
FINITE GROUPS HAVING SUBGROUPS OF ODD ORDER
WITH SMALL AUTOMISERS

BY
Mc_ ,T. Co,s

1. Introduction

The groups SL(2, 2a), a _> 2, provide one of the easiest examples of finite
simple groups in which all subgroups of odd order are abelian. Indeed, if K
is such a subgroup, then N(K)/C(K) -< 2. In this paper, we shall eharac-
terise these groups by this property. Actually, a weaker hypothesis will be
taken since it will emerge as one more readily open to generalisations.

Let G be a finite group, and H a subgroup of G. Then the factor group
Na(H)/Ca(H) is called theautomiser ofH in G. We define

a(H) Na(H)/Ca(H) I.
The following is the main result of this paper.

TEOREM A. Let G be a finite simple group such that whenever K is a sub-
group of odd order which is either abelian or of prime power order, then a(K) <_ 3.
Then G is isomorphic to one of the groups SL(2, 2a), a _> 2, or PSL(2, 7).

Here of course, as throughout, "simple" means "non-abelian simple".
The main steps in the proof are to construct maximal abelian Hall subgroups
of odd order and exceptional characters for G corresponding to each, and to
use a result of Brauer and Tuan [4] to fit together the fragments of character
table so obtained. The arguments are then mainly number-theoretic, and
culminate in showing that G is a CIT-group: that is, a group in which the
centraliser of any involution is a 2-group. At this stage, Suzuki’s classifica-
tion could be invoked [12], [13]: however, so much additional information is
available that the proof is very quickly completed. The precise calculations
differ according to whether or not there is a subgroup K of odd order with
a(K) 3. If not, we show in Section 6 that G is isomorphic to SL(2, 2):
if there is, we show in the final section that only PSL(2, 7) arises. It should
be noted that these groups do satisfy the hypothesis of the theorem.
The methods should generalise, with restrictions, to larger automisers.

For this reason, the character theory in Section 5 is considered in a more
general setting, and the construction of the exceptional characters and the
application of the Brauer-Tuan formula are discussed. However, three things
distinguish the situation in this paper from that where automisers may have
order 4. In the first place, we are able to show that when a(K) _< 3, the
action of the normaliser on K is of Frobenius-type: if a(K) 4 were allowed,
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some such condition would have to be added to the hypothesis to allow the
application of our character-theoretic methods. Secondly, in Section 5, we
will define the idea of natural or unnatural situations in fitting together pieces
of character table. In the proof of Theorem A, an unnatural situation is
shown to be impossible: however, one does occur in the alternating groups As
and A. Finally, the corresponding general structure result would need to
be of a different type, as the symmetric group $5 shows: here we have the
following as a consequence of Theorem A.

COROLLARY. Let G be a finite group such that whenever K is a subgroup o$
odd order which is either abelian or of prime power order, then a(K) <_ 3. Then
G has normal subgroups G1 and G such that

(i) . 0();
(ii) GI

_
G. and G/G A B where A is abelian of odd order, and B

is isomorphic to one of the groups SL(2, 2a), a >_ 2, or PSL(2, 7), or one or
both o$A and B may be trivial; and

(iii) [G: G] _< 3: if G is insoluble, G G1.

The notation is, for the most part, standard, and standard results (as can
be found in [5] and [10], for example) will be used without reference. All
groups will be finite. Many definitions involving a prime p will be extended
in a natural way to a set of primes r. r’ will denote the complementary set
of primes. An element whose order is divisible only by primes in r will be
called a r-element. If G is a group and g G, g can be written uniquely as a
product xy where x is a r-element, called the r-part, commuting with a r’-
element y called the r’-part. An element with non-identity r-part is r-
singular; a r’-element is r-regular. A r-section (g) is the set of all elements
of G whose -parts are conjugate to a given non-identity -element g. r-sec-
tions thus consist of r-singular elements, and any element not lying in a
r-section is p-regular for all p e r.

Since we shall be concerned with principal blocks for various primes, we
write B(G; p) for the principal p-block of G, or just Bo(p) if no confusion as
to the group can arise. For H an abelian Hall subgroup of G, we shall in
Section 5 define a set of characters B(H) of G: this notation is deliberate since
in the case that H is a p-group, this will coincide with the principal p-block.
By character, we shall always mean an ordinary absolutely irreducible charac-
ter.

If K H G, define a(K) INH(K)/C(K)i. We write a(K) for
a(K). As is normal, suffices in N(K) and C(K) will be suppressed if no
confusion can occur.

2. Preliminary results
PROPOSITION 2.1. Let P be a Sylow subgroup of a group G.

elements of C(P conjugate in G are conjugale in N(P
Then any two



Proof. This is an immediate generalisation of the Burnside lemma [10,
Theorem 7.1.1].

PROPOSITION 2.2. Let G be a group and H an abdian Hall -subgroup of G
such that N(H)/O,,(N(H) ) is a Frobenius group. Then

(i) any two elements of H conjugate in G are already conjugate in N(H)
and

(ii) if g e H, then C(g) H.O,,(C(g) ).
If, furthermore, every cyclic subgroup of H is normal in N(H), then
(iii) if L is a subgroup of G which contains a conjugate of every cyclic sub-

group of H, then L contains a conjugate ofH.

Proof. By a result of Wielandt [14], if K is a subgroup of G containing H
and a conjugate H’ H, then H and H’ are conjugate in K. Parts (i) and
(ii) are the generalisations of the corresponding results for a Sylow subgroup.
Suppose g, g H, and g g for some x G. Then H, H C(g) so

that for some y C(g,), H H. Thus xy N(H), and g g g,.
hence (i) holds. Now if P is a Sylow p-subgroup of H, p , P < N(H).

