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1. Introduction

Let Mn be a complete Riemannian manifold, of dimension n, with Ricci
curvature bounded below by -(n 1)c, c > 0. Suppose that f is a domain,
with smooth boundary, contained in M. We consider the Laplacian A d*d
acting on L2f with Dirichlet boundary conditions. If f is relatively compact,
then A has pure point spectrum. This means that there exists an orthonormal
basis of L2 consisting of eigenfunctions of A. Moreover, all eigenvalues are
isolated and have finite multiplicity.
Our primary interest will be with noncompact domains f. In this case, the

Laplacian may have essential spectrum. Recall that the essential spectrum
consists of cluster points of the spectrum and eigenvalues of infinite multiplic-
ity. Suppose that d(x) is the distance from x to the boundary0 of f. If
there exists a sequence xi, eventually leaving every compact set, with d(xi) > e,
for some e > 0, then A has essential spectrum in L2f. This assertion will be
verified in Section 2.
Now assume that d(x) approaches zero as x approaches infinity. More

precisely, given e > 0, there exists a compact set C with d(x) < e for
x f C. Let Sx be the set of points y M f with d(x, y) < ad(x), for
a fixed constant a > 1. We say that 0f is suitably regular if Vol(Sx), the
volume of S, is bounded below by a constant multiple of d"(x). This
represents uniform boundary regularity in a rather generalized sense. In
Section 4, we suppose that 0f is suitably regular and that d(x) approaches
zero as x approaches infinity. Under these hypotheses, we prove that A has
pure point spectrum.

If Mn is the Euclidean space R", the results of this paper are well-known
[5], [8]. Some new methods are required to prove our theorems for complete
Riemannian manifolds. For this purpose, we develop the machinery of [1], [2].
The author thanks C. Croke for helpful discussions concerning his work.

2. Essential specmun

Let be a noncompact domain contained in a complete Riemannian
manifold M, whose Ricci curvature is bounded below by -(n 1)c, c > 0.
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One imposes Dirichlet boundary conditions on the Laplacian A of f. There is
a simple geometric criterion which assures that A has essential spectrum:

THEOREM 2.1. Suppose there exists a sequence x, eventually leaving every
compact set, with d(xi) > e, for some e > O. Then A has non-empty essential
spectrum.

Proof. By hypothesis, contains an infinite number of disjoint geodesic
balls B of radius e. Let D(c, e) be the standard ball of radius e in the simply
connected complete space of constant curvature -c. If h denotes the first
eigenvalue of A with Dirichlet boundary conditions, then Cheng [4] proved
that ,I(Bj) < kl(D(c e)), for all j. Since the By are disjoint, our conclusion
follows from the minimax principle.
The special case M--- f was established by a similar argument in [6]. The

converse to Theorem 2.1 is more subtle. It will be treated presently.

3. Lower bounds on compact domains

Suppose that is a relatively compact domain in a complete Riemannian
manifold M. The Laplacian A acts on L2 with Dirichlet boundary condi-
tions. We develop the method of [1], [2] to give a lower bound for the positive
operator A.

Let r: U---, be the unit sphere bundle with its canonical measure. If
o U, then t(v) denotes the geodesic flow on U. The symbol l(o) will be
the smallest value of such that r(t(o)) lies in , the boundary of . If
,r(t(v)) never reaches , then we set 1(o)= 00. Let U be the subset of
v U where 1(-v) is finite.
For p 0, the symbol N will denote the inward pointing normal vector.

Define U/0 as the bundle Of inwardly pointing unit vectors. The following
basic formula is well known [1]"

Here f is any integrable function.
If n is the dimension of M, let a(n 1) be the volume of the unit n 1

sphere. For x , define

,,
f,, do (3.2)h(x) 4ot(n- 1) -l(x)12(v)

If l(v)= oo, then we interpret 1-2(0)----0. The infimum of h(x), over all
x , will be denoted by h 0.
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Our main result for this section is:

THEOREM 3.3. The operator A h, acting on L2 with Dirichlet boundary
conditions, is positive semi-definite.

