)tof both the sides of the equation can
not be congruent mod p for all t. By multiplication with (1 x)m and
by use of (6) we find a new equation of the form

(8) (1- x)+m’(t q-(1- x)fl(1- x))= 0,

where 0 rood p is a constant. By multiplication of (8) with a suitable
constant we are able to get 1 rood p, therefore we may assume without
loss of generality 1. But then the right-hand bracket in (8) is a unit of
P, and (8) yields

(9) (1- x)+lm’= 0.

By an obvious inductive argument on the number of prime factors of m we
are able to show the existence of an integer ki such that

(10) (1- x) ’ O,
a contradiction proving the nonexistence of our element x. Thus Theorem
2.1 has been proved.



COMMUTATOR CLOSED GROUPS 249

Remark. Obviously the case of the finitely generated group G is contained
in Theorem 2.1. But conversely not every group satisfying the conditions
of Theorem 2.1 is finitely generated, as may be seen by the following example:
Take the direct product A of infinitely many cyclic groups of order p3, P odd.
Definex 1 andx-lax a+’forallaeA. Then {x, A} is right com-
mutator closed (see Section 5), {x, A} is the centralizer of the commutator
group of {x, A}, and the quotient group is cyclic, while {x, A} is not finitely
generated.

3. Left commutator closed groups
If the reader had not been warned by the remarks of the introduction nd

following Lemm 1.3, he might be tempted to ssume that the properties of
being right commutator closed nd of being left commutator closed are
equivalent. While by Lemma 1.3 11 right commutator closed groups are
left commutator closed, the converse is not true. A counterexample is the
noncommutative group of order 6. We shall see that this group is in sense
typical of the situation.

LEMMA 3.1. If G is a left commutator closed torsion group, then the follow-
ing statements are true"

I G is locally nilpotent.
(II) If x is an element of a locally nilpotent normal subgroup of G but no

right engel element, then the order of x is divisible by 3.

Proof. It is well known that an element x is contained in locally nil-
potent normal subgroup of the soluble group G, if x is a left engel element
(see Gruenberg [1, Theorem 4, p. 160]). Therefore it suffices for the proof
of (I) to show that x is left engel element for every x e G.

If x is not left engel element there exists y y(x) such that y o(k) x 1
for 11 positive integers /. The group G is an extension of a locally finite
group by another locally finite group (for abelian torsion groups are locally
finite); therefore G is locally finite by Schmidt’s Theorem (see Kurosh [1,
p. 153]). Hence H {x, y} is finite. In the endomorphism ring P induced
by G in G’ the elements x and y generate subring a quotient ring of which
is the endomorphism ring X induced by H in H’. Our assumption that x
was not left engel element in H has its expression in X as

(1) (x 1) k 0 for 11 positive k.

Now H nd X is finite, so there exist powers of x 1 that equal each other.
Then we hve for some r >_ 0, s > 0

(2) (x- )= (x- )+.
Without loss of generality we may assume that s is minimal satisfying equa-
tion (2). If s 2n, we deduce from (2)

(x- )(1- (- ))( + (x- )= 0.
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Now G is left commutator closed; therefore in P there is an element z of the
automorphism group of G induced by G such that (x I)n z I. This
shows (i -- (x i)n)k 1 for a certain integer ]c, because G is a torsion
group. This relation remains true in X, and we would find

(x-- 1)(1 (x-- 1) n) --0,

coatmry to the minimality of s 2n. Thus s is odd. As x is not a let engel
element in H, the inverse x-1 is not a left engel element in H either; and there
are integers u >_ 0 and v > 0 such that

(3) (x -- 1)u (x-_ 1)u+.
Without loss of generality we may assume that v is minimal; under this as-
sumption v is odd. Then by iterated use of (2) and (3) and by multiplica-
tion with (x 1)" and (x-1 1) respectively we obtain

(4) (x- 1)u+r (X-- 1)u+r+’
(5) (X- 1 u-br (X--1 1) +r+,,.

If we multiply (5) by (- x) +r+ we find

(6) (X-- 1)u+r(--X) (X-- 1) u+r+sv.
The comparison with (4) yields

(7) (x 1)u+r X’’(X 1)u+r.