H C(P) so that for some v e C(P),On the other hand, if u N(P),
H" H" thus for some w hr(H), u wv- so that u N(H).C(P). Hence
N(P) N(H) .C(P). With N(H)/O,,(N(H) ) a Frobenius group, C(H)
H X O,,(N(H)) and, for any g H, C(m(g) C(H). On the other hand,
N(e)(H) C(H)" thus no two distinct elements of H are conjugate in
C(P), and it follows that Ca(g)[ N(P)

_
C(P). By Burnside’s transfer

theorem, Ca(g) has a normal p-complement for each p and so a normal
-complement: hence C() H.O,(C(g) ).
Assume now that the hypothesis of (iii) also holds. Since, by (i), no two

distinct cyclic subgroups of H are conjugate in G, a count of cyclic subgroups
shows that L contains a Sylow p-subgroup of G for each p . If v 1
there is no more to prove, so suppose that p, q , p q. Let P be a Sylow
p-subgroup of L, and Q a Sylow q-subgroup of H. If g P, g H for some
x G, and, for each g Q, (g g)

_
L for some y G, by hypothesis. Now,

for some z L, (g)’ (g) and (g)’

_
C(g). Thus V(g) contains a

conjugate of each cyclic subgroup of Q, and hence a conjugate of Q. Hence
HI divides IC(g)I. On the other hand, Ca(g), and hence also C(g),

has a normal v-complement, by (ii). Thus C(g), and hence also L, con-
tains a conjugate of H.

PROPOSITION 2.3. Let G be a simple group, and let H be a Hall subgroup of
odd order. If G has a non-linear character of degree dividing H I, then no
involution can centralise H.

Proof. Suppose the contrary, and that y is an involution in C(H), and x
a character with x(1) h I and h dividing H I. Then

(h, a I/i
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X(Y) is a non-zero rational integer, so that IGI/I C(y)i’x(y)/x(1) is a
rational integer since it must be an algebraic integer. Thus x(y)/x(1) is a
rational integer so that x(y) :t=x(1), which is impossible since x is non-
linear and G simple.

I am grateful to Professor J. G. Thompson for the particular case of the
following result which is a trivial generalisation of that case.

PROPOSITION 2.4. Let G be a group which is a semi-direct product of a
2-group T by a subgroup K, where K H(x) is a Frobenius group in which x
is an involution inverting every element of H. Then any involution in G outside
T is conjugate to an element tx where Cr(H). In particular, if Cr(H) 1,
all involutions of G outside T are conjugate.

Proof. If Cr(H) T, the result is trivial, so we may suppose otherwise.
Since x inverts H,
(.) h-1 (x-Iyx) h x-lhyh-Ix x-lyx

for all h H, y Cr(H)" thus Cr(H) admits K. If U is a subgroup of T
admitting K, then Nr(U) admits K" thus there is a series of subgroups

Cr(H) Uo c U

_ _
U. T

such that U <l U+I and U admits K, for each i. Furthermore, by refinement
if necessary, we may suppose that K acts irreducibly on each factor U/U_I,
and that all inclusions are proper. Let s be an involution in G outside T"
we may suppose that s e (T, x). If s tx for some element Cr(H) there
is nothing to prove, so suppose that s to x where to e U, but to U_I, and
i _> 1. Then it will be sufficient to prove that s is conjugate to an element
tx with e U_I, for then sufficient repetition gives the result.

Since to sx, t t7, so that x normalises U_(to), and hence fixes the
coset U_ to of U-I in U. Let M U/U_. Then M may be regarded
as an irreducible K-module. Choose h e H. Then CM(h) admits K (cf.
(.)), and [10, Theorem 5.2.3]

M C,(h) M(1 h).

Since M is certainly indecomposable, either CM(h) 0 or C(h) M.
Now Cr(H) U0 so that C(H) 0: thus if H C(M), HI H. If
H/H A, M may be regarded as an A(x)-module with each element of A
acting fixed-point-freely so that A is cyclic. Regarding M as a vector space,
C(x) and M(1 x) are the kernel and image respectively of the endo-
morphism (1 x): hence

dim C,(x) + dim M(1 x) dim M.

On the other hand, M(1 x) c__. C,(x) and dim C,(x) <_ 1/2 dim M" hence
CM(X) M(1 x). Now U_toeCM(X), and so U_t0M(1 x).
Returning to group notation, this means that there exists h U such that
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U-lt0 [U_lt_,x], and so to u[tt, x] for someueU_x. Thus to
ut-lxtl x, and so s to x ut-Ixtl Hence tz st- t,. ut-x tx for some
U_ since t normalises U_I. So s is conjugate to this element tx, and the

result is proved, the special case being a trivial consequence.

3. Some general properties and the derivation of the corollary
In this section we shall consider properties of groups, not necessarily simple,

which stisfy the following hypothesis"

(A3) For any subgroup K of odd order which is either abelian or of prime
power order, a(K) <_ 3.

The corresponding hypothesis with a(K) <_ 2 will be denoted by (A).
Clearly ny group satisfying (A) will stisfy (A)" lter we shll distinguish
cses as G stisfies (A), or (A) but not (A).
As an obvious consequence of the definition of a(K), we have the following

result which will be frequently used without reference.

LEMMA 3.1. Let G satisfy (A3). Then any subgroup of G also satisfies (A3).

LEMMA 3.2. Let G satisfy (A3). Then all Sylow subgroups for odd primes
are abelian, and ifK is any subgroup of odd order, either K is abelian, or K has a
normal abelian subgroup of index 3.

Proof. Let P be a Sylow p-subgroup of G for p odd. Then if P were non-
abelian, P/Z(P) would be at least p so that a(P) > 3’ thus P is abelian.
Now let K be any subgroup of G of odd order. If 3 K I, for each Sylow
p-subgroup P of K, aK(P) 1, so that K has a normal p-complement" hence
K is abelian. If 3 does divide K I, let T be a Sylow 3-subgroup of K. Then
aK(T) 1 so that K has an abelian normal 3-complement L. If a(L) 1,
K is abelian; if a(L) 3, C(L) is a normal abelian subgroup of K of index 3.

LEMMA 3.3. Let G be a group satisfying (A). IfH is a soluble normal sub-
group of G, then G/H satisfies (A).

Proof. It is sufficient to prove the result for H elementary abelian. Since
any p-subgroup of G is abelian if p is odd, it is sufficient to consider abelian
subgroups of G/H of odd order. Let M/H be one. Let bars denote images
in the fctor group G/H. If K N(M),/ No(5r). First suppose that
H and/r have coprime order. Then by the Schur-Zassenhaus theorem, H
has a complement M* in M, and all such complements are coniugate in M.
An analogue of the Frattini argument yields K M.N(M*). Since
Co(I)

_
Co(M*).H/H, ao(1) <_ 3.

