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WEAK CONCENTRATION POINTS FOR MBIUS GROUPS

DARRYL McCULLOUGH

0. Introduction

Although the limit sets of discrete groups of M6bius transformations have
been studied for many decades, there are some very natural dynamical
properties of limit points which have not been previously examined. In this
paper, we use geometric and topological methods to study one of these,
which we call the property of being a weak concentration point. Stronger
concentration conditions are treated in [A-H-M] and [M1]. In [A-H-M], the
limit points satisfying a certain strong concentration condition are character-
ized in several ways, each analogous to a classical characterization of conical
limit points. This condition is strictly stronger than being a conical limit
point, although for a large class of groups the points satisfying it have full
measure in the conical limit set. In [M1], an intermediate concentration
condition is found which is exactly equivalent, for finitely generated Fuchsian
groups, to the property of being a conical limit point.
Weak concentration is the simplest and perhaps most natural of the

concentration conditions. To fix notation, let F be a nonelementary discrete
group of hyperbolic isometries acting on the Poincar6 disc Dm, rn > 2, and
let p ODrn be a limit point of F. By a neighborhood of p, we will always
mean an open neighborhood of p in tgDm.

DEFINITION. An open set U in ODm can be concentrated at p if for every
neighborhood V of p, there exists an element y F such that p T(U) and
,(u)

__
v.

Equivalently, U can be concentrated at p if and only if the set of translates
of U contains a local basis for the topology of 0D" at p. As we show in
Theorem 1.1, every limit point of F has a disconnected neighborhood which
can be concentrated. Therefore we restrict attention to concentration of
connected neighborhoods.

DEFINITION. The limit point p is called a weak concentration point for F
if there exists a connected open set U that can be concentrated at p.
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In 2, we prove that in dimension rn 2, a limit point fails to be a weak
concentration point if and only if it is an endpoint of a component of the
domain of discontinuity (in gD2) which has finite stabilizer. In higher dimen-
sions, we do not achieve a complete characterization, but we do obtain some
sufficient conditions. An easy observation, Theorem 3.1, shows that every
conical limit point is a weak concentration point, and a more elaborate
argument given as Theorem 3.2 shows that if the .limit set approaches a point
from two different tangential directions in tgDm (see 3 for precise defini-
tions) then it is a weak concentration point. In particular, every parabolic
fixed point in a weak concentration point. Since all limit points of a geometri-
cally finite group are either conical limit points or parabolic fixed points, this
shows that every limit point of a geometrically finite group must be a weak
concentration point. For groups of the first kind, every limit point is ap-
proached from all directions by the limit set, and hence is a weak concentra-
tion point.

In 4 we prove that any subset of tgDm approaches all but countably of its
points from some pair of antipodal directions. Consequently, any group has
at most countably many limit points that are not weak concentration points.
An alternative definition of weak concentration point would be that there

exists a round ball whose set of translates contains a neighborhood basis for
p. Conceivably, this may be more restrictive, but the arguments of Theorems
3.1 and 3.2 provide round neighborhoods that can be concentrated. There-
fore the statements of Corollaries 3.3, 3.4, 3.5, and Theorem 3.6 hold as
stated even with this alternative definition, and changing the definition could
affect at most a countable set of limit points.
We assume familiarity with the basic theory of M6bius groups as presented

in [B] or [A2]. A M6bius group is called elementary when its limit set
contains at most two points. We generally assume that the groups called F in
this paper are nonelementary, although some of the statements happen to be
true for elementary groups as well. Of particular importance is the following
result, proven on pp. 97-98 of [B] and on p. 74 of [A2].

DOUBLE DENSITY THEOREM. Let F be a nonelementary group of MiSbius

transformations of ODm, and let U and U2 be open sets both meeting the limit
of F. Then there exists a loxodromic element of F with a fixed point in U and
a fixed point in U2.

I am grateful to Sungbok Hong for many useful discussions.