If X were not a leit engel element, then we would obtain for x the same
types of equation as we had for x, and an equivalent in x for (7) would be

(8) (x- 1) t= -(x- 1)t(x:),
where the integer w may be assumed without loss of generality to be odd.
By iterated use of (8) we deduce (x x observing that
sv is odd. On the other hand (7) leads us to (x 1) +r x’(x 1) u+r.
Therefore we have

(x 1) t++r (X 1) t(X + 1)’+r(x 1) ’+r

(X2- 1)t(x -- 1)u+r(x- 1)U+rX2wSv

(x 1)++rx’’

by (7), while by (8) we obtain

(x: 1)++r

--’(X
This is impossible unless

(9) 2(z 1 )t-l-u+r O.
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By use of (2) we obtain

(x- 1)t+u+r(1 q-(x-- 1)) (x- 1)t+u+r(1-- (X-- 1))

(X- 1)t+’(X -ff 1)r(x 1)(1 (X 1))

O,

and 1 + (x 1)* is a unit of P, which proves

(10) (x2- 1) t++ 0,

contrary to the assumption that x was not a left engel element. This proves
statement (I) of the theorem. To prove (II), we consider the element z e G
(which exists by definition) such that (x 1) z 1. We obtain by (2)

(11) 2(x-- 1)r- (x-- 1)rz.

By (I), z is a left engel element, so there is an integer k such that

(12) 0 "-(X-- 1)r(z2- 1) k= (x-- 1)3k.

If y is contained in a locally nilpotent normal subgroup, this proves (II).

COROLLARY. In a finite left commutator closed group all the elements of order
prime to 6 are contained in the hypercenter.

Finally we prove the equivalence of being left and right commutator closed
for nilpotent groups.

THEOREM 3.2. If G is nilpotent and left commutator closed, then G is right
commutator closed.

Proof. By induction on the nilpotency class of G. For nilpotent groups
of class at most 2 there is nothing to prove. Now assume the class of G is
c > 2, and the theorem has already been proved for all nilpotent groups of
class at most c 1. Then G/Z(G), which is of class c 1, is left commuta-
tor closed and therefore right commutator closed by induction hypothesis
By Theorem 1.1(ii) we are able to find an element x’ for each x e G such that

gox’------ xog modZ(G) for allgG.(i)
Therefore

(2)

where z exists because
the theorem.

y (x g) ((x g) y)-i ((g x’) y)-i

(goz) -I zog

G is left commutator closed; and

for all g e G,
this proves

zt. .oca[ properties
THEOREM 4.1. If the group G is locally right commutator closed, then G has

the following properties:
G is metabelian.

(ii) G is locally nilpotent.
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(iii) For eery element x 1 of G we have x G o x
(iv) G is locally left commutator closed.

Proof. The subgroup generated by the arbitrary four elements w, x, y, z
is contained in a finitely generated right commutator closed subgroup, which
is metabeliaa by Theorem 1.4. Hence

(wox) o(yoz) 1,
which proves (i).
Every finitely generated subgroup of G is contained in a finitely generated

right commutator closed subgroup, which is nilpotent by Theorem 2.2. Hence
(ii) is true.
Now assume x were contained in G x; then there would be elements

gl, g2, gn and integers ml, m2, mn such that

x (gl x)’l(g: x) " (g, x) ’n’.
But the group M {x, g., g2, g} is contained in a right commutator
closed subgroup K, and x is not contained in K x by Lemma 1.2, which
contradicts the assumption and proves (iii).
Every finite set of elements is contained in a finitely generated right com-

mutator closed group, which is left commutator closed by Lemma 1.3; hence
(iv) is true.
Remark. As there are finitely generated left commutator closed groups

that are not right commutator closed, the properties of being locally left com-
mutator closed and locally right commutator closed are not equivalent.

THEOREM 4.2. If G is a locally left commutator closed torsion group, then G
has the following properties"

G is metabelian.
(ii) G is locally nilpotent.
(iii) The elements of G’ of order prime to 3 are right engel elements.

Proof. The subgroup generated by the arbitrary four elements w, x, y, z
is contained in a left commutator closed group, which is metabelian by The-
orem 1.4; hence (w o x) o (y z) 1, which proves (i). On the other hand
every square is a left engel element in this subgroup, so y o() (x) 1 for
almost all integers n, and (ii) follows.
Now if z has an order prime to 3 and is contained ia G’, then it is contained

in M’ for some finitely generated subgroup M of G. Let x be an. arbitrary
element of G. Then {x, M} is contained in a finitely generated left commuta-
for closed subgroup U of G. Obviously z e U’, nd, by Lemma 3.2, z o

() x 1
for almost all integers n. This shows the validity of (iii).