Suppose that H ], I/r 1. Since H is elementary, M has odd order,
and so is either abelian or non-abelian with a normal abelian subgroup L of
index 3. If M is abelian, Co(/r)

_
Co(M) and so ao(/r) _< 3; if M is

non-abelian, L is its Fitting subgroup so that H L K. Since a(L) 3,
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aK(L) 3, and C CK(L) is a normal subgroup of K of index 3
with C n M L and K CM. Let T be a Sylow 3-subgroup of M. Then
M LT so that K CT and/ . Thus L Z(/) so that ao(2r)
aT(-) aT(). If H has order coprime to 3, aT() _< a(T) _< 2 by the
previous paragraph" ifH is a 3-group, H T and T is abelian, so that aT() _<
a(T) as above. Thus ao(/]r) _< 3.

LEMMA 3.4. Let G be a soluble group satisfying (A3). Then G satisfies the
corollary.

Proof. By the preceding lemma, GlOw(G) satisfies (A3). If 0,,(()
is abelian, Co(O, (G)) 0,, (7) by the Hall-Higman centraliser lemma
[10, Theorem 6.3.2], and the corollary is satisfied with G1 O.,.,(G) and
[G" G1] _< 2. If O.,(G) is non-abelian, let H be the normal abelian subgroup
of index 3. ThenH< so that K Co(H) < . Since 0,() =1,
O.(K) 1 and O,,(K) O,,(G) thus H O,,(K) and, since C(O,,(K)
O,,(K), H K. Hence the corollary is satisfied with G the counterimage of
H, and [G’G] 3.

We shall now show by induction that the corollary in general is a conse-
quence of Theorem A. Let G be a group satisfying (A) which is a counter-
example of minimal order to the corollary. Then G will be insoluble, and
clearly O.(G) 1. Our aim will be to show that G is simple, and so no
counterexample.
Suppose first that G has a non-trivial soluble normal subgroup. Let H

be the maximal such subgroup. Then by inductive hypothesis, G/H is
isomorphic to one of the groups SL(2, 2a), a >_ 2, or PSL(2, 7). IfH has odd
order, either H is abelian or H has a normal abelian subgroup of index 3. If
H is abelian, H Z(G)’ since the groups listed have Schur multipliers which
are trivial or of order 2 [11], the extension splits, and there is no counter-
example. If H is non-abelian, let K be its normal abelian subgroup of index
3. Then K <:l G and [G:C(K)] 3 so that C(K) is insoluble with K its
naximal soluble normal subgroup. Then by the inductive hypothesis,
C(K) K X S with S simple and normal in G. Now H must centralise
some Sylow 3-subgroup T of S, and aa(K T) 6, contrary to hypothesis.
Now suppose that H has even order. Since O(H) 1, H has an abelian

subgroup K of odd order and index 2 in H, and CH(K) K. Now
[G:Ca(K)] 2 and, as above, Ca(K) splits over K with Ca(K) K X S
where S is simple and normal in G. With T a Sylow 3-subgroup of
S, aa(K X T) 4, contrary to hypothesis.
Thus, it may be assumed that G has no soluble normal subgroup. Let N

be a minimal normal subgroup. Then N is simple. By Theorem A, G N.
Thus N is isomorphic to one of the listed simple groups. If H Ca(N),
H<:I GandHnN 1. HenceH 1. ThusN GAutN, anditis
readily verified that no such group G can be found to satisfy (Aa).
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4. The Hall subgroups of a simple group
We now turn our attention to simple groups which satisfy the hypothesis

(A3) and, except in Section 5 where a more general situation will be consid-
ered, will let G be such a group for the remainder of this paper. The purpose
in this section is essentially to find the maximal odd order subgroups.

LEMMA 4.1. Let p be an odd prime divisor of lGI and let P be a Sylow p-
subgroup of G. Then

(i) C(P) N(P);
(ii) for any element g

C(e)(g) C(P) and. Ca(g) P.O,,(C(g));
and

(iii) if 31 G I, any element of G of order 3 is conjugate to its inverse.

Proof. By Lemma 3.2, P is abelian. By a transfer argument, an element
g of pa must be conjugate in G, and hence in N(P), to some other element of
P so that N(P) C(P). Since a(P) _< 3, the action of an element of N(P)
outside C(P) must then be fixed-point-free, so that Cr(e)(g) C(P). By
the Burnside transfer theorem, Co(g) must have a normal p-complement.
Finally, if p 3, a(P) 2 so that any element of a Sylow 3-subgroup is
conjugate to its inverse.

The main result of this section is the following, together with its corollary.

LEMMA 4.2. Let p be an odd prime divisor of G and let P be a Sylow p-
subgroup of G. Then there is a subgroup H of odd order containing P such that

(i) H is an abelian Hall subgroup of G;
(ii) a(H) 2or3;
(iii) if g Ha, C(m(g) C(H) and Ca(g) H.O(C(g) and
(iv) if a(H) 2, every cyclic subgroup of H is normal in N(H).

Proof. Put C(P) P X K where K is a p’-group. Certainly a(P) 2
or 3. Then if either K 1 or K is a 2-group, (i), (ii) and the first part of
(iii) are satisfied with H P by Lemma 4.1. Otherwise let Q be a Sylow
q-subgroup of K, q odd. By the Frattini argument,

N(P) C(P) .N(e)(Q)

thus there exists an element g in N(P)\C(P) such that g e N(Q). Then
No(P X Q) D_ (P, Q, g, N(Q)). Since a(P X Q) _< 3, this implies that
N(Q) C:(Q): thus K has a normal q-complement for each odd prime
divisor q of its order so that K LS where S O.(K) and L is abelian of
odd order. Since all complements of S in K are conjugate, Nm,)(L) C(P).
Let beaSylow q-subgroup of G containing Q. Then Co(Q) O.Oq,(C(Q)).
Since P

_
C(Q), we may suppose that Q N(P). if q >_ 5 or a(P) 2,

then(__.C(P) sothatQ (. Ifq 3anda(P) 3, thenN(P) hasa
normal 3-complement so that no two elements of Q can be conjugate in N(P),
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and hence in G by Proposition 2.1’ this is contrary to Lemma 4.1 (iii) so that
the situation cannot arise. Thus L is a Hall subgroup of G of odd order, and
we putH P L. Since NN(,) (L) C(P),N(H) C(H) so thatH
satisfies parts (i) and (ii) of the lemma, and any element of N(H)\C(H) acts
fixed-point-freely on P. By construction, H is a Hall 2’-subgroup of C(P),
and any two such subgroups are conjugate. Thus we may suppose that H is
the subgroup constructed in this manner as a Hall 2’-subgroup of C(Q) for
each Sylow subgroup Q of H. In particular, for each such Q, an element of
N(H)\C(H) acts fixed-point-freely on Q, and hence on H. Thus for any
element g e H, CN()(g) C(H).