1. Concentration of disconnected neighborhoods

THEOREM 1.1. Let F be a nonelementary discrete group of hyperbolic
isometries acting on the Poincard disc Dm, m >_ 2, and let p 3Dm be a limit
point of F. Then there exists an open set which can be concentrated at p.



626 DARRYL MCCULLOUGH

Proof. Let U0 be a neighborhood of p in 0D’ whose closure does not
contain the entire limit set. Choose a decreasing sequence of neighborhoods
Uo

___
W1

___
W2

_
W3

_
of p whose diameters limit to 0. Let qk, 1 < k <

be a sequence of distinct limit points which form a discrete subset of ODm,
and which are disjoint from the closure of Uo. Choose pairwise disjoint
neighborhoods Vk of the qk which are disjoint from Uo.
By the Double Density Theorem, there exists a loxodromic element of F

whose repelling fixed point is in V {ql} and whose attracting fixed point is
in W {p}. Since the repelling fixed point is not in the closure of the set of
all q, we may choose a sufficiently large power 3’1 of this element so that
’}/l(U0) W and

(1) for all k >_ 1, ’l(qk) W1, and
(2) T-l(p) Y1.

Now choose a neighborhood U so that

(3) y-l(p) U V1, and
(4) ,Yl(U1) W1.

Inductively, suppose that for all j < n, there have been selected elements
yj F so that

(1’) for 1 < j < n and all k > 1, Tj(qk) Wi, and
(2’) for 1 < j < n, y-l(p) .,

and neighborhoods U. so that

(3’) for all 1 < j < n, yl(p) U.
_ ., and

(4’) for all 1 < j < n and 0 < k < n, yj(Ue)
_
W.

By the Double Density Theorem, there exists a loxodromic element of F
whose repelling fixed point is in

Vn+ /-I(w1) f’ 1(W2) 1"3 ’n-l(Wn) {qn+l}

and whose attracting fixed point is in Wn+
large power of this element so that

{p}. Let "Yn+l be a sufficiently

(a) for all k > 1, Yn + (qk) Wn + 1, and
(b) T-+ll(p) e Vn+ 0 ,)/a(Wl) 0 ("1 -l(Wn).

Additionally, we may require that

(c) for 0 _< k < n, y,,+ l(Uk) __. Wn+ 1.
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Now choose a neighborhood Un+ SO that

(d) -1 c Vn+Tn+l(P) Wn+l CI ,),-I(w1) (’1 T-I(w2) ("1 CI Tn-l(Wn), and
(e) "n+ l(Wn+ l) c_ Wn+ 1.

This completes the inductive construction. Let U be the union of all Uk for
k > 0. Suppose V is any neighborhood of p. Then there is some Wm
contained in V. By (4’), Tm(U)

_
Wm, and by (Y), p Tm(U). This completes

the proof.

2. Weak concentration points for Fuchsian groups

For Fuchsian groups, we can give a complete characterization of weak
concentration points.

THEOREM 2.1. Let F be a nonelementary discrete group ofMObius transfor-
mations of DE, and let p be a limit point of F. Then p is a weak concentration
point if and only if p is not an endpoint of an interval of discontinuity of F
which has finite stabilizer.

Proof Suppose that U is a connected neighborhood of p that can be
concentrated at p. Obviously U is not the entire circle OD2, so U is an
interval (Za, z2)which can be concentrated into arbitrarily small neighbor-
hoods of p. It follows that on each of the two sides of p, either the orbit of
z or of z2 must limit to p. Therefore p cannot be the endpoint of an
interval of discontinuity with finite stabilizer.
Suppose now that p is not an endpoint of an interval of discontinuity with

trivial stabilizer. If p is an endpoint of an interval of discontinuity, then p is
an endpoint of the axis of a hyperbolic isometry in F, and it is clear that p is
a weak concentration point. So we may assume that for every interval
neighborhood J of p, both components of jm{p} contain limit points; i.e.,
the limit set approaches p "from both directions."
We will now work in the upper half-plane model, with p equal to the point

at infinity. We will find a positive real number r and loxodromic elements
Yy F satisfying

(a) Ty() are negative real numbers with lim yy() , and
(b) y(r) are positive real numbers with lim y(r) .

