
GROUPS WHOSE IRREDUCIBLE REPRESENTATIONS HAVE
DEGREES DIVIDING

I. M. ISAACS AND D. S. PASSMAN

Let G be a finitely generated group and C[G] its group algebra over the
complex numbers C. In this paper we consider groups with the property
that the degrees of all the irreducible representations of C[G] divide fixed
prime p to the power e. This is a special case of the situation studied in
[4]. In fact, our result, Theorem I, is a sharper version of Theorem III of that
paper. In the more special case e 1, Theorem II gives necessary and
sufficient conditions on the structure of the group. For p 2 this yields
in particular Theorem 3 of [1].
Our main results are"

THEOREM I. Let G be a finitely generated group and p a prime. Suppose
that all irreducible representations of G over the complex numbers have degrees
dividing pC. Then G has a subinvariant series

G= A, Ae_I

_
Ao

such that Ao is abelian and A/A_I is elementary abelian p with not more than
2i + 1 generators. Hence G has an abelian subgroup Ao whose index divides
pe(+.).
THEOREM II. Let G be a finitely generated group all of whose irreducible

representations have degree 1 or p. Then G is one of the following types"
1. G is abelian.
2. G has a normal abelian subgroup of index p.
3. G has a center Z with G/Z being a group of order p3 and period p.
Conversely, let G be one of the above. If G is finite then all of its irreducible

representations have degree 1 or p. If G is finitely generated then G at least has
a complete set of representations of degree 1 or p.

In Section 4 we give examples to show that all of the above types can occur.

1. In this section we fix nomenclature and give some character-theoretic
propositions which are basic to the rest of the paper. All groups in this
paper are assumed to be finite unless otherwise stated.

Let x be an irreducible character of a group G and 9 an irreducible character
of a subgroup H of G. 9 induces a character * of G and x restricts to a
character x H of H. From the Frobenius Reciprocity Theorem [3, Theorem
38.8] we can conclude that the multiplicity of x as a constituent of 9 is equal
to the multiplicity of 9 as a constituent of
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Supose H <:l G (H is normal in G). Then G acts on the characters of H
by conjugation. That is for geG and all xeH, g(x) (g g ). The
subgroup T fixing a given character q of H is called the inertia group of
Clearly T H. If [G’T] then has precisely distinct coniugates

1, 2, ..., . If is irreducible and x is a constituent of * of mul-
tiplicity a then x lH a(ql -t- . W -t- ).

If H G then a character of G/H can be regarded as a character of G
with kernel containing H. Conversely every character of G with kernel
containing H arises in this manner. We shall use the same symbol to denote
the character whether viewed in G or G/H. The precise situation will be
clear from context.
For convenience we quote here three propositions from [4].

(1.1) PROPOSITION. Let H < G, [G’H] q, a prime. If x is an irreducible
character of G then x lH is either irreducible or the sum of q distinct conjugate
irreducible characters of H.

(1.2) PROPOSITION. Let H < G. If x is a character of G with x ill irre-
ducible and is any irreducible character of G/H, then Bx is irreducible.

(1.3) PROPOSITION. Let G have a faithful irreducible representation of degree
n. If the center Z of G contains the commutator G’, then [G’Z] n.

These are Propositions 1.2, 1.1, and 4.1 respectively of [4].

(1.4) PROPOSITION. Let H < G and let x be an irreducible character of G
with x H a( - - ) where the are distinct conjugate characters of
H. If T is the inertia group of then there is an irreducible character
b of T with b H a and

Proof. Let x T b 1 + b ’ - br ’r. Since is a constituent
of x H it follows that is a constituent of some of the H, say , ..., e
Because T is the inertia group of , all the conjugates of in T are equal and
thus IH c for i 1, 2, ..., s. Thus the multiplicity of
isa bc bc2- Wbe
Put b11 - - be8. Then IH a. By Frobenius Reci-

procity x is a constituent of and thus of *. However

deg x at deg [G" T] deg b deg b*.
Thus x Since x is irreducible, must be also.

2. In this section we obtain a proof of Theorem I.
this paper let p be a fixed prime number.

For the remainder of

(2.1) DEFINITION. fl group G is said to have r.x. e (representation ex-
ponent e) if all the irreducible representations of G have degrees dividing p.
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(2.2) LEMx. Let N < G where G has r.x.e. Then N has r.x.e. If G/N
is nonabelian then N has r.x. (e 1).

