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DYNAMICS OF PIECEWISE ISOMETRIES

AREK GOETZ

ABSTRACT. We begin a systematic study of Euclidean piecewise isometric dynamical systems (p.i.d.s.)
with a particular focus on the interplay between geometry, symbolic dynamics, and the group ofisometries
associated with p.i.d.s. We investigate various aspects of the dynamical information contained in the
coding: symbolic growth and the periodic behavior of codings and cells. This theoretical investigation is
motivated by the many examples ofpiecewise isometric dynamical systems found recently in the literature.
Piecewise isometric dynamical systems are direct generalizations of interval exchange transformations to
non-invertible, higher dimensional maps.

1. Introduction

In this manuscript we begin underlying basic foundations ofthe theory ofEuclidean
piecewise isometric dynamical systems. The aim of this theory is to study the long
term behavior of states in a dynamical system for which the local generating maps are
isometries. Our motivation for this article includes the many intriguing examples of
piecewise isometries with their mysterious behavior and beautiful computer graphics.

Systems of piecewise isometries have been recently linked to the dynamics of
electronic components called digital filters[l], [3], [4], [8], [9], [10], [27]. Moreover,
these systems generalize well known and well studied interval exchanges to a class
of Euclidean two-dimensional piecewise isometries. Piecewise isometries appear in
a variety of contexts and have been recently extensively studied as interval exchanges
[2], [6], [11], [21], [23], [25], [31], [32], interval translations [7], rectangular ex-
changes [19], polygonal and polyhedron exchanges [17], and pseudogroup systems
of rotations [24]. Piecewise isometric maps appear naturally in billiards [5], [16],
dual billiards [30], [18], theory of foliations [26], and tilings [20], [28].

The structure of the article is as follows. In the first five sections, we study the
growth of symbolic sequences associated to p.i.d.s. The main result is in Section 4
and it relates the growth of the associated semigroup of isometries to the growth of
symbolic words.

THEOREM (Theorem 4.1). Let T: X --> X be apiecewise isometric system whose
associated semigroup of isometries has polynomial growth. Also, suppose that the
partition associated to T consists ofsets that are afinite union ofconvex sets. Then
the growth ofsymbolic words is also polynomial.
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Figure 1. Piecewise rotation on the square: T" [0, 1] [0, 1], T x M x modZ2

where M SO(, 2) is an orthogonal matrix representing the rotation by an angle
close to 40 The right square is partitioned into the mosaic of "cells", sets following
the same coding. White regions in the right figure follow eventually periodic codings.

The main idea in the proofofTheorem 4.1 is to show that the growth ofthe number
of certain sets that are the building blocks of sets following the same codings (we
call them beans) is polynomial. In the proof of this theorem, we use elements of
the Euclidean theory of convex structures, and in particular, we use the Kakutani
Separation Property.

It follows from our main result that two-dimensional piecewise rotations whose
induced isometries are of finite order induce polynomial symbolic growths, and hence
have zero entropy.

Further we study necessary condition for a p.i.d.s, to generate all possible finite
words. We show that in order for a p.i.d.s, to induce a maximal growth, the induced
isometries must have common fixed point (Proposition 5.1).
We conclude the article with remarks on the interplay between symbolic codings,

periodic points, and the geometry of cells. This involves introducing a partition of X
into cells (sets following the same coding pattern, the picture on the right, Figure 1)
and the study of the relation between the symbolic codings and cells of positive
measures. Finally, a number of results included in Section 6 are generalizations of
well-known results for interval exchanges.

2. Preliminaries

In this section, we define our systems. We also define encoding of orbits via
symbolic dynamics. Symbolic dynamics is used extensively in the description of the
dynamics of p.i.d.s.

Definition. Let X be a subset ofr and 79 {P0 Pr-1 (r > 1) be a finite
partition of X, that is, [..Jo<_i<r Pi X, and Pi A Pj x/for # j.
A piecewise isometry is a pair (T, P), where T: X -+ X is a map such that its

restriction to each atom Pi, 0 r 1 is a Euclidean isometry.
We also refer to the map T as a piecewise isometry. We assume that the partition 79

is minimal in the sense that T is not an isometry on the union of two distinct elements
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of 79. Frequently, the space X will be compact or at least bounded. Finally, note that
a piecewise isometry need not be invertible (see Figure 1).