Proof. For f C(), one has

ivf(x)l= n (of )2 do.a(n 1)

Consequently

n 2Ivf(x) 12 dx >_
a(n 1) of) do

Using formula (3.1),

IVfl dx >_
a(n- 1) +o

(u, N(u)) dt du.

Since f vanishes on 0, we may apply Lemma 6.1 to the interior integral:

f Ix7fl 2 dx >
n

4a(n 1) 0 fo’(U) dt du.

Applying (3.1) again,

f Ix7fl 2 dx 4a(n 1) (v)l- (-v) dv.

Since f(v) f(rv), we may integrate over the fiber to obtain

f Ivfl 2 dx feh(x)f2(oc) dx >_ O.

Theorem 3.3 now follows from the minimax principle. Using the spectral
theorem, we deduce:

COROLLARY 3.4. The first eigenoalue of A, acting with Dirichlet boundary
conditions, is greater than or equal to h o.

It may be interesting to compare Corollary 3.4 with the corresponding result
in [1],[2]. Our main improvement is to eliminate the hypothesis that every
geodesic in intersects . The point is that Lemma 6.1 only requires the
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vanishing of f at one endpoint, that is f(0) 0. Croke used a one dimensional
lemma which demanded vanishing at both endpoints.

4. Pure point spectrum

Suppose that f is a noncompact domain in a complete Riemannian
manifold Mn, with Ricci curvature bounded from below by -(n 1)c. We
consider the Laplacian A, acting on L2f], with Dirichlet boundary conditions.
The purpose of this section is to provide geometric criteria which insure that A
has pure point spectrum.

Let d(x) be the distance from x f] to Off, the boundary of f. We assume
that d(x) approaches zero as x leaves sufficiently large compact sets. In
addition, we impose the following condition"

DEFINITION 4.1. If X fl, then define S to be the set of points y M f
with d(x, y)< ad(x), for a fixed c.onstant a > 1. We say that f has
sufficiently regular boundary if Vol(Sx) > Aldn(x). Here d(x, y) is the geo-
desic distance from x to y and Vol(Sx) is the volume of S. The symbol A1
denotes a positive constant.

Suppose h(x, f) is defined as in formula (3.2). Using our geometric hy-
potheses, we may deduce:

PROPOSITION 4.2. h(x, ) > A2d-2(x)

Proof. Choose geodesic polar coordinates (t, 0) centered at x. Since the
Ricci curvature of M is bounded below by -(n- 1)c, we may apply the
volume comparison theorem:

<_ A3dn(x) Vol((x, ad))
Here U-(x, ad) is the portion of r-l(x) with l(-v) < ad(x). Since
is sufficiently regular, Vol(Sx)> Ad"(x), we deduce that Vol(U(x, ad))
A/A3.

Furthermore,
n Vol((x, ad))a-2d-2(x) > A2d-2(x)4ot(n- 1)

We now proceed to our main result:

THEOREM 4.3. Suppose that d(x) approaches zero as x approaches infinity
and O f is sufficiently regular. Then the Laplacian A, acting on LZf with
Dirichlet boundary .conditions, has pure point spectrum.
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Proof. Let C be a compact set in M and suppose that f] C is a domain
with smooth boundary. Consider a relatively compact domain contained in
t2- C. It follows easily from the definitions that h(x, )> h(x,f]). By
Proposition 4.2, h(x, ) > A2d-2(x). Therefore h0() > inf(A2d-2(x)),
where the infimum is for x f] C.
By Corollary 3.4, the first eigenvalue of is greater than or equal to

inf(A2d-2(x)), x f C. The minimax principle implies that the spectrum
of A, with Dirichlet boundary conditions in L2(f] C), is bounded below by
inf(A2d-2(x)), x f]- C. Since d(x) approaches zero as x approaches
infinity, our conclusion now follows from the decomposition principle [6].
The criterion of sufficiently regular boundary is readily verified in various

geometric situations. As an illustration, suppose that M has bounded geome-
try. This means that the curvature of M is bounded and its injectivity radius is
bounded from below. For each Z Of], assume there is a ball B(y, 3’) c M

fl, centered at y with radius 3’, and tangent to O f at z. The constant 3’ is
independent of z. Under these circumstances, we say that O f admits tangen-
tial balls.