Proof. Let be an irreducible character of N and let x be an irreducible
constituent of *. Then

where the are the conjugates of . Since deg deg we have deg x
at deg . Since deg x divides p, so does deg .
Assume now that GIN is nonabelian. If either a or is > 1, then since

they divide p we would have p deg q divides p. If a 1 t, then x N
is irreducible. Let be a nonlinear irreducible character of G/N. Then by
Proposition 1.2, x is irreducible and hence deg f deg x deg/x divides
p. But since deg/ > 1 we have deg B-> p and p deg x p deg divides
p. In either case then, deg divides p-.
By a p-Hall subgroup, we mean in the following, a subgroup of a group G

of order prime to p and index a power of p.

(2.3) IROIOSlTION. A group G has a normal abelian p’-Hall subgroup H
if and only if the degrees of all the irreducible representations of G are powers
ofp.

Proof. If G has a normal abelian p-Hall subgroup H then by ItS’s Theorem
[3, Corollary 53.18] the degrees of all the irreducible representations of G
divide [G :HI, a power of p.

Conversely, suppose the degrees of all the irreducible representations of
G are powers of p. We proceed by induction on G I, the order of G. If
[GI is relatively prime to p take H G. Then since the degrees of the
irreducible representations of G divide G I, all the irreducible representations
are linear and G is abelian.

Suppose then that p divides G !. From the equation

where the x are the degrees of the nonlinear irreducible characters of G,
we conclude that p divides [G" G]. Let K be the complete inverse image in
G of a subgroup of index p in the abelian group GIG’. Then K < G and, by
Lemma 2.2, K has r.x. e for some suitably large e. By the induction hy-
pothesis then, K has a normal abelian p’-Hall subgroup H. H is clearly
a p’-Hall subgroup of G and since it is characteristic in K, H is normal in G.
We note that if G is a (not necessarily finite) group with r.x. e then every

quotient group of G has r.x.e. In the finite case we have

(2.4) COnOLLAV. If G has r.x. e then so does every subgroup of G.

Proof. Let K be a subgroup of G. By the above proposition G has a
normal abelian p-Hall subgroup H. Then H n K is a normal abelian
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p’-Hall subgroup of K and thus the degrees of all of the irreducible representa-
tions of K are powers of p. Let be an irreducible character of K and let
x be a constituent of *. Then is a constituent of x lH and thus
deg -< deg x. The result follows.

(2.5) PROPOSITION. Let N < G with GIN nilpotent. Suppose is an
irreducible character of G with x IN reducible. Then there exists a normal
subgroup T of G of prime index such that T N and x for some irre-
ducible character b of T.

Proof. Let G No > N1 > > N N be a normal series with quo-
tients of prime order. Let i be the biggest subscript with x lN irreducible.
Then 0 =< i < j. By Proposition 1.1

X N+I + + +
where the are distinct and q [N’N+]. Let T be the inertia group of
l in G. Then G

_
T

___
N+

_
N, [G" T] q and T <:] G. By Proposition

*1.4 there is an irreducible character k of T with x
(2.6) CoRollaRY. Let N < G with N abelian and G/N nilpotent. If x is

an irreducible character of G, there exists a subgroup K of G containing N and a
linear character k on K with x k*.

Proof. We proceed by induction on [G’N]. If [G:N] > 1 let T and
be as in the proposition. Then [T’N] < [G’N] and we can find K and k
with k** (** means induction to T). By transitivity of induction we
conclude that x k*.

(2.7) LEMMA. Let G have r.x. e and let K andH be subgroups with H< K G.
Suppose K/H is an abelian group of order prime to p. If H has r.x. f then so
does K.

Proof. Let x be an irreducible character of K. If x H is irreducible then
deg x deg x H divides p/. If x H is reducible then applying Proposition
2.5 to K we have x where is a character of a subgroup T of index
q in K and containing H. Then deg x q deg and (p, q) 1. By
Corollary 2.4, K has r.x. e and thus deg x divides p’. This is a contradiction.

(2.8) LEMMA. Let N <3 G with GIN a p-group. Let G have r.x. e and N
have r.x. (e 1). If F is the inverse image of the Frattini subgroup of GIN
in G, then, F has r.x. (e 1).