The partition 79 P0 Pr-1 associated to a piecewise continuous map T of
X gives rise to a natural one-sided coding map tp: X - f2r r}r for T.
The map b encodes the forward orbit of a point by recording the indices of atoms
visited by the orbit, that is, tp(x) WoWl ..., where Tkx E Pw,.

The coding map tp conjugates T with the (one-sided) shift map S" f2r "-+ f2r,
S(to0LOl 1/32’’ ") //31//32" ":

()

X X

s
"r "r

The shift map S: f2r "2r is continuous with respect to the product topology of 1N
copies of the finite set r }, each with discrete topology. This product topology
can be also generated by the metric

dnr ’2r x "2 ----> ][q-I,.J 0, df2r (1, 2) ItPl (i) b(i)l

i=o

We equip f2 with the topology given by the metric d.

3. Graph of the coding map

The symbolic coding is of fundamental importance as it gives rise to a space . on
which T has a continuous extension ’. This allows us to apply many standard results
in dynamical systems. For example, using 7" ’, we propose a definition of
the entropy of piecewise dynamical systems.

The idea of the construction of a continuous extension map " is to "separate" cells
(sets of points encoded by the same sequences), by placing them at different levels in
the set X .

Let G (x, tp (x)), x E X be the graph of tp: X f2 topologized by the product
metric d: (X f2)2 + t_J 0, d((xl, cp(xl)), (x2, b(x2))) max{de(x, x.)),
d (b(Xl), tp(x))}, where de is the Euclidean metric in ]N. With this notation, we
obtain the following proposition [14].

PROPOSITION 3.1.
is continuous.

The extension map T: G G, (x, ok(x)) (T x, dp(T x))
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Let Fix" X "r X and YIr X X r -’ ’r be natural projections. We now
have the diagrams

G G G > G

and a corollary that we will use in our definition of the entropy.

COROLLARY 3.1. Let G--- f(. Let ’" f( -- be the continuous extension of
T" Gr Gr. Then 1"I [ic" --+ cb(X) is a continuous, surjective mapping and

SI0--: 4(X) --+ q(X) is a topologicalfactor map of ’. In particular, thefollowing
diagram commutes:

4(x) 4(x).

If X is compact, then , is compact. Since ’" , -- 2 is a continuous map, it is
natural to define the entropy ofa piecewise isometry T" X --+ X (for compact X) as
the topological entropy of T: X --+ X.

PROPOSITION 3.2. The entropy ofa piecewise isometry T" X -- X (X is com-
pact) is equal to h(SI-S), the topological entropy of the shift map restricted to

4,(x).

Let W denote all (finite) words generated by {0 r- that appear as a subword
of an element in 4)(X), and let W(n) C W be the collection of the words of length n;
thus W [,-Jn>_ W(n). Since W(n) is also the set of words that appear as a subword
of an element in 4(X) of length n, h(SI0-7-) is equal to the exponential growth rate
of the cardinality of W(n). Proposition 3.2 thus yields’

COROLLARY 3.2.
is equal to

The entropy ofapiecewise isometry T" X --+ X (X is compact)

log w(n)
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Corollary 3.2 can also serve as the definition of the entropy for a piecewise iso-
metric system. Thus, in order to study the entropy of p.i.d.s., one needs to study the
exponential growth rate of W(n). We will state some results on this subject in the
next section.