In any case, there is a subgroup H of G satisfying parts (i) and (ii), and the
first half of (iii) of the lemma. Let be the set of prime divisors of H I.
N(H)/O,,(N(H)) is a Frobenius group and so, by Proposition 2.2, Ca(g)
H.O,,(C(g)) for any g e H. By construction, for each p e , C(P) HS,
where P is the Sylow p-subgroup of H and S 0(C(P)). Thus for g e H,
if r is an odd prime divisor of 10w, (C (g)) I, each Sylow subgroup of H must
normalise a Sylow r-subgroup of O,,(C(g)) but cannot centralise it. Thus
(iii) holds unless H is a 3-group and there is a Sylow r-subgroup R of 0, (C (g))
normalised, but not centralised, by H, with r odd. Now let H’ be a Hall 2’-
subgroup of C(/) where/ is a Sylow subgroup of G containing R. Then
3 H’ so that 3 C(R) by the above argument, contrary to the choice
of R in C (g). Thus (iii) always holds.

Finally, if a (H) 2, any element of N(H)\C(H) must invert every ele-
ment of H so that (iv) holds.

From (iii) it follows that H is a maximal abelian subgroup of odd order, and
also that every maximal abelian subgroup of odd order in G can be realised
in this manner. Thus as an immediate consequence we have

COROLLARY 4.2.1. The odd prime divisors of G form disjoint sets
r,, with n >_ 2, such that for each i,

G has an abelian Hall r-subgroup H and
(ii) if p r and p r i j, then G has no element of order p p

Proof. For the odd prime divisors of G I, define the relation p q if
and only if there are elements of orders p and q that commute. By (iii) this
is an equivalence relation, so let r, . be the equivalence classes and
H, ..., H the corresponding Hall subgroups that appear (one for each
class). If n 1, each element of H lies in a conjugacy class with 2" ele-
ments, denying simplicity of G by a result of Burnside [10, Lemma 4.3.2]"
thus n > 2.

5. The exceptional character theory
In this section a situation more general than that occurring under the

hypothesis (Aa) is considered. We shall use the Dade isometry [6] in order to
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generalise a result of Brauer [3, Theorems 9A and 9B], constructing a com-
plete set of exceptional characters corresponding to a Hall subgroup rather
than a Sylow subgroup. The methods are those of Felt: the non-linear char-
acters to be lifted are coherent. (See [9], especially pages 174-175.) How-
ever, we shall need the precise values of the exceptional characters and also
certain non-exceptional characters" these together will contain the principal
block for each prime divisor of the Hall subgroup. We shall then use a result
of Brauer and Tuan to show how these sets of characters may overlap for
different Hall subgroups.
The notation, except where defined here or earlier, follows [9].

LEMMX 5.1. Let G be a group in which, for a prime p, the centraliser of every
non-identity p-element has a normal p-complement. Then an irreducible char-
acter of G lies in Bo(p if and only if it is constant on p-sections, and non-zero
on at least one.

Proof. Let x be a non-identity p-element of G, and let y be a p-regular
element of C(x). Then if x is a character of G,

x(xy) dq(y),

where the {} are Brauer characters of C (x), {d} are generalised decomposi-
tion numbers, and the sum is restricted to those lying in blocks dominated
by the block of G containing x. In particular, Bo(G;p) dominates only
Bo(C(x);p), and Bo(C(x);p) has only one Brauer character, the principal
character 0, since C (x) has a normal p-complement.

If x e Bo(G;p), x cannot be zero on all p-singular elements. Suppose g is
a p-singular element with p-part x such that x(g) 0. Then for any p-
regular element y e C(x),

X(xy) d.0(y) d0,

and since x(g) 0, d0 0. In any case, x is necessarily constant on the
p-section S(x), and so constant on each p-section of G.

Conversely, if x is constant on p-sections, but not always zero, let x be a
non-identity p-element such that x(x) 0. Since x(xy) is constant as y
ranges over all p-regular elements of C(x),

X(xy) X(x)’qo(Y).

Since the generalised decomposition numbers are unique, d0 x(x), so that
x e Bo(G;p).

THEOREM 5.2. Let G be a group and H an abelian Hall r-subgroup of odd
order such that N(H)/0,,, (N(H) is a Frobenius group of order q H I, with
q >_ 2. Suppose either that q

_
4 or that H has at least one cyclic Sylow sub-

group. Then G has irreducible characters o 1, 1, - and x x,
where s HI 1)/q for which, if g is an element of G with non-identity
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r-part x H,
z(g) , 1-- 1,..., (q-- 1),

and
x(g) (x), j 1, ..., s,

where 1, q- :t:1, and ql , are the non-linear characters of
N(H) having O,,(N(H) in their kernel. If y is any r’-element of G, all
x(Y) are equal, and

1 - - z (y) ex(y).

In particular, must be such that ( 1 - - z(1) is positive.
Furthermore, for each p e r, Bo(G;p) consists of the characters o, q-

together with those characters x for which x(h) qe for all p-regular elements
heH.

Remark. The hypothesis on N(H) together with the restriction ensures
that N(H)/C(H) is cyclic. The set of all characters {i’z} LJ {x} will be de-
noted by B(H). If q < H] 1, the characters {x} are called exceplional,
and we denote this set by (H), and the characters {0, q-} are called
non-exceptional. If q {HI 1, the character xl is essentially indistin-
guishable from i’, q- in this case, all characters in B(H) will be called
non-exceptional.

Proof of Theorem 5.2. If q Hi 1, then H is necessarily cyclic of
prime order p, and the result is due to Brauer [1]" the characters in question
are precisely those of Bo(p). Indeed, if H is a p-group, the result follows
immediately from Theorem (9A) of [3] once it is shown that there is a complete
set of q non-exceptional characters. If q _< 4, this follows by direct computa-
tion" if q _> 5 and H is cyclic, it is a result of Dade [7, Theorem 1, part 1].
Thus we may suppose that H is not of prime power order. Let

s (IHI 1)/q, and let b0, ..., q_ be the linear characters of N(H)
and 1, "", , those of degree q, all having O,,(N(H)) in their kernel.
Since H must have at least two Sylow subgroups of orders at least (q - 1)
and (2q - 1) respectively,

(5.1) s>_ 2q+ 3.