PROPOSITION 4.4. Assume that d(x) approaches zero as x approaches
infinity. IfM has bounded geometry and f admits tangential balls, then 0 f is
sufficiently regular.

Proof. Let x fl with d(x) sufficiently small. This only excludes x from
some compact set. Suppose that z is a contact point, on O f, for a geodesic of
minimum length d(x), from x to f. Assume that B(y, 3’) c M f is
tangent to 0f at z. Let w M f lie on a minimizing geodesic from z to y
and satisfy

d(w, z) (ix 1)d(x)/2,

for a fixed constant a > 1. By the triangle inequality

B(w, (- 1)d(x)/2) c B(y, 3").

Using the triangle inequality again gives

Sx D B(w, (a- 1)d(x)/2).

Since M has bounded geometry, and d(x) approaches zero as x approaches
infinity, Vol(S,) > Aldn(x). Thus f] is sufficiently regular.

5. Trace dass heat kernel

Assume that fl is a noncompact domain which satisfies the hypotheses of
Theorem 4.3. We have shown that the Laplacian A has pure point spectrum.
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Under additional conditions, our methods lead to a stronger result. One may
show that the heat kernel is trace class and give an upper bound for its trace.

Define g(x) A2d-2(x), where A2 is the constant of Proposition 4.2. Then
one has:

PROPOSITION 5.1. The operator A- g(x), acting on L2f with Dirichlet
boundary conditions, is positive semidefinite.

Proof. Let be any relatively compact subdomain of f. Clearly h(x, )
> h(x, ). It follows from Theorem 3.3 and Proposition 4.2 that A- g(x),
acting on L2 with Dirichlet boundary conditions, is positive semi-definite.
Since is arbitrary, Proposition 5.1 follows from the minimax principle.

Consider the heat operator e-ta of . This operator is positively improving.
Therefore, its trace is well-defined as an extended real number. By Proposition
5.1, A > A/2 + g/2, meaning that the difference is positive definite. Using the
spectral theorem,

Tr(e-’a) < Tr( e-,a/2-,,/2).

By the inequality of [9], this implies that

Tr( e-tA ) __< Tr( e-’g/4e-,a/2e- ,g/4)

The same argument shows that (5.2) is valid for any compact subdomain
of .

Suppose that M has bounded geometry. We may state:

THEOREM 5.3. Let [2 be a noncompact domain in a manifold M having
bounded geometry. Assume that f satisfies the hypotheses of Theorem 4.3. Then

Tr(e-ta ) < Bit-n/2 ffle-tg(x)/2 dx.

If the integral converges, this means that e-tA is trace class.

Proof Let K(t, x, y) be the smoothing kernel representing e-ta. Duha-
mel’s principle implies that K is less than or equal to the heat kernel of M.
Since M has bounded geometry [3],

K(t, x, x) < B1t-n/2,

where B is independent of x. Applying formula (5.2) to compact domains ,
contained in f, shows that Tr(e-/a) is uniformly bounded above by the
integral of Theorem 5.3. Using the minimax principal, the main result follows.
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6. Appendix

The purpose of this appendix is to establish the following elementary result
in one real variable"

LEMMA 6.1. Let f be a continuously differentiable function vanishing at zero.
For any real number a > O,

So l ff2 -2(f’(x))2 dx > (x)x dx.

Proof. Define g(x) x-1/2f(x). Calculating g’(x) using the product rule,
we check that

f’(x) xl/2g’(x) + x-If(x)/2.
Taking the square of each side gives

>_ +
Integrating from 0 to a yields

>_ x-7 (x +

Here we used the hypothesis that f is a differentiable function with f(O) 0.
The lemma follows since g(a) > O.
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