ProofofProposition 3.2. Since Sl-sis atopological factorof (Corollary 3.1),
h(7) > h(Sl-?’2S). We show that the opposite inequality follows from the definition
of the entropy that uses (n, E)-separated sets [29]. It is enough if we observe that for
any fixed E > 0,

log W(n) log r (n, e)
(2) lim sup > lim sup

n--+x n n--+: n

where r(n, ) max{llAII, A C is an (n, ) separated set}.
Fix > 0. Since is compact, there is some k such that every (0, E)-separated set

has cardinality smaller than k. We show that r(n, ) < kll W(n)ll (then inequality (2)
follows). Suppose otherwise. Let A C X be an (n, )-separated set. By the
pigeon-hole principle, there exists a subset Z C A of cardinality (k -I- 1) and a
finite word wow1... Wn--1 - W(n) such that for every (x, 09) Z, (w)i wi for
6 {0 n }. Since IlZll > k, Z is not (0, )-separated, and thus there are

two points (x, 09), (y, r/) 6 Z such that d((x, w), (y, r/)) < . Since the codings 09

and 0 agree on the first n slots, d("i (x, 09), ’i (X, 09)) d((x, 09), (y, 0)) < E for
all 6 {0 n }. This means that (x, 09) and (y, r/) are not (n, )-separated,
hence r(n, ) < kllW(n)ll and thus inequality (2) follows. !-’1

Remark 1. An alternative approach to define the entropy for our systems could
be to take the supremum of the measure-theoretic entropies of T: X --+ X over all
invariant Borel probability measures (a theorem in [1] may implicitly suggest this
definition). We do not know whether this entropy is the same as the entropy that we
defined.

Remark 2. In a more restrictive context, the entropy of a piecewise isometry was
also defined in [17].

4. Polynomial symbolic growth

In this section, we explore the growth of all possible symbolic sequences of finite
length generated by the dynamics associated with T. The rate of growth of symbolic
words is one way of measuring the complexity of the dynamics of p.i.d.s. The main
result of this section is Theorem 4.1, which states that if the group associated to T
has a polynomial growth, then the cardinality of W(n) (the set of allowable words of
length n in the symbolic dynamics associated to T) is bounded by a polynomial in n.
It then follows from Corollary 3.2 that T has zero entropy.
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Recall that a semigroup 1-’ (gl gt)- has polynomial growth if the number of
distinct elements in G that can be written as compositions ofnot more than n elements
from {g-I g-l} is bounded by a fixed polynomial in n.

THEOREM 4.1. Let T: X --+ X C ]RN be a piecewise isometry with partition
79. (In this theorem, we allow X to be unbounded.) Suppose that every atom in 79
is a disjoint union of a finite number of convex sets. Suppose that the semigroup
(To Tr-1 )- generated by induced isometries has polynomial growth. Then the
cardinality ofwords in W(n) is bounded by a polynomial in n.

Theorem 4.1 immediately yields a result for piecewise translations:

COROLLARY 4.1. Piecewise translations in ]Rv with convex partitions induce
polynomial symbolic word growths.

Another application of Theorem 4.1 is a result for two-dimensional piecewise
rotations. A two-dimensional piecewise rotation is a piecewise isometry T: X --+
X c IR2 whose induced isometries are orientation preserving isometries.

COROLLARY 4.2. A two-dimensionalpiecewise rotation with convexpartition all
ofwhose induced isometries are rotations offinite order inducespolynomial symbolic
word growth.

Corollary 4.2 can be applied, for example, to piecewise rotations studied in [1],
[15],[14].

Remark 1. In Theorem 4.1 some hypothesis on the atoms is necessary in order
for the conclusion to hold. Because if the partition 79 is totally disconnected, then one
can show that there are examples 12], 13] .for which the group of induced isometries
is even commutative (hence has polynomial growth) and yet all finite codings are
realizable (hence the cardinality of words in W(n) grows exponentially in n).

Remark 2. Theorem 4.1 generalizes some partial and very particular remarks
found in the literature. This theorem (and in particular Corollary 4.1) can be viewed
as a generalization of a remark in [7] on the growth of possible codings in one-
dimensional interval translation maps. A related statement in the context of partially
defined rotations on the circle can be found in [24]. Also, a particular case of Corol-
lary 4.2 with a different proof can be found in [1].

Remark 3. The techniques used in the proof of Theorem 4.1 also work for a
larger class of systems called piecewise affine maps ], [17]. Given a set X and its
finite partition 79, we define a a piecewise affine map to be a map T: X X whose
restriction to each element of 79 is an affine map.