Now ( -0) together with the set ( .) -.... ,, form a basis for
the module of integral combinations of 0, q-1,, , which vanish
on all r-regular elements of N(H). By Proposition 2.2 the conditions for
the application of the Dade isometry are met" denoting that map by., we
obtain the equations

I] (1 )* I1 2, j 2, ..., s,

and

j,] 2,..’,s, jk.
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Since ( )*(1) 0 for each j, there must be irreducible characters
x,

(j ,)* e(xj X,) (cf. (23.3) of [9]).

For each j 2, s, the Dade isometry also yields that

(( :)* ( )*) (( :,),(-)).< :.
Hence either

for non-zero integers n and irreducible characters {1 different from the
{x}, from which lineafity of the isometry yidds that

(5.2) (, : ,)* -0n
or

for integers and irreducible characters [ different from the xJ. How-
ever, we also have that

(5.4) 11 (,- :,)* Ii (,- I: ,)il-(-) q + 1.

Since (5.3) implies that

(5.5) II (- :,)* [[ s- 1,

(5.1), (5.4) nd (5.5) together give the inequality

qWl2q+2,

which is clearly impossible. Thus (5.2) must hold.
Now, for ech i, e Bo(N(H);p) for 11 p e . Since for ech such primo

p some e Bo(N(H);p) lso, result of Wong [15, Theorems 6 nd 7] implies
that each constituent of ( :$)* lies in Bo(G;p). Thus ech charac-
ter lies in Bo(G;p) and so, by Lemm 5.1, must be constant on each p-
section of G, for 11 p . By ssumption, Ix] 2. Thus "lying in the
smo p-section for some p e x" generates n equivalence relation under which
11 non-identity elements of H re equivalent. Hence

(5.6) ,(g) d, Z= 0, ..., r,

for all -sinr elements g G. In prticular, each d is rel. By (33.3)
of [9], for ny j,

(5.7) ((, : $,)*, ) ((, : $,),

for ny irreducible character of G which is constant on -sections. In
picular, we my put y 1 to obtain mtiplicity of -1" so put 0 1
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and n0 1.

since ,(z) d, for all elements of hr(H) for which

(- :7 ,)() o.
Hence for each l 1, ..., r,
(5.8)

as a consequence, each d, is a rational integer.
Since Bo(1V(H);p) implies that the corresponding x B((7;p), and,

by (5.2), all the characters xj have the same degree, no character x can vanish
on all p-singular elements. Also from (5.2), xj is constant on p-sections of
(7 for p r if and only if is constant on p-sections of N(H). Thus, by
Lemma 5.1, x B0(G;p) if and only if j B0(N(H);p) that is, if and only
if (h) q for all p-regular elements of H.
For any p r, if P is the Sylow p-subgroup ofH and I;l, Il are the char-

acters of B0(N(P);p) which take the same values as I} and those
in B(N(//) ;p) on H, then

Z;- ,)* Z;:o ,)*
where also denotes the Dade isometry for hr(P): that it may be applied
follows from Proposition 2.2. If (5.7) is applied with P in place of H, and v
a character of B0(G;p) which takes the same value (necessarily non-zero) on
all p-singular elements of (7, then

(( ’.,Z0 ;,)*, ) 0 (cf. derivation of (5.8)).

By (5.2), if P > q + 1, no distinct x and x in Bo(G;p) can be equal on all
p-singular elements: thus such a character is some ’ (or x ill P q -}- 1).
Hence, by Dade’s theorem on cyclic defect groups [7], if q >_ 5 and P is chosen
as a cyclic Sylow subgroup of H, we see that r (q 1) and

(5.9) n d :i:l,

If q <_ 4, since

[I (,- Z;:o ,)* [I +

/--0, ..., (/-- 1).

and (’i :o ,)*(1) O,

the same conclusion holds since 0 1.
It remains, therefore, only to show that the set of characters {x} take the

values prescribed in the theorem, and that the complete set of characters
B(H) contains Bo(G;p) for each p . From (5.2) and (5.9),
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hence for a ,r-singular element g S=(x), x e H,
x() () :,() + q ,’(),

and for -regular element y e G,

as reqred. Finay, since for any p e and any non-identity p-element
x eH,
: ,(x) + , x(x) ]2 q + , (x) [ IF l,

where P is a Sylow p-subgroup of H, and the set Jv indexes those x Bo(G;p)
and e Bo(N(H);p), and since the Cartan matx of Bo(C(x);p) is just
( Pi ), Bo(G;p) can contain no further characters.

a special case, we have"

CoRoxRv 5.2.1. If q 2, .
By restcting each character to H, and considering the multiplicity of the

pncipal character, we obtain the follong"

Coaoxr 5.2.2. For each 1,..., (q 1),

r,(x) a, (modlH[),
and for ch j 1, ..., s,

x(1) qe (rood HI ).

The inequality (5.1) v"
Coov 5.2.3. If{ 8(H) 6, th H is of prime per order.

Coaox 5.2.4. Let p be a prime not dividing H I. Suppose tt no
et ofH commutes with any element of order p. Th either the exceptial
cracers all li in ghe same p-block of G, or they lie in p-blocks of defect zero.

Proof. For any p-singar dement g G, p [C(g) [, so that if p is the
fl power of p diding G i, Pal [G:C(g)l. 1 exceptional characters have
the same degree: if the degree is sible by p’, all lie in blocks of defect zero.
Othese

e I/I c(a) I.x(a)/x(1) - 0 rood (j ], ..., s)

where g B any v-sinar dement, and is a prime ideal containing p in a
s&table algebraic number field. Since the exceptional characters take the
same valu on vcelar dements, they must all lie in the same p-block of
G [5, 85.12].

Coaov 5.2.5. Suppose that G is a mple grip with a bgrp H
satisfying the hypotsis of Theorem 5.2 with q 2. Th i] p and g is
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any non-identity p-element of G, every involution of G is conjugate to an involu-
tion in C* g lying outside C g

Proof. If y is an involution of G which does not satisfy the conclusion, g
can never be inverted by a conjugate of y. Thus, by Corollary 1 to Proposi-
tion 4 of [2],

o.
Hence, with J the indexing set as in the proof of the theorem,

so that

1 +/ti’(Y) ti((y) +/t)+ Z: 0.
’(1) (1) + it j,j

Evaluating (g) in N (H), we obtain the equation

1 -[-/tI(Y) it(’(y) - /})
0,’1(1) 1(1) -t- /t

or

(i’1(1) i’(Y) )/1(1)((1) -t- /t) 0.