Proof. F <3 G and thus by Lemma 2.2, F has r.x.e. We must show that F
has no irreducible characters of degree pe. Suppose is such a character.
Let x be an irreducible constituent of q*. Then pe >= deg x -> deg pe and

pethus deg x and x IF is irreducible. Since N has r.x. (e 1),
x N is reducible, and by Proposition 2.5 there is a subgroup T maximal in G
and containing N with x for some character b of T. Therefore b is a
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constituent of x IT which is thus reducible. But T

_
F and x IF is irre-

ducible, a contradiction.

(2.9) LEMMA. Let R be a group with the following properties"
R has a nontrivial normal abelian subgroup.

(ii) Ill < N < R, then N R’.
(iii) R has an irreducible representation of degree m > 1.

Then every maximal normal abelian subgroup of R has index m.

Proof. Since R has a nontrivial normal abelian subgroup, a maximal such
subgroup A is not trivial. Thus A R’. Let x be an irreducible character
of R of degree m. Since R/A is abelian we can apply Corollary 2.6 and
conclude that x for a linear character h of some subgroup K A.
Since K R, if K > A then K is nonabelian and 1 K’ < R. Hence by
(ii), K’ R’ and thus R is included in the kernel of the linear character
X of K. Since R’ <:l R, R’ is therefore in the kernel of x Since x is
irreducible it must be linear, a contradiction. Hence K A and

m degx deg,* [R:K] [R’A].

We are now ready to prove Theorem I. First we assume G is finite and
then we consider the more general case.

Proof of Theorem I for finite groups. We prove the result by induction
on e. If e 0 the group is abelian and the result is trivial. Assume then
that e => 1. It will be sufficient to show that G has a normal subgroup
Ae-1 having r.x. (e 1) and such that G/Ae_I is an elementary abelian
p-group with _-< 2e W 1 generators.
We may assume G is nonabelian. Choose N <:l G maximal with GIN

nonabelian. Put R GIN. R has r.x. e and thus has a normal abelian
p’-Hall subgroup by Proposition 2.3. Let H be the inverse image of this
subgroup in G. Since R is nonabelian, N has r.x. (e 1) by Lemma 2.2.
Because of the choice of N, every nontrivial normal subgroup of R contains
R’> 1.
There are two cases"

Case 1. H/N is a nontrivial subgroup of R. No two normal subgroups
of R can be disjoint because each contains R’. Therefore every normal abelian
subgroup must be a q-group for some prime q, for otherwise the Sylow sub-
groups of such a group would be disjoiat normal subgroups of R.

Since H/N is a p’-Hall subgroup it must be a maximal abelian normal sub-
group of R. If x is an irreducible character of R of degree pf, 1 =< f =< e
then by Lemma 2.9

[R’H/N] [G:H] pf.

Since N has r.x. (e 1), we can conclude by Lemma 2.7 that H has
r.x. (e- 1).
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Let Ae-1 be the inverse image of the Frattini subgroup of G/H. By Lemma
2.8, Ae_l has r.x. (e 1). Ae_ <3 G and G/A_I is an elementary abelian
p-group of order =< pS and thus has -< f -< e generators.

Case 2. H/N is trivial and R is a p-group. Let x be an irreducible charac-
ter of R of degree pS, 1 =< f =< e. The kernel of x must be trivial, for otherwise
it would contain R’. Thus x is a faithful irreducible character. Therefore
the center Z of R is cyclic. Moreover Z

_
R’ and thus by Proposition 1.3,

JR:Z] p.
Let A_ be the inverse image of the Frattini subgroup F of R. Then

[G’A_] [R’F] <__ [R’(F n Z)]--[R:Z][Z’(F n Z)].

Since Z is cyclic [Z" (F n Z)] 1 or p and thus [G’Ae_] <= p:]+l.
The result now follows as in Case 1.

Proof of Theorem I. Let G be a finitely generated group all of whose
irreducible representations have degrees dividing p. By a theorem of
Hall [5, page 56] there are only finitely many subgroups of G of index -<
Suppose that L, L., ..., La are all of those which are nonabelian. Choose
x, y e L with the commutator zi [x, yi] 1.
By Theorem V of [6], G is a subdirect product of finite groups and thus we

can find a normal subgroup N of finite index in G such that z N for
i 1, 2, ..-, s. Then GIN is a finite group having r.x. e and thus there is a
subinvariant series G Ae

___
A_I

_ ___
A0 N of G with A/A_I an

elementary abelian p-group with -< 2i W 1 generators such that Ao/N is
abelian. [G’A0] =< pe(e+) and thus if A0 is not abelian it is one of the L.
However by the choice of N, each L/N is nonabelian and therefore A0 is
abelian. This proves the theorem.

