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ON A SINGULAR INTEGRAL ESTIMATE FOR THE
MAXIMUM MODULUS OF A CANONICAL PRODUCT

FARUK F. ABI-KHUZAM AND BASSAM SHAYYA

ABSTRACT. If f is a canonical product with only real negative zeros and non-integral order/9, n (t, 0) is
the zero counting function, and B(r, f) suPo<0<r log f(rei)l, then

p(t) dtr-q-tB(r, f) < zrlMo(r) + MHo(r)} + -t7
where tp(t) t-q-In(t, 0), H is the Hilbert transform operator and M is the Hardy-Littlewood maximal
operator.

1. Introduction

Let f be an entire function with zeros {Zn }, and let

M(r,f)= sup If(z)[, n(r)=n(r,O;f)= Z 1.
Izl-r Iznl<_r

The order of f is defined by

p lim sup
r--> cx: logr

log log M(r, f)

and a question of long standing is to find precise lower bounds for

n(r)
lim sup
r log m(r, f)

in terms of p.
Polya 1] and Valiron [4], [5] proved, independently, that

lim sup
n(r)

> - Isin zrpl,
Isinrpl

r-+cx log M(r, f) Ao{l+logp}lsinrpl+r

O<p<l,
(1)

l<p<c,

where Ao is a positive absolute constant. The first inequality in (1) is sharp, the
constant lsinzrpl being best possible and achieved when all the zeros of f are on
one ray and n(r) is regularly varying of order p. In connection with the second
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inequality in (1), Shea and Wainger [2] proved the existence of a positive absolute
constant A such that

n(r)
lim sup > Alsinzrpl, < p < ee (2)

r--oo log M(r, f)

for f of order p, all of whose zeros lie on a single ray arg z rr. Although the value
of A obtained in [2] is not best possible, the existence of such a constant is rather
remarkable. The starting point for the Shea-Wainger proof is the well-known formula
of Valiron

n(t O)dt
log f (z) (-1)qzq+l

tq+l(t nt- z)’
q [p]’ largzl < 7r (3)

which is valid for canonical products f of non-integral order p, having all their zeros
on the ray arg z

Writing

B(r, f) n(r, O)
B(r, f) sup ]log f(rei)[, dp(r) rq+’ o(r)

rq+l0<0<7r

employing Valiron’s formula (3), and using some rather intricate singular integral
estimates they obtain

P(r) < 12Mtp(r) + 7r H*tp(r) + 10
p(t)

t+r
dt (4)

where

Mo(r) sup q)(t) dt
>0 ’ -rl<

is the Hardy-Littlewood maximal function and

H*q)(r) 1_ supl[ q)(t)dt

e>0 IJlt-rl>e r

is the maximal Hilbert transform. From the inequality (4) and using the Lp-
boundedness of these maximal operators, together with Tauberian arguments, they
obtain, for suitable sequences Rn o, 8n O, the inequality

{re (B(r, f))P } ( rr)-’ { fR (n(r,O))
p }rq+!

dr < A sin- \ rq+l
dr (5)

where p (q + -/9) -1 -+- 8n. Now (2) follows immediately from (5).
This note arose in the course of examining the Shea-Wainger proof in [2] and

attempting to simplify it. It turns out that the use of the maximal Hilbert transform of
o can be circumvented leading to a refinement of (4) in which the constants 12 and
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10 are replaced by r and respectively. Thus the value of the constant A in (2) is
increased about 4 times.

2. An inequality for the maximum modulus

An examination of the integral occuring in Valiron’s formula (3) suggests that it
assumes the boundary values f dt as 0 -- 0 and Ho(r) as 0 ---> zr, where H ist+r
the Hilbert transform operator. It is then natural to expect these two terms to occur
when estimating the integral. This is made precise in the following:

THEOREM 1. If f is a canonical product with only real negative zeros and non-
integral order p, then

(t)
dO(r) < roMeo(r) + zrM(Hqg)(r) + o

t+r
dt (6)

where H is the Hilbert transform.

Proof. Write

D1 (t r)2 + 2tr(1 cos0), D2 (t r)2 + 2r2(1 cos0)

and notice that 2D1 >_ (1 cos 0)(t + r)2 and D2 > 2It rlr/2(1 cos0) so that
q/-lD2 >_ 2r(1 -cos0)lt- rl(t + r). Thus

D1 D2
2r(1 cos0)lr tl < (7)

D1 D2 D’l(t + r)

Starting from Valiron’s formula (3), if we put qg(t) 0 for < 0 we have

r-q-1 log f(rei(r-))
rei

(t)
o D

dt

F (1O(t)(t reiO)

: (t-r) f_+ o(t) dt + o(t)
l)2

(r rei)
D2

o(t)
< dt +

t+r
2r sin o_.

2 dtHo(t)
D2

dt

2r sin o_
2 dt

D2
(8)
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where in the last line we have used Lemma 1.5, page 219 of [3]. We now use the fact
that the Poisson integral of q9 is bounded by the maximal function Mo. We indicate
a short proof of this:

qg(t)
(t r)2 + e2

dt [go(r t) + go(r -+- t)]
t2 + e2

dt

[p(r t) + p(r + t)]-I 2xdx
e (1 + x)

dt

fo fo2xdx _1 [qg(r-t)+qg(r+t)]dt
(1 + xZ)2 e

2xZdx
<

2)2
2Mqg(r)

(l+x

7r Mtp(r).

If we put e 2r sin , then it follows from (8) that for 0 < 0 <

(t)r-q-1 log f(rei(r-))[ < zrMqg(r) + rM(Hp)(r) + o
t+r
dt

and (6) follows. []

We remark that the exponent p 2 is, perhaps, the most convenient to use in
connection with the Hilbert transform since IIHoll= IIollz. But this holds for
o 6 L2(0, o) which, in the present context, requires that the order p be smaller than
+ 1/2. If we recall that IIMollp < 2(3p-_)l/Pllollp (see the proof of Theorem 3.7,q

page 58 of [3]) we obtain:

COROLLARY 1.
then

If f is as in Theorem 1, and its order satisfies q < p < q + 1/2

{fo{dP(r)}2dr}
1/2 {/o_< {4/ + }zr {p(r) }2 dr

1/2
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