Then, the interval (r, o) can be concentrated at
Since the limit set approaches from both directions, the Double Density

Theorem implies that there is a hyperbolic isometry Y F whose attracting
fixed point is a real number less than -1 and whose repelling fixed point is
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greater than 1. Choose a limit point r with 1 < r < y1(oo); since oo is a
limit point from both directions, we may choose r close enough to y-1(oo) so
that ),l(r1) > 1. Let U0 OD2 and choose a neighborhood U of r1, with
compact closure in R, such that for any s U1, 3’1(s) lies within distance 1 of
Tl(rl).

Inductively, suppose that limit points r, hyperbolic elements / F, 1 <
k _< n, and neighborhoods U, o r, have been constructed with the following
properties:

(1) For 1 <_ k <_ n, Yk(rk) is greater than k and yk(OO) is less than -k.
(2) kk-----Uk-1, and for every s Uk, Yk(S) lies within a distance 1 of

"Yk(rk ).

By the Double Density Theorem, there is a hyperbolic isometry in F whose
attracting fixed point is a real number less than -n 1 and whose repelling
fixed point is contained in Un. Choose a large positive power yn+ of this
element so that yn-+11(oo) lies in U. Since the limit set approaches oo from the
positive numbers, there is a limit point rn+ " Un with r,+ < 7-+11(0) and
close enough to yn-+xl(oO) so that y+ x(rn+ 1) > n + 1. Finally, we choose a
neighborhood U/ of G/ with U/ c_ U and so that for any s U/ 1,

Yn+ 1(s) lies within distance 1 of Yn/ x(rn+ 1). This completes the inductive step
of the construction.

Since all U c_ Un_I the intersection of the Un is nonempty. One checks
easily that the sequence Yn together with any r in the intersection of the U
must satisfy properties (1) and (2). This completes the proof of Theorem 2.1.
When Fis a finitely generated nonelemenatry Fuchsian group, every inter-

val of discontinuity in OD2 has infinite stabilizer. For consider a convex
finite-sided fundamental polygon P for F (which exists by Theorem 10.1.2 in
[B]). Each point in an interval of discontinuity J must lie in a free side of a
translate of P (defined on p. 223 of [B]). The endpoints of this free side are
the endpoints of sides where two translates of P meet, hence lie in J.
Therefore J is a union of infinitely many translates of free sides of P. Since
P has only finitely many free sides, it follows that the stabilizer of J must be
infinite. (More elegantly, regard F as a Kleinian group and use the Ahlfors
Finiteness Theorem to observe that the quotient of its region of discontinuity
is of finite type. If J has finite stabilizer, then its image in this surface is
properly imbedded and must limit to cusps. This implies that the endpoints
of J are parabolic fixed points, an impossibility since then J would contain
infinitely many translates of these endpoints.) Therefore Theorem 2.1 im-
plies"

COROLLARY 2.2. /f F is a nonelementary finitely generated Fuchsian group,
then every limit point of F is a weak concentration point.
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For groups of the first kind, there are no intervals of discontinuity, so
Theorem 2.1 becomes:

COROLLARY 2.3. If Fis a Fuchsian group of the first kind, then every limit
point of F is a weak concentration point.

3. Weak concentration points for high.dimensional groups

In higher dimensions, the characterization of weak concentration points
appears to be more subtle. As a first observation, we check that conical
approach is always a sufficient condition.

THEOREM 3.1. Let F be a discrete group of isometries of the Poincar disc
Dm, m >_ 2, and let p be a conical limit point for F. Then there is a round open
ball which can be concentrated at p.