Thus (y) (1), which is impossible in a simple group since i* is non-
principal: so the corollary holds.

Suppose now that a group G contains a Hall r-subgroup H and a Hall
-subgroup H, each satisfying the hypothesis of Theorem 5.2 with q q
and q q respectively, with
in G for any pl e r and p e r. Then a result of Brauer and Tuan applies
[4, (4.12)]: namely, for any p-singular element x and any p.-singular element
Y,

(5.10)

In particular, Bo(p) r Bo(p.) cannot consist of the principal character alone.
To apply this formula, we first make the following observation.

PROPOSITION 5.3. (H) (H.) is empty.

Proof. Suppose otherwise, and that v is a character of G in the intersection.
If x is another exceptional character for H, and x for H (m and x. not
necessarily distinct), then

for all r-singular elements g e G since no element of G can be both r-singular
and r.-singular. Since (y x) vanishes on all r-regular elements of G,

(/- m, x.)a (/- m, )a 1:
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this is clearly impossible since 7, x and x. are irreducible characters of G, and

Now if the number of exceptional characters for H1 exceeds q (or indeed
(q. 1) if H21 > (q + 1)), no such character can lie in B(H2), and simi-
larly for the exceptional characters for H.. Thus if q and q2 are given ex-
plicitly, there can be only a finite number of exceptions to what will be called

The natural situation. B(HI) n B(H2) consists of characters which are
non-exceptional for both H and H.
By examining the possible intersections, the following is easily verified.

PROPOSITION 5.4. Suppose that the natural situation occurs. If either q
or q2 does not exceed 3, B(H1) n B(H) consists of the principal character and
one other, say For g S(x), x H i 1, 2,

If one of q or q is 4, and the other not less, B(H) n B(H) will consist of either
two or four characters.

The remaining situations where an exceptional character for one Hall sub"
group is non-exceptional for the other will be called unnatural. More pre-
cisely, we say that an unnatural situation occurs between H and H if some
exceptional character for H lies in B(H.). It should be noted that, by The-
orem 5.2 and Corollary 5.2.4, this implies that 8(H1)

_
B(H), and also that

the definition is unsymmetrical in H and H. Indeed, the group PSL(2, 9)
is an example of where this lack of symmetry is necessary, taking HI[ 5
and HI 9. The definition does not preclude the possibility that some
non-principal non-exceptional character for H1 lies in B(H), either as an
exceptional or as a non-exceptional character.

Suppose that an unnatural situation occurs between H1 and H,.. In gen-
eral one can say little, except to point out that all the characters in (H)
will take the same value :t: 1 on all r-singular elements: hence, for any
g eH and g e H,
(5.11) x,s(-,) x(gx)x(g) --1.

Also, if H (q,. + 1) and S(H q, by Theorem 5.2

which is impossible since all characters in (H_) take the same values on 1
and also on g. Thus we have:

PROPOSITION 5.5. If an unnatural situation occurs between H and
then lS(H) < a(H). In particular, a(H.) >_ 3.

If a bound or an explicit value is known for q, then information can be
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obtained about HI since 8(H1) < q. In particular, if a bound for q is
known, then HI will be bounded. More can be said if q. <: 7: then by
Corollary 5.2.3, H is of prime power order. So far we have used only the
existence of characters as given by Theorem 5.2" using the full strength of the
hypothesis on N(H), it can be seen that with only a finite number of excep-
tions, HI is prime. We shall be concerned with small values for both ql
and q., and will need part of the following result.

PROPOSITION 5.6. With the situation as above, suppose that ql and q. are
at most 4. Then B(HI) B(H) (H) u o}, except possibly if q 4
and H.] 5, where o is the principal character. Also H has prime power
order.

Proof. ThatH has prime power order is shown above. Using the Brauer-
Tuan formula (5.10) and (5.11), it can be seen that if (H.) 9, then
(H.) n B(H) 0 sinceH andH are of coprime orders. Thus if

B(H) n B(H) (H1) u {to},
the other characters in B(H) n B(H) must be non-exceptional for both H1
and H.. By (5.10) and (5.11), there must be at least two such characters
so that B(H) has at least five characters non-exceptional for H. Thus
q,. 4andiHl 5.

In the situations to which these techniques will be applied, we shall have a
group G with a set of Hall subgroups H, H., any pair of which satisfy
these conditions, and a bound for a(H), i 1, n. The Brauer-Tuan
formula bounds the number of Hall subgroups which do not enter into un-
natural situations as the first partner" the number of Hall subgroups remaining
is also bounded since the order of each is bounded.

6. The case (A)
Let G be a simple group satisfying the hypothesis (A.). Then by Lemma

4.2 and its corollary, G has a set of maximal abelian Hall -subgroupsH,
H of coprime orders with n >_ 2, each of which satisfies the hypothesis of
Theorem 5.2 with q 2, and to any pair of which the discussion of the last
section applies. Then by Proposition 5.5, any pair give rise to a natural
situation. Thus, if i j, B(H) B(H) consists precisely of the principal
character and a non-principal non-exceptional character in B(H) and in
B(H), uniquely determined except in the case of a Hall subgroup of order 3.
This gives a very tight restriction o G.

LA 6.1. G has exactly two classes of maximal Hall subgroups of odd order.

Proof. Suppose otherwise, namely that n _> 3. Then we may suppose
thatlHl > 3and HI > 3. Let,’0 1 and let lbe the common non-
principal character of B(H) and B(H). For xl eH and x e H,

(xl) -l(x:) =hl
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TABLE

X1

1(1) +

-1

2-element x

(x) + i

by Proposition 5.4. If Ha is a third Hall subgroup,

B(H1) n B(H3) B(H.) n B(H3)

Since for x3 eH we must have

l(x) =-(x3) and (x.)

no such third Hall subgroup can exist.

Thus G has two non-conjugate Hall subgroups H1 and H2. Again let

B(H) n B(H2) {0, i},

and let the remaining characters of B(H) be /x, "", xs} and of B(H.)
be Ira, "", vt}. Without loss, it may be assumed that, for xl eH and
x eH

"(x) -(x)= +1.
Since ny odd prime divisor of lG lies in either r or r., uny non-identity
element of G which is both -regular and r-regular must be 2-element.
Then Theorem 5.2 yields the prt of the chumcter tble of G shown in Tble 1.
Here s 1/2( [HI[ 1), o, o re the non-linear characters of N(H)
that appear in the statement of Theorem 5.2, nd t, , t are similarly
defined for H..