3. Here we study in more detail groups having r.x. 1 and work toward a
proof of Theorem II.

(3.1) POOSTION. Let G be a group with an abelian p-Sylow subgroup.
If G has r.x. e then G has a subinvariant series

G AeA_I _Ao

such that Ao is abelian and A/A_ is an elementary abelian p-group with <= i
generators. Hence G has an abelian subgroup Ao whose index divides p(e+).

Proof. The result follows from the fact that Case 2 of the proof of Theorem
I for finite groups cannot occur because a homomorphic image of G which is a
p-group must be abelian. Case I yields [A’A_] =< p.

(3.2) DEFINIT]ON. A subgroup A of a group G having r.x. 1 is said to be
special if

(i) A is abelian and normal in G;
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(ii)
(iii)

G/A is an elementary abelian p-group;
if B > A then B is nonabelian.

Note that Theorem I guarantees the existence of a special subgroup of
index dividing p.
We now prove a lemma which seems to be crucial in determining the

structure of G. The notation C(a) means the centralizer of a in G.

(3.3) LEMMA. Let A be a special subgroup of G. Then every element of A
is either central in G or commutes with nothing outside of A. That is if a A
then either C a G or C(a A.

Proof. The result is trivial if [G:A] p, so we assume [G’A] -> p2. Sup-
poseaeAwithA < C(a) < G. ChoosexeC(a) A andyeG- C(a).
Set K (A, x, y). By (ii) of Definition 3.2 it is clear that [K’A] p2.
Since x A, (A, x) is nonabelian; thus there exists b e A with x C(b). There-

-; a-1fore u x-lbxb- and v y ay are nonidentity elements of A. Since in
the group algebra of A, 1 uv u -t- v we have (1 u)(1 v) 0. Thus
there is some irreducible (linear) representation k of the algebra with
k(1 u).k(1 v) 0. Then k is a linear character of A different from 1
t both u nd v.

Let T be the inertia group of k in G. Since G has r.x. 1, we can conclude
from Proposition 1.4 that [G" T] 1 or p. Therefore T n K > A. Let
z e (T n K) A. Since K/A is elementary abelian we have z xryc for
some c e A and integers r, s < p. If s 0 then by taking a power of z we
can assume s 1. Then xry T and

k(a) k-l(a) ^Y" -lx-ax y)

-ia -i -ik(y y) k(y aya )k(a) k(a)

since k(y-aya-) 1. If s 0 then x e T n K and thus x e T and

k(b) k-’(b) k(x-bx)

)(x-lbxb-1)k(b) k(b)

since k(x-bxb-) 1. In either case we have the desired contradiction.

(3.4) LEMMA. Let G have r.x. 1. If the p’-Hall subgroup H of G is not
central then G has a normal abelian subgroup of index p.

Proof. Let A be a special subgroup with index dividing p. We assume
[G:A] > p and show that H is central. Since H __: A we can write A QH
where Q is the p-Sylow subgroup of A and is thus normal in G. The group
G/Q has r.x. 1 and has an abelian p-Sylow subgroup and thus has an abelian
subgroup of index 1 or p by Proposition 3.1. Let B be the inverse image of
this subgroup in G. Then [G:B] 1 or p and [G:A] > p and thus A B.
Choose x e B A. Since B/Q is abelian and H __: B we have for all h e H,



GROUPS WITH R.X. e 453

hxh-lx-le Q. On the other hand H <:l G and thus hxh-lx-leH. Since
HnQ lwe have xeC(h) andxeA. ByLemma3.3then, C(h) G,
that is H is central.