Proof. Let A be the half-geodesic in Dm that runs from 0 to p. Since p is
a conical limit point, there is some closed ball B centered at 0 for which
infinitely many translates of B meet A. Therefore there exist a sequence of
elements y. F and a sequence of points p. on ,t so the lim pi =p and
yj(pj) B. Let x/denote the unit tangent vector to h at p., pointing in the
direction of p. The space T(B) of unit tangent vectors to points of B is
compact, so by passing to a subsequence we may assume that the T(yj)(x)
converge in T(B). Let H denote the (m 1)-dimensional hyperbolic hyper-
plane normal to this limit vector. For sufficently large j, y-I(H) meets h
near p and is almost perpendicular to h. Therefore one of the two compo-
nents of ODm -OH can be concentrated at p. This completes the proof of
Theorem 3.1.

Next, by generalizing the proof of Theorem 2.1, we will obtain a useful
sufficient condition for p to be a weak concentration point. A definition is
required. Let X be a subset of Sm-l, and let p Sr-l. For convenience,
choose q 4: p and a conformal equivalence of Sm-l- {q} with Rm-l, to
regard p as lying in Rm- 1. Denote by A (v, w) the angle between two vectors
in Rm-1. We need not assume the vectors are based at the same point,
since the tangent spaces to any two points in Rm-I can be canonically
identified. Let u be a unit vector in Rm-l. We say that X approaches
p from the direction u, and that u is a direction of approach for X at p,
if there is a sequence of points xi X that converges to p and satisfies
lim A (u, x p) 0.

THEOREM 3.2. Let F be a discrete group of isometries of the Poincar disc
Dm, m >_ 2, and let p be a limit point of F. If the limit set of F approaches p
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from at least two directions, then there is a round open ball that can be
concentrated at 19.

Proof When rn 2, this follows from Theorem 2.1, so assume that
rn > 3. We will work in the upper-half space model R"0 U {oo}, where
(R X {0}) [,.) {oo} corresponds to ODm and with p as the point at infinity.
Denote Rm-1 X {0} by Rm’l. Let a and /3 be two straight lines in Rm-1

emanating from 0 such that the limit set of F approaches oo from the
directions determined by terminal segments of a and /3. Thus, for any e,
M > 0 there exists a limit point x of F in Rm-1 with Ix > M and whose
distance from a is less than e lxl, and similarly for /3. In the ensuing
argument, a will play the role of the negative real axis in the proof of
Theorem 2.1, and/3 the role of the positive real axis.

Let the (positive) angle between a and /3 be written as 60. We will
inductively construct a sequence of elements yj of F, j > 1, limit points
Q, j" > 0, and neighborhoods U. of the Q satisfying the following properties
for all j > 1.

(1)
(2)

(3)

(4)
(5)

/j’- 1(00) lies in Ui_ 1"

y(oo) has distance greater than j from the origin and distance less
than sin (0)ly(oo)l from a.

y(Q) has distance greater than [y.(oo)[ + 2[y(oo)[/sin(O) from the
origin and distance less than sin(0)[y(r.)[from /3.
Ujc_.Uj_ 1.
The (Euclidean) diameter of U. is less than l/j, and each point x of
yj(U.) has distance greater than [y.(o)l + 2[y.(oo)[/sin(0) from the
origin and distance less than sin(0)171(x)lfrom/3.