Let[G[ 2a. IHl.lH2[.
LA 6.2. For some positive integer n, (1) 2, Hl[ 2 1, and

IH I 1.

Proof. By Corollary 5.2.2,

’1(1) 1 (mod[H[) and "(1) -1 (modlH.[)"
since (1) G I, it follows that (1) 2" for some positive integer n _< a.



For each i 1,
thus

s, the character x vanishes on all r.-singular elements"

Hence x(1) is divisible by H2 [. On the other hand, since x(1) ’1(1) + 1,
x(1) is odd. Also, by Corollary 5.2.2,

x(1) - 2 (modlHll).
Thus

x,(1) {H{ 2 + 1.

Similarly, {H.} divides v’(1), j 1, ..., t, and

hence
vx(1) -2 (modlH:l):

v’(1) }H {= 2- 1.

LEMMA 6.3. G is a CIT-group.

Proof. Since G has an irreducible character of degree {H1 {, Ca(H) has
odd order by Proposition 2.3. Thus, by Lemma 4.2, Na(H) H (x) for
some involution x, and C:(x) 1. Also, if g is a non-identity element of
H of prime power order, C*(g) O.(C(g)).H: (x). By Proposition 2.4,
all involutions in C*(g) lying outside C(g) (= O(C(g)).H:) are conjugate.
Any involution of G is conjugate to such an involution by Corollary 5.2.5"
thus all involutions in G are conjugate.

Let y be any involution in G. Then y e Z(S) for some Sylow 2-subgroup
S of G. Let h IGI/iC(y)I. Then h{ (2"+ 1)(2 1). Since
h ,(y)/i’(1) must be an algebraic integer, 2" ’l(y). Thus, as G is simple,
i’(y) 0. The same observation applied to the characters m and now
shows that(2+ 1) handthat(2- 1){h. Thus{C(y) 2%

The additional information that is available now permits a short proof of
the isomorphism of G with SL(2, 2a).

LEMMA6.4. {G{ 2a(2-{- 1)(2- 1).

Proof. For any g e H, we now have Ca(g) H. Since

t0(g) -t- ’(g) + :- x,(g) } {H {,
all other characters of G vanish on g. Thus we may compute the number of
ways in which g may be expressed as the product of two involutions to obtain
the equation

it(v)} :+_2:/={c(e){= -:,

where y is an involution, since the previous lemma showed that i’(Y) 0.
Thus

2(2"- 1)(2" + 1)(1- 1/(2" + 1)) 2(2- 1):
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hence

COROLLARY.

Proof. Since

1 q- (1) -{- :- X,(1) q- .- (1) 2(2 1),

G can have no further characters, and so can have only one class of 2-elements.
Thus S is elementary abelian, all involutions must be conjugate ia N(S),
and so N(S 2"(2 1).

We now obtain the isomorphism by letting G act as a permutation group on
the conjugates of S (cf. [8]). Since there are (2 q- 1) conjugates, G must be
doubly transitive since clearly no two Sylow 2-subgroups can intersect non-
trivially. The corresponding permutation character must be (i’0 -t- i’) so
that no non-identity element fixes more than two points. Thus G is a Zassen-
haus group. Furthermore, the group order shows that G must be sharply
triply transitive, and the fundamental classification of such groups by Zas-
senhaus [16] establishes the isomorphism.

7. The case a(H) 3 for some H
Let H, H, be representatives of the classes of maximal abelian Hall

subgroups of odd order as given by Lemma 4.2. Then, in view of the last
section, we may assume that a(H) 3 for one of them. Thus another,
H’, has order divisible by 3 so that a(H’) 2. Thus this condition holds
for at least one of the Hall subgroups H, H.. For the remainder of
the proof, all references will be to this set of n subgroups.

LEMMA 7.1. For no pair of Hall subgroups can an unnatural situation arise.

Proof. Suppose that one does, and that H and H are such that (H)
B(H). By Proposition 5.5, a(H.) 3 and I(H) 2. Thus either
HI 5 or HI 7, so that 3 divides neither H! nor H i. Let Ha be

the Hall subgroup whose order is divisible by 3. Then a(Ha) 2, and natural
situations must occur both between H and Ha, and between H. and H.
Now some non-principal non-exceptional character in B(H.) lies in B(Ha)"
however, this character lies in (H), contradicting the assertion of a natural
situation between H and Ha.
LEMMA 7.2. Precisely one of the Hall subgroups satisfies a(H) 2.

Proof. Certainly there is at least one, namely that of order divisible by 3.
Let this be H, and suppose that H. is a second Hall subgroup with a(H) 2,
and Ha one with a(Ha) 3. Then H 3 so that B(H) contains a unique
non-principal non-exceptional character . Since no unnatural situations
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occur,
B(H) n B(H.) and ,_ . B(H) n B(Ha).

Furthermore, by Proposition 5.4,

B(H) n B(H) B(H.) n B(Ha) B(H) n B(H) {i’0, fll
where % 1, and for x e H, i 1, 2, 3,

r1(xl) --f(x.)= 4-1,

i’(xs) --l’(x)= 4-1,

a set of equations impossible to satisfy.
with a(H) 2.

Thus H1 is the only Hall subgroup

For the remainder of the proof, H will denote this Hall subgroup.

LEMMA 7.3. Precisely one of the Hall subgroups satisfies a(H) 3.