(3.5) :PROPOSITION. Let A be a special subgroup of p-group G of index pt.
a If > 1, then the center Z of G has index p in A.
(b) If 1, then p.I Z i.I G’

Proof. SinceA is specialZ < A. By Lemma3.3, C(a) GorA for
each a e A. The first possibility occurs for the z Z elements of Z.
Each of the remaining elements of A thus has p coniugates in G. Suppose
there are r such classes. Then

IAI w z- pr.
The r W z conjugacy classes of G contained in A are the orbits of the action of
GonA.
G acts also on the linear characters of A, fixing some of them and permuting

the others in orbits of size p. Say there are ] characters fixed and m classes
of size p. Then

w k - pm.

We claim that the number of orbits in these two actions of G are equal.
Let X be the character matrix of A. G permutes either the rows or the
columns to give the same result. We then have for each y e G, (y)X
X(y) where and are the two permutation representations of G. Since
X is nonsingular, and are similar and thus have the same character. It
follows from Theorem 32.3 of [3] that the number of transitivity classes is the
same. Thus

k -l-- m r-[- z.

We can eliminate m and r from the three equations involving k, m, r, z and
w and obtain

z(p 1) w(p- 1) - k(p p-).
If > 1 we have z(p- 1) __> w(p-- 1)and

w/z <-_ (p- 1)/(p-- 1) -< p-t- 1.

Since w/z is a power of p we have w/z p. This proves (a).
If i we have z k. If k is a linear character of A which is fixed by G

then k* has only linear constituents. This follows since if x is a nonlinear
constituent of ),* then by Proposition 1.1, x A is a sum of p distinct conjugate
characters. Since by Frobenius Reciprocity, each constituent of k* has
multiplicity 1, there are p linear characters of G which restrict to ), on A.

Conversely, every linear character of G restricts to a character of A fixed
by the action of G. Thus the number of linear characters of G equals p/.
Since this is also equal to [G:G’] the result follows.
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(3.6) PROPOSITION. Let G be a p-group having r.x. 1.
the following:
(1) G is abelian.
(2) G has a maximal abelian subgroup of index p.
(3) G has a center Z of index p.

Then G satisfies one

Proof. By Theorem I, G has a special subgroup A of index dividing p.
If the index is 1 then (1) holds. If [G’A] p then (2) holds. Finally if
[G’A] p then (3) holds by Proposition 3.5. We will show that these
exhaust the possibilities. Suppose then that G has no special subgroups of
index < p and that A is special with [G:A] pa. Then the center Z of G
has index p.
We claim that G/Z is elementary abelian. From the list of groups of

order p on page 145 of [2] we see that every such group other thn the ele-
mentary abelian one satisfies one of the following:

(i) It has u normal cyclic subgroup of order => p with an elementary
abelian quotient.

(ii) It has a Frattini subgroup of order >= p.
(iii) It has a nonabelian quotient of order pa.
In case (i) we can extend Z by the generator of the cyclic subgroup and

get a normal abelian subgroup of G of index =< p which is either special or
can be extended to a special subgroup.

In case (ii) we can apply Lemma 2.8 to conclude that Z extended by the
Frattini subgroup of the quotient is abelian and normal of index =< p. Again
this is either special or can be extended to a special subgroup.

In case (iii), G has a normal abelian subgroup N with nonabelian quotient
of order p. Then by Lemma 2.8 the inverse image of the Frattini subgroup
of GIN has r.x. 0 and thus is abelian. Again its index is =< p: and it is either
special or can be extended to a special subgroup.

In euch of these cuses we huve contradiction of the ssumption thut there
exists no special subgroup of index -< p. The only remaining possibility is
that G/Z is elementary belin.
Now let x e Z. Then (Z, x} is a normal abelian subgroup of index pa.

Since its quotient is elementary abelian it can be extended to a special sub-
group. However no special subgroup has index < p and thus (Z, x} is itself
special. Since x e Z we have by Lemma 3.3, C(x) {Z, x} which has index
p in G. Therefore every coniugacy class of G has either 1 or p elements.
G hs z Z classes of size 1 and (g z)/p classes of size p where

g GI. The total number of classes ofGthenisc z + (g z)/p.
Now G has g’ [G" G’] linear characters and c g’ irreducible characters of
degree p. Hence g g’ + p(c g’). Since g pz solving for g’ yields

g’ z(-p + p + p 1)/(p p) < O.