To start, choose a limit point r0 other than 0% and a small neighborhood U0

of r0. Since the limit set approaches o from the direction of/3, we can use
double density to obtain a loxodromic transformation whose repelling fixed
point lies in U0 and whose attracting fixed point b has distance at least 1
from the origin and distance less than sin(0)lbllfrom a. Choose a large
power of Y of this element so that conditions (1) and (2) are satisfied with
j 1. Since y-l(oo) U0 and the limit set of F approaches oo from the
direction /3, we may choose a limit point r U0 so that (3) is satisfied for
j 1, and choose a small neighborhood U1 of r so that (4) and (5) hold.
Inductively, suppose choices have been made satisfying (1) (5) for 1 < j <
n. Again apply double density to find a loxodromic transformation whose
repelling fixed point lies in Un_ and whose attracting fixed point Ibnlhas
distance at least n from the origin and distance less than sin(O)lbnl from a.
Choose a large power Yn of this element so that (1) and (2) hold, and use the
approach of oo from the direction of/3 to get rn in Un_ satisfying (3). For a
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suitably small neighborhood Un of rn, (4) and (5) will hold, completing the
inductive construction.
Now let a0 be the unit vector at the origin which lies in the 2-plane

spanned by a and/3, is perpedicular to the bisector of the angle between a
and /3, and chosen so that it makes an angle of -/2- 30 with /3 and
r/2 + 30 with a. Fix an orthonormal frame for the tangent space at y l(oo).
Passing to a subsequence, we may assume that the images under yjyl of
this frame converge (after parallel translation to the origin and rescaling so
that the lengths of the vectors are 1). Let al be the vector at yx(oo) whose
translates under y.y- converge (after parallel translation to the origin and
rescaling) to a0.

Let r be the unique point in the intersection of all U., and let S be the
(m 2)-sphere in Rm-1 U {o} (possibly the union of a hyperplane in Rm-1
with {})which contains the points ’Yl(r) and yl() and has normal vector a
at y(). Consider the images of S under the yy-1. They contain the point
y.() and have normal vector there limiting to a0, and they also contain the
point ,(r). By condition (5), %.(r) has distance greater than I,y()l /

21yy()l/sin(0) from the origin and distance less than sin(0)ly(r)l from /3.

CLAIM. If j is large enough so that 77(al) makes an angle less than 0
with ao, then yly{l (S) bounds a ball in Rm-1 which has inward normal
’yjT-l(al ) at y1(oo) and contains all points within distance sin(0)[y1(oo)[/2
from the origin.

The complement of a closed ball given by the claim can be concentrated at, by the elements yky{ o(yy{ 1)-1 for k > j. Thus to prove Theorem 3.2 it
remains only to verify the claim. Put y y.(), a (yy{l). (al) and
x y(r). We first estimate the inner product (x- y,a). Regarded as a
vector based at the origin, x meets/3 at an angle of less than 0, so it makes
an angle between 7r/2 40 and 7r/2 20 with a0 and an angle between
zr/2 50 and rr/2 0 with a. Similarly y makes an angle between rr/2 + 0
and 7r/2 + 50 with a. Thus

(x y, a) (x, a) (y, a) > Ixlsin(0) + lylsin(0).

Since this is positive, a is an inward normal to the sphere containing x and y
which is perpendicular to a at y. Writing c y + Ra and equating ly c
and Ix c gives its radius to be

2(x- y,a)"
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Using the fact that Ixl > lyl + 21yl/sin(0), we obtain the following estimate.

-2R(y, a) > Ix ylalylsin(0)
(x -y,a)

Ix yllylsin(O)

Since cl ly + Ral, it follows that

R2- Icl2= -2R(y,a)- lyl2 lyl 2

and therefore ly / Ral < R. Now we calculate

verifying the claim.

R2 lY + Ra 12
R+ ly+Ra[

-2R(y, a) lyl a

=-(y a)
lylZ
2R

> -(y,a)/2

> lylsin(0)/2.

COROLLARY 3.3. /f F is of the first kind, then every limit point of F is a
weak concentration point.

COROLLARY 3.4. /f F is nonelementary then every parabolic fixed point of
F is a weak concentration point.

By [B-M] and [All, every limit point of a geometrically finite group is either
a conical limit point or a parabolic fixed point. Therefore Theorem 3.1 and
Corollary 3.4 give the following.

COROLLARY 3.5. If F is nonelementary and geometrically finite, then every
limit point of 7 is a weak concentration point.