5. Examples
In order to simplify the arguments we begin with a general construction

principle.
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LEMMA 5.1. If A is an abelian normal subgroup of G AB and B is abel-
ian, then the following statements are true"

(R) If for every pair bl, b.2 e B there exists an element b3 e B such that
bl o (b. o a) b3 o a for all a e A, then G is right commutator closed.

(L) If for every pair bl, b. e B there exists an element ba e B such that
a o b.) o bl a ba for all a e A, then G is left commutator closed.

Proof. First we collect identities we shall need further on. We have

(1) A’= B’= 1,

nd as G/A
_

B/B n A is belin, we observe

(2) G’

_
A.

Every element of G can be written as a product ba where b B and a e A.
Then (1) and (2) yield

(3) baog a-(bog)a(aog) (bog)(aog) for allaeA, beBandgeG,

Now we want to show that G is right (left) commutator closed if and only
if for every pair x, y e G there is an element z, G such that

xo(yow) z ow ((woy) ox w oz)

for M1 w e A nd M1 w e B. The necessity of this condition is clear. How-
ever for the right case we hve

x o (y oba) x o ((y oa)(y ob)) by (3)

(x o (y oa))(x o (y ob)) by (1)

(zoa)(zob)

zoba by (3),

and the left case follows in the same manner:

(ba o y) o x (b o y) (a o y) o x

((boy) ox)((aoy)ox)

(boz)(aoz)
baoz.

Now if gl blal, g2 b.a, ga baa3 with a, a., a3 eA and b, b., b as
in the lemma, then

o o o ((x o o o

if x e A, as can be seen by (1)-(3). We wnt to choose a such that the for-
mul is true for ny x b ill B Mso. By (1)-(3) this is true for the right
commutator closed case, if

aaob gaob g o(g. ob) g o(a2ob) bo(a.ob) (boa.) ob;
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similarly it is true for the left commutator closed case, if

boa3 b og (b og2) ogl (bo as) ogl (b oa2) o51 b o(aso51).
Therefore with a3 bl o a2 (a as bl)
we have constructed g b a needed to prove the lemma.

This lemma enables us to construct new right or left commutator closed
groups out of known ones; for if N is a normal subgroup of the right or left
commutator closed group G and N G’, then the splitting extension of N by
the group of automorphisms induced by G in N (the holomorph of N in G)
is right or left commutator closed.

Example 1. Take a cyclic group A of order p and all the automorphisms
of this group mapping each element x onto the k-th power xk, where/c 1
mod p. It can be seen easily that these automorphisms form a group B of
order n--1p which, together with the cyclic group A, satisfies the conditions
of Lemma 5.1(R). Therefore G AB is right commutator closed. We
observe Gn 1 and G+I 1, which shows that there is no bound on the
nilpotency class for right commutator closed groups.

Example 2. Denote by Q the ring of rational functions in one variable x,
where the denominator polynomials have the constant term 1 and the coeffi-
cients of the polynomials are taken either from the integers or from a field of
order p. Then multiplication with a polynomial with constant term 1 is an
automorphism of Q. Denote the additive group of Q by Q, and call U the
group of all multiplications (and divisions) by polynomials with constant
term 1. By Lemma 5.1(R) the group G (U is right commutator closed.
The intersection of the terms of the descending central series is trivial, for in
G we have all quotients of ( where the numerator polynomial has rx as
leading term (Gn xnQ). G has trivial centre, and the goup q, u} gen-
erated by the elements q ) and u e U is nilpotent only if one of the elements
equals 1. Thus G is not locally nilpotent.

If u corresponds to the multiplication of the quotients with 1 -- x, and if
q e corresponds to the constant 1, then the group q, u} is its own ormal-
izer and is not commutator closed.

Example 3. Denote by P the additive group of all formal power series
y -_- a x in one variable x; the coefficients a may be chosen as in Ex-
ample 2. All the multiplications of the power series by those power series of
the form

t= 1- -=- bix

are automorphisms of P. Call the group of all these automorphisms T. We
form equivalence classes in P by calling two elements in P equivalent, if all
the coefficients a for i 0, 1, 2, are equal. The additive group P* of
these equivalence classes admits the automorphisms in T. Hence by Lemma
5.1(R) the group F P*T is right commutator closed, and all elements in
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P* with leading coefficient ax are contained ia Z+I(F); therefore F is a
Z-A-group. Furthermore we have F2 F3, which proves F is not residually
nilpotent.

If we take the direct product of the groups G and F of Example 2 and 3,
we have a group that is neither residually nilpotent nor a Z-A-group.
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