This is the desired contradiction.
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Proof of Theorem II for finite groups. Suppose G has r.x. 1. If the p’-Hall
subgroup H of G is not central then G is type (2) by Lemma 3.4. Otherwise
G H P where P is the p-Sylow subgroup of G. P has r.x. 1 and thus,
by Proposition 3.6, P must be one of three types. If P is abelian then G is
type (1); if P has a maximal abelian subgroup of index p then G is type (2)
and if the center of P has index p3 then the center Z of G has index p3. If
G/Z has an element of order p then again G is of type (2). The only re-
maining possibility is type (3).

Conversely, let G be one of the three types. If G is type (1) then all
irreducible representations are linear. If G is type (2) then by ItS’s Theorem
G has r.x. 1. Finally, let G be type (3). By ItS’s Theorem G has r.x. 3.
Let x be a character of G. Then x lZ a where is a linear character of
Z and a deg x. Hence x has multiplicity a in },* and

a deg x (deg x) -<_ deg * p.
We must then have deg x 1 or p.

Proof of Theorem II. Let G be a finitely generated group all of whose
irreducible representations are of finite degree 1 or p. By M. Hall’s Theorem,
G has only finitely many subgroups of any given finite index. Let
A1, As, ., Ar be the normal subgroups of index p, if any, and Z1, Z., ., Z
be those of index p if any. Suppose that G is nonabelian, has no abelian
normal subgroup of index p and no central subgroup of index p. Choose
g, h G, a, bt At, c G and z Z. with [g, h], [at, bt] nd [c, z.] all different
from 1.
By Theorem V of [6], G is a subdirect product of finite groups and thus we

can find a normal subgroup N of finite index in G which does not contain any
of the above commutators. GIN has r.x. 1 and thus our theorem applies.
However, by the choice of N we see that GIN cannot be any of the three
types. We conclude from this that either G is abelin or it has a normal
abelian subgroup of index p or it hs central subgroup of index p. The
result then follows.

Conversely, let G be finitely generated and one of the three types. Then G
has an abelian subgroup of finite index which by Schreier’s Theorem [5, page
36] is also finitely generated and thus is a subdirect product of finite groups.
Hence G is also of this form.
Every quotient group of G is one of the three types and thus every irreducible

character of G whose kernel has finite index is of degree 1 or p. Since G is a
subdirect product of finite groups, these characters form a complete set.

4. In this section we give examples to show that all of the different types
of groups in Theorem II can occur.

(4.1) Example. Let G be the group of order p generated by elements
u, , w, x as follows" The elements u, , nd w all commute and span a
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normal abelian subgroup A (u, v, w) of index p. We have

ups vP wp 1, xP 1
--I ul-l-p --I )l+p --I wl+PXUX XYX XWX

Clearly G’ (up, vP, wp} so ]G’[ p3. By Proposition 3.5(b)

[.z] I I/I Z p IG’I p.
Thus G is type (2) but not type (1) or (3).

(4.2) Example. Let G be the group of order p6 generated by elements
u, v, w, x, y, z as follows" The elements u, v, and w are central and span a
subgroup N (u, v, w} having order p3. We have

--1 --1xyx uy, yzy

xp yP zp 1,
--1

YZ ZX,Z ’WX,.

Clearly G’ (u, v, w} so G’[ p and Z N. G is of course nonabelian.
If G had a normal abelian subgroup of index p then by Proposition 3.5(b)

p6= [GI p[Zi IG’I => pIN] IG’I p,
a contradiction. Thus G is not type (1) or (2). If Z > N then [G" Z] -<
and we see immediately that G would have a normal abelian subgroup of
index p. Since this is not the case, Z N. Thus G is type (3) and G/Z is
elementary abelian p.

(4.3) Example. Let G be the group of order pS, for p > 2, generated by
elements u, v, x, y, z as follows" The elements u and v are central and span
N (u, v} a subgroup of order p. We have

xp yP zp i,U
p

V
p 17

-1 -1 -1yxy ux, zxz vx, z/z xy.

Clearly G’ (u, v, x) so G’I p and Z

_
N.

subgroup of index p then by Proposition 3.5(b)
If G had a normal abelian

p -[GI- plZI IG’I plNi [G’[ p,

a contradiction. Just as in the previous example this implies also that
Z N. ThusGistype (3) but not type (1) or (2) andG/Zisthenon-
abelian group of order p3 and period p.
We remark that all the groups given above are just multiple semidirect

products. Thus it is not difficult to show that they exist.
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