The condition that the limit set approaches p in only one direction is very
restrictive. In 4 below, we will see that any subset of S"-1 approaches all
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but countably many of its points from some pair of antipodal directions
(Corallary 4.3). Thus, Theorem 3.2 implies the following result.

THEOREM 3.6.
tration points.

All but countably many limit points of F are weak concen-

Remark 3.7. For p to be a weak concentration point, it is not necessary
for the limit set to approach p from two directions. For example, take a
finitely generated group of the second kind in dimension m 2. By Corollary
2.2, every limit point is a weak concentration point, but the limit set
approaches some of its points from only one direction.

Remark 3.8. In dimensions m > 3, there can be components of the
region of discontinuity that are round open balls and have trivial stabilizer
(see Example 18 in [K-A-G]). Theorem 3.1 shows that, in contrast to the
2-dimensional case, every point in the boundary of such a component is a
weak concentration point.

4. Directional approach in subsets of Rm

For a nonzero x Rm let U(x) denote a unit vector in the direction of x,
and for two nonzero vectors Vl and v. let A(Vl, Va) denote the angle
between v and va. Let X be a subset of Rm, let p Rm, and let u be a unit
vector. Recall from 3 that X approaches p from the direction u, and that u is
a direction of approach ]’orX at p, if there is a sequence of points xj X that
converges to p and satisfies limA(u, x. -p) 0. Note that p is a limit point
of X if and only if X approaches p from at least one direction. Let D(X, p)
denote the set of directions of approach for X at p. It is a compact subset of
Sm- 1. For 0 a real number, define

Xo {p X max{A(v,w)l v,w D(X,p)} < 0}.

If 0 < 0 then X0 is the set of points in X that are not limit points, while if
0>rr thenXo=X.

If X
_
Sm, where S is the standard round m-sphere, then Xo is still

defined, by regarding Sm as a subset of Rm+ 1. Alternatively, given p Sm

one can choose any q Sm with q p and a conformal isomorphism
Sm -{q} Rm to calculate the spread of the directions of approach of X at
p.

PROPOSITION 4.1.
countable.

Let X be a subset of Sm. If 19 ( 71", then Xo is (at most)



634 DARRYL MCCULLOUGH

Proof If X Sm, then Xo is empty for 0 < zr. Otherwise, by a confor-
mal isomorphism, we may assume that X

_
Rm.

For p X and positive numbers 01 and r, define

F(Ol, r ) {pXI sup{A(a-p,b-p)la,bX
p} O < [a pl lb p[ < r} < 01}.

LEMMA 4.2. If 0 < 01, then Xo

_
U 1F(O 1, 1/n).

Proof For each n, choose an, bn x so that 0 < [an P I, [bn p[ _<

1/n and A (an --19, bn -/9) >_ 01. Convergent subsequences of {U(a -/9)}
and {U(b -p)} provide directions of approach for X at p which meet at an
angle at least 01
By the lemma, for any 01 > 0, Xo t..)=lF(01, l/n). To complete the

proof of Theorem 4.1 we will show that for any 01 < 7r and any r, the points
of F(01, r) are isolated in X, and hence form a countable set.
Given 01 < r, fix e so that r 2e > 01 and p F(01, r). Cover the ball

B of radius r centered at p by finitely many cones Ci, 1 < < n, with vertex
at p and base on the boundary of B, so small that if a,b C then
A(a-p,b-p) < e. Delete the cones that meet X only in p. In each
remaining Ci, choose a point a X- {p}. If x C and

0 < Ix-pl <- 1/2[ai-p[,

then

A(p x, a x) >_ "rr 2e > 191,

and hence if x is any point of X-{p} closer to p than the smallest
-[a -p[, x F(O1, r). This completes the proof.

By compactness of D(X, p), we deduce:

COROLLARY 4.3. Let X be a subset of Sm. Then X approaches all but at
most countably many of its points from some pair of antipodal directions.
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