DYNAMICS OF PIECEWISE ISOMETRIES 471

ProofofTheorem 4.1. The proof consists oftwo steps. We first define a partition
into "n-beans" which are the building blocks of n-cells (Lemma 4.1). Then, using
a classic result about the maximal number of regions determined by k half-spaces
(Lemma 4.2), we show that the number of n-beans is bounded by a polynomial in n.

Step 1. In order to define n-beans, we first show that the atoms are elements of
some algebra generated by a finite number of half-spaces intersected with X.

Let Q be a finite convex sub-partition of 79 Po Pr-1 }. Define a half-space
of Rv to be a convex set H C Rv, H ’ {v, Rv}, whose complement R/v H
is convex, too. By the Kakutani Separation Property (for example, see [33]), every
pair {Qi, Qj} c Q (Qi Qj) can be separated by some half-space HQiQj, that is,
Qi c HQiQj and Qj RN HQQ1.

It follows that for every Qi . ,
(3) ai X

QjQ, Qi:fiQj

Since every atom Pj is the union of some elements in Q, from (3) it follows
that Pj X N A, where A an element of the algebra t(7-/0) generated by the finite
collection of half-spaces 7% {HQQ: Qi, Qj Q, Qi # Qj}.

Let (To,... Tr-1)2 denote the collection of isometries that are the compositions
of not more than n elements from {T0-1 Tr-_l }. For n > 0, let

7-/n {G(H)" G . (To Tr-)n, H 7Yo}.

Finally, the sets in the collection

will be called n-beans.

LEMMA 4.1. Every n-cell is the union ofnon-empty n-beans.

Proof In order to prove this lemma, first observe the following:

1. Every n-bean is contained in exactly one atom.
2. For every B Bn and induced isometry Tso, Ts-1B is the union of a collection

of (n + 1)-beans.
3. For every n-cell (sos sn), ((sosl s) {x X" Tx Psi,, 0 <_ k <_ n}),

(SOSl Sn) Ts’ff (s1s2"’" Sn) ["1 Pso.
We prove Lemma 4.1 by induction. By observation 1, and because the union of all

0-beans contains X, Lemma 4.1 follows for n 0. Let (sos1 ""Sn) be any (n + 1)-
cell. By inductive hypothesis, (Sl Sn) is the union of n-beans. We note that by
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observation 2, and by definition of the bean, T-1 (sis2... sn) is the union of (n -+- 1)-so
beans. By observation 1, also Ts1 (sis2... Sn) N Pso is the union of (n + 1)-beans.
Hence, from observation 3, we conclude that (SOSl Sn is the union of (n -+- 1)-beans,
which concludes the proof of Lemma 4.1.

Step 2. In this step, we show that the cardinality ofn is bounded by a polynomial
in n. We use the following lemma (which is probably a classic result in the theory of
convex structures).

LEMMA 4.2. Let {L1 Lk} denote a collection ofhalf-spaces in ,lV. Let

DL, L. L where L Li or L R- Li
i=1

Then the cardinality of DL L is bounded by a polynomial in k. In particular,
1179L, L. --< ck, where c is a constant that depends only on N.

ProofofLemma 4.2. Let fro(k) max IIDL, , where the maximum extends
over all possible collections of k half spaces. We show that following recursive
relation holds"

(4) fv+(k + 1) < flv+(k) + fro(k).

In order to show (4), among all collections of (k-+- half-spaces, let L L+I
besuch that 117., . fN(k). Given the collection 79. . ofregionsdetermined
by the first k half-spaces, by adding the half-space Lk+, only the sets in {D e
79. L: D Lk+l 0 and D tq L : 0} are subdivided into two subsets. Hence,

and D (+1 Lk+l) }11

IID, L.II + II{O L, ,." D OLk+l }11

i=1

or L R+l Li, D OL+l

[[L, Lt + (L 0Lk+l)" L Li or L L
i=1

_< f+)(k) + fq,).
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The last inequality followed from the inductive hypothesis applied to k half-spaces
in ]Rv+l and also applied to k half hyper-planes in the hyper-plane OLk+l. Hence
inequality (4) holds.

