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It is often desirable to find the probability that for a given sequence
E, E, of events n infinite number of E occur. If the E re inde-
pendent events, then by the Borel-Cntelli lemma this probability is 0 or 1
ccording as P (E) converges or diverges.

This and similar situations are perhaps more easily understood when trans-
lated into the lnguge of random vribles. Let X be the random vrible
denoting the number of E,..., En which occur. Then

EX -’=<_<_ P(E) nd EX ’_<_,;.<_ P(E n E;.).
An infinite number of E occur if nd only if lim Xn .

It is possible to sharpen the Borel-Cantelli lemm by considering the random
variables X/EX. For if the events E re independent nd P (E)
diverges, then it follows from strong lw of large numbers (cf. Love [5, p.
238]) that lim X/EX 1 with probability 1.

In somewhat greter generality, let X, X, be an rbitmry sequence
of random vribles. If lim sup (Xn)/EX 1, then subsequence of
X/EX converges to 1 with probability 1, and hence

Xlim infX <_ 1 <_ limsuPExEX-
with probability 1. If in ddition lim EX , then clearly

limsupX W
with probability 1.
The following theorem and corollaries re generalizations of these results.

A somewhat different generalization of the Borel-Cantelli lemm hs beea
given by Chung nd ErdSs [1, p. 180].
THEOREM. Let X, X,... be a sequence of random variables, each of

which has nonzero mean and positive finite second moment. Suppose in addition
tha lim sup EX /EX > O. Then

(i) P/liminf X/EX <= 1} > 0,
(ii) P/limsupX/EX-> 1} > 0, and
(iii) P{lim sup X/EX > 0} ->- lim sup (EXn)/EX.
Cooh 1. Suppose that he hypotheses of the above heorem hold and

that lim inf X/EX and lim sup X/EX are constants with probability 1.
Then

(iv) P(liminfX/EX =< 1} 1, and
(v) P{lim sup X/EX >= 1} 1.
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Proof. SetY= Xn/EX. ThenEY= landliminfEY =M < m.
Let c be a positive number, and let I be the characteristic function of the set
where Y < c. Then1 EY, <- EInY, + EY/c. Thus

i M/c <-_ limsupEIYn =< E(lim supIY) -<_ (lim supY,),

the second inequality following from Fatou’s lemma., But c can be made
arbitrarily large, so that 1 -<_ g (lim sup Y), and consequently

0 < P{lim sup Y _>_ 1} P{lim sup X,JEX >= 1}.

This proves (i), and (ii) may be proved in similar manner.
We now prove (iii). Clearly EIn Y, <-_ c, and hence EY (1 I,) >= 1 c.

Assume that 0 < c < 1. Then by Schwarz’s inequality

(1--c) =< (Y.(1-I))

=< EY E(1 In) EY E(1 In) EY P{Yn >= c}.

Consequently

P{lim sup Xn/EX, >= c} P{lim sup Y >- c} >- lim sup P{ Y _>_ c}

=> (1 c) lim sup 1/EY (1 c) lim sup (EX,)/EY.
But c can be made arbitrarily small, so that (iii) holds.

Corollary 1 is an immediate consequence of (i) and (ii) of the theorem.
The above theorem and corollary can be translated back into statements

concerning events. In the context of the second paragraph of this note, the
inequality lim sup (EXn)2/EX > 0 becomes

(i) lira sup =<,.__< P(E n E)
> 0.

This inequality is certainly true if, for instance, P (E n E.) _-< cP (E) P (E)
for some finite constant c and all i and j.
A sequence E, E2, of events is called a system of recurrent events if

%here exist independent and iden%icMly distributed positive-integer v|ued ran-
dom variables Y, Y2, such that E is %he event that Y + + Y. k
for some 2". For such a system it is clear that

p (E n E) P (E) P (E.-0 or -<_ < j,

and that, with probability i, an infinite number of E occur.

COROLLARY 2. Let E, E,... be a system o] recurrent eents. Let
m m2, be a. strictly increasing sequence of positive integers, and let N (n)
denote the number o/E E which occur. I] P (E) and

The above theorem was suggested by this special case, which was pointed out to us
by R. V. Chacon.
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(2) lira sup _<_<._ p(E)p(Ei_ > O,

then, with probability 1,

N(n) N(n)
(3) lim inf _l<_k_< P(Em) <= 1 -<-- lim sup l_<k P(Em)

Proof. We can easily verify that the hypotheses of Corollary I are satisfied
by the random variables Xn N (n). To do this we need only apply the
Hewitt-Savage zero-one law (cf. [3, pp. 493-494]) to the random variables Yn.
A sufficient condition for (2) is that, for some constants a >_- 1 and > 0,

(4) P(Em._) =< P(EmI(_)/.1) for 1 _<_ i <= j a.

If we suppose additionally that P (E) is asymptotically equal to a non-
increasing function of k, then a sufficient condition for (2) is that there exist a
positive constant a such that

(5) ms- mi >= mi(-i)/, for 1 _<_ i -<_ j- a.

It is interesting to note that (5) holds if m is the n prime integer.
verify this, we observe that (5) is implied by

To

(6) r(x + y) r(y) <= ar(x), x >- 2,

where r (x), as usual, denotes the number of primes not bigger than x. Now,
by a weak form of the prime number theorem, there exists a positive constant
c such that

(x) >__ cx/logx, x _>_ 2.

On the other hand, Selberg’s sieve estimate [7, p. 290] implies that for some
positive constant c,

(x +y) v(y) -<- cx/logx, x >= 2.

These two inequalities yield (6).

Example 1. Let E be the event that the simple random walk in one dimen-
sion is at the origin at time 2]c. The E form a system of recurrent events

--1/2and P (E) (])-/ If m is the nm prime number, then >__m .
Thus, with probability 1, the simple random walk is at the origin at time 2p
for an infinite number of primes p. The same method shows that this result
is also true for the simple random walk in two dimensions, where
P (E) (])-.
Example 2. Let E be the event that the simple random walk in three

dimensions hits the point (lc, 0, 0). Then P (Ek) c/- for some positive
constant c (cf. It5 and McKean [4]). The events E are not recurrent, but
do satisfy the inequality

P (Ei n E.) <= (P (E) + P (Es)) P (Et_i), l<=i<j.
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Let m be the nh prime number. Then (2) is valid, so that by the above in-
equality (1) is valid also. By the Hewitt-Savage zero-one law the hypotheses
of Corollary 1 are satisfied, and hence (3) holds. In particular, with prob-
ability 1, the random walk visits (p, 0, 0) for an infinite number of primes
p. This result was first suggested by It and McKean [4] and was verified
by ErdSs [2] and McKean [6].
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