Proof. Suppose that there is more than one such Hall subgroup. If
H > 3, there is a unique non-principal non-exceptional character in B(H),
and a contradiction will occur exactly as in the previous lemma. Thus we
may assume that HI 3. Let B(H1) {f0, f, f} where f0 1. The
same argument shows that if H and Hj are distinct Hall subgroups, different
from H,

B(H) n B(H,) n B(H)

Thus there are at most two Hall subgroups other than H1.
there are two, H and Ha, that

Suppose that

B(H) n B(H.) {o, B(H) n B(Hs) {’o, ’},
and that fa is the non-principal character in B(H) n B(Ha). Then Theorem
5.2 yields the part of the character table of G shown in Table 2. Here,
a,/, , e 4-1, a and so as to make the degrees positive,

{Xl,’",X,} (H) and {/,...,/} 8(H,),

and {1 and {j} are the corresponding characters of N’(H.) and N(Ha)
respectively.
By Corollary 5.2.2, @ 1 - -.(1) =- 1 (rood 3) thus 3 divides all of

a(1), x(1) and (1) }, or none. Suppose none: then by Corollaries
4.2.1 and 5.2.4, all the characters {x} lie in the same 3-block, as do all the
characters n}. Since either s > 3 or > 3 but 9 ( G I, this is impossible
since a 3-block of defect 1 will contain precisely three characters [1, Lemma 6
and Theorem 21. Thus all the characters , {x} and } have degree divisi-
ble by 3. Furthermore, Corollary 5.2.2 and similar computations yield the
following congruences, where h. H! and ha
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TA 2

X1

o(1 + ’1(1) + e’8(1)) (x)

’x(1) m- (3), (h), 0 (ha);

’.(1) (3), 0 (), - (ha);

a(1) 0 (3), e (h), -e (ha);

x,(1) 0 (3), 3a (h.), 0 (ha);

n(1) m 0 (3), 0 (h.), 3 (ha).

Also, from Theorem 5.2,

(7.1) 1 8(1) + (1) 0.

Thus one of and i’. has odd degree, and the other even" we may suppose that
iq(1) is odd. Since H, H and Ha are a complete set of non-conjugate odd
Hall subgroups, GI 2.3.h. ha. The above congruences now give the
following degrees since each must divide G

(1) ha, (1) 2h., a(1) 2".3,

x(1) 2".3.h and (1) 2a.3.h,
where m, n, a, b are non-negative integers, and m _> 1. Furthermore, since
a(Ha) 3, ha 1 (3) so that -1.
Suppose first that n _> 1. Then x has even degree and v odd, so that

a > landb 0. Thus

and
a(1 ha + e.2’3) 2’3.ha,

(1 + 2h.- e.2.3) 3h.,

a,n >_ 1,

m,n>_ 1.
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Also, from (7.1),
1 A- ha- 2h 0"

in particular,

(7.2) ha > h.

On the other hand, these three equations yield

21 h+.2 3 a. 3 h and 2+h- 2" 3 3h
thus

3 3(h -t- a. 2ha).
Hence

h. A- a. 2ha 1,

so that, as a > 1, h2 > ha, contrary to (7.2).
So we may assume that a(1) 3. This time x has odd degree and /

even so that the degree equation for x is

a(1 ha A- 3) 3ha.
Hence

(3 -4- a)ha a(1 A- 3).

Since this implies that ha _< 2 which is clearly impossible, the lemma is estab-
lished.

Let H. be the Hall subgroup with a(H) 3. Let h H[ and h
H. I. Then G 2h h for some positive integer a. Since no unnatural

situation occurs, B(H) and B(H.) give rise to the portion of the character
table of G indicated in Table 3. In this table, a, , -1 with a such that
x(1) is positive, {x, "", x,} 8(H), and {0, ..., } are the excep-
tional characters for H if they exist" otherwise r 1 and h 3. The sets

TABLE 3

2

X1

g S,. (x,.) x H
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{i} and {j} are the appropriate non-linear characters of N(H2) and N(H1)
respectively. It should be noted that the characters ’ and {x} are not neces-
sarily constant on rl-sections since they do not lie in Bo(p) for any p e r.

By Corollary 5.2.2, the following congruences hold:

i’,(1) (h), - (h);

=(1) (h);
(7.3)

x(1) 3a (h);

0(1) 26 (h), 0 (h).
Thus

(7.4)

and

(7.5)

LEMMA 7.4.

for some positive integer n,

0(1) (1) + h..

Either or all the characters {x} have degree dividing h.

Proof. x(1) a(1 . 2 + e(1) )" thus one of and x has odd degree.
Since 3 h, both have degree coprime to h by the congruences (7.3) so
that one of them satisfies the conclusion of the lemma.

LMMX 7.5. All involutis in G are cjugate. G is a CIT-group, and
(1) 2.

Proof. By Lemma 7.4 and Proposition 2.3, no involution can centralise
Hx ’thus, as in the proof of Lemma 6.3, all involutions in G are conjugate.
We claim that for some element g H, Co(g) H. For suppose other-

se. Then eve element of H has centraliser of even order so that an
involution y of G centralises a conjugate of every cyclic subgroup of Hx.
Each such cyclic subgroup is normal in N(H)" thus, by Proposition 2.2, y
centralises some conjugate of H, contrary to the assertion at the beaning of
this proof. Now, for such an element g,

1% % - (w(g) ) h ]Co(g)m,

so that any character of G outside B(H) vashes on g. Thus we may com-
pute the number of ways in which g may be written as the product of two
involutions since this is just h, as C*(g) N(H), to obtain the equation

,C(y),G,(’
(Y)’
(1)

((Y) )’
1 (g) hi,(1) + -where y is any involution. Putting C(y) 2h h and using (7.4) and

(7.5), ts equation reduces to

2a .2 .22 hx h 2"h
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or

(7.6) (2

Since G is simple and
2"+ and, in particular, 2’+z does not divide (2" (y)). Thus the only
solution to equation (7.6), since a n, is ven by

(y) 0, a =n, h* h 1"

in particular, G is a CIT-group, and (1) 2.
As in Section 6, an appeal to Suzuki’s classification would complete the

proof, bu we already have a ve tight arithmetic grip that allows an easy
conclusion. As an immediate consequence of the last lemma, we have

CooeY. is a cracter of 2-defect zero.

Thus z vanish on all elements of G not conjugate to an element of either
Hz or H. Using the orthogonality relation o,a (g) G , it follows
that

Hence

or

a-12+2 h,.(h-- 1)-2h(h- 1)/3 2hh,.,

2+ h h 1/2hh.

Since h, 2 - by (7.5),

2- 1/2h(2"--2).
Thus

(7.7) -1 and h 3.

From the congruences (7.3) and Lemma 7.4, it follows that ;(1) 3 and
a 1 so that the degree equation for x becomes

1 -t- 2-t ’2(1) 3.

Thus 1. Again by (7.3),

2- 1 ,(1) =- 0 (mod3):

hence ,.(1) 2. 3 for some positive integer m. Then

2 + a(2 + 1).

Thus a 3 so that G] 168, and hence G is isomorphic to PSL(2, 7).
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