From inequality (4), we obtain

(5) fv+l(k + I) _< fu+l(1)+ z/k= f#(i),

and the conclusion of Lemma 4.2 follows from the induction applied to (5) and the
1)N/Ifollowing integral estimate: =1iN < T(k q- E]

Finally, in order to conclude the proof of Theorem 4.1, note that since the semi-
group (T0 Tr-1)- has polynomial growth, the cardinality of 7"n is bounded by
a polynomial in n. By Lemma 4.2, 11/3 is bounded by a polynomial in n, and
since, by Lemma 4.1, the number of n-cells does not exceed ll/3 II, the conclusion of
Theorem 4.1 follows.

Proofof Corollary 4.2. By Theorem 4.1, it is enough to show that the induced
isometrics To Tr-1 of a piecewise isometry T generate a semi-subgroup of the
group of two-dimensional isometrics with polynomial growth. This is a well-known
result and it can be observed, for example, by explicitly writing the composition
of isometrics. Let F (T0 Tr_l)-, where in the complex notation, Ti-1 x
Pi x q-. Zi, and oi is a root of unity. Then (by induction) an element in F of length rn
can be written as

(6) T/"1T/?1... T_.-1,,,,_ x R x + r,

where

R Pio Pil Pim- and r Pio Pil Pim-2 Zi,n-I "at- "- Pio Zil "+" Zio"

Since the multiplicative group generated by the roots of unity P0, Pl Pro-1 has
a finite, order, the rotational part R of the isometry (6) may be at most one out of g
different rotations, where g is some fixed number that does not depend on m. The
translational part r of the isometry (6) can assume at most r m values. Hence, in 1",
the there are at most g r m distinct elements of length m. v1

5. Maximal symbolic growth

A natural question is whether there exist systems that give rise to richer than
polynomial symbolic growths. In this section, we list necessary conditions for p.i.d.s.
to give rise to maximal exponential growths.

PROPOSITION 5.1. Let X C Rv be a bounded set, and let T: X --> X be
a piecewise isometry with maximal symbolic word growth (the cardinaliry of the
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set W(n) is r"). Then the induced isometries: To Tr-1 have a common fixed
point.

Remark 1. Given the set of induced isometries with a common fixed point, there
are piecewise isometries that induce a maximal growth [12], [13]. However, these
eXamples are "very artificial" since the atoms of the partition are totally disconnected
and they satisfy Pi = Pj (but Pi N Pj v). From the main result in [12], if follows
that there do not exist piecewise isometries with convex partition and surjective coding
map (a stronger condition than in Proposition 5.1).

Remark 2. We do not know any examples of piecewise isometries with convex
partition for which the growth rate of W(n) is exponential. In 17], there is a result
that two-dimensional invertible piecewise isometries have zero entropy, though the
definition of the entropy in [1 7] is different.

ProofofProposition 5.1. Suppose T: X X induces a maximal symbolic
word growth. Fix a point p X. Let (To Tr-l)+ be the semigroup generated
To Tr-1. The key idea in the proof is to show that the orbit of a ball centered at
p under the semigroup (To Tr- + is bounded.

Let w cr0crl ...crn_ W(n) be any word of length n (tri e {0 r }). Let
Tto Tn_ To. Since every finite code is realizable, there is a point xo X such
that (xo) cro’"rn In particular, ITxw xwl < diam(X). We use this and
the fact that To is an isometry in the following key estimate:

ITo p Pl _< ITo p To xol + ITo x xol 4- Ixo Pl
<_ IP xtol -t- ITxw xtol + Ixto Pl _< 3 diam(X).

Since w e W was arbitrary, the above inequality implies that the set

U G(B(p, 1))U
G(To Tr-)+

is bounded.
Since the set U has finite and positive measure, its center ofmass o is well defined.

Because Ti preserves measure and Ti U C U, Ti U U Zi U where Zi is some of
zero measure. It follows that the center of mass o must be fixed by each T/. 121

6. Convexity and coding partition

In this section, we remark on elementary relations between coding and Lebesgue
measure, and we briefly discuss a number of applications that are derived from con-
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vexity of the atoms. Many of the statements here are generalizations of well-known
results for interval exchanges.

The symbolic coding naturally induces a refinement of the partition 79, which is
the coding partition Z ofX (right square in Figure 1). The collection Z is induced by
the equivalence relation x y if and only if b(x) $(y). After [22], the elements
of will be called cells.

The first proposition is an application of the Poincar6 argument 13].

PROPOSITION 6.1. If X has finite Lebesgue measure, then every cell ofpositive
Lebesgue measure has rational (eventually periodic) coding.

Proposition 6.1 suggests that the dynamics of cells of positive measure resem-
ble the dynamics of the Fatou components of rational functions in the complex
plane:

COROLLARY 6.1. Suppose I is a cell ofpositive measure, then there exist non-
negative integers m and n such that Tn I C M where M is a periodic cell in Z, of
period m.

In general, cells of positive measure may not exist. For example, the interval
exchange of two intervals of rationally independent lengths does not have any cells
of positive measure as all points have irrational codings. This example generalizes
to N-dimensional interval translation maps. We say that a piecewise isometry T
is an N-dimensional piecewise translation of X if the induced isometries of T are
translations: T/x x + l)i, where {1) C RN will be called the translation vectors
ofT.

The following proposition can be paraphrased that for a "typical" piecewise trans-
lation, the unstable set is the entire space.

PROPOSITION 6.2. Let T: X -- X (X is compact) be apiecewise translation map
with rationally independent translation vectors. Then every point in X has irrational
coding.

In contrast, if the rational rank of the vectors (vo, 1)1 Or-l) is the same as the
dimension of the space, then the translates of a point form a lattice, hence all points
have rational coding, and if X is bounded, then there are only a finite number of
different cells of positive measures.

ProofofProposition 6.2. Suppose that there is a point x e X with rational code

(X) SO SkSkq- Skq.l Sk+l Sk+l

Then Tl(Tkx) Tsk+,’" Tsk+(Tlx). Since X is bounded and Ts/... Ts/ is a
translation, Ts/l Ts/ is the identity. Therefore, there exists a nonzero integer linear



476 AREK GOETZ

combination of the translation vectors (v0 Or-l) that is zero, a contradiction to
the rational independence of (v0 Or-l).

A number of additional remarks can be derived under an additional assump-
tion that the elements of the partition 79 are convex. We conclude the article with
these remarks that relate periodicity of points, codings, and the topology and size of
cells.

Every cell can be written as an intersection of isometric images of the atoms 14].
Therefore, if the atoms are convex, then every cell is convex as well. Hence, using
Proposition 6.1, we can describe the topology of a set of points of the same irrational
code:

COROLLARY 6.2. Suppose that the partition 79 consists ofconvex sets. Then the
inverse image ofan irrational coding under the coding map cp is a convex set contained
in a hyper-plane.

In particular, if the space X is a bounded subset of I2, then the inverse image of
an irrational code tp must be either a single point or a line segment.

One of the applications of the corollary is a generalization of a well-known result
for interval exchange maps.

PROPOSITION 6.3. Let T be an N-dimensional piecewise translation map with
convex partition. If there are N + 1 points X1, X2 XN+I X that do not lie
in one hyper-plane and whose codings are the same, then all points in the sim-
plex (Xl, x2 xN+l) have the same rational code, and are thus eventually peri-
odic.

The following proposition gives a relation between points of rational code and
periodic points.

PROPOSITION 6.4. Let T be a piecewise isometry acting on the bounded space X
with convex partition 79. Then in the space X, there exist points of rational codings
ifand only if there are periodic points.

Proof. The existence of points with rational codings given periodic points is
obvious. Conversely, suppose that x X is a point whose code is rational of period
m. Let K 6 E be the cell of all points whose code is equal to the periodic part
of 4(x). Then TreK K and Tm is an isometry on K. If K contains only one
point, then that point is periodic. Suppose that K contains at least two points. As
an element of E, K must be convex. Hence, there is some d-dimensional subspace
of N (1 < d < N) in which K is contained, and K has positive Lebesgue d-
measure. Then in that subspace, K has positive Lebesgue d-measure. Thus the
center ofmass o of K is well defined (X is bounded) and o must be a periodic point of
period m. i-’i
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