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Introduction
This paper is a sequel to [5], [6], [7]. The example in [5] was discovered to

be tame by R. H. Bing, but a similar and wild one can be found in [4].
By a complex we mean a finite geometric simplicial complex [11]. If K is

such a complex and if h is a homeomorphism from K into a euclidean space
E, h(K) is said to be a topological complex with the understanding that the
simplices of h(K) are the topological images of the simplices of K under h.
Similarly the/-skeleton of h(K) is the image under h of the/-skeleton of K.
Our main result asserts that if K is a finite complex and if h(K) is embedded

in E3, then h(K) is tame [9] if and only if h carries the 1-skeleton of K onto
a tame set while each 2-simplex of h(K) is tame [2], [14]. Of course, if K is
1-dimensional the result applies only trivially; the 1-dimensional case is con-
sidered in [7].
The characterization of tame sets as locally tame in [2] and [14] permits a

reduction of our problem to complexes which are stars; that is, to complexes
which are the closed star of a vertex. In [1 certain special 2-complexes are
shown to be tame. In 2, the special case of a 2-dimensional complex which
is a star is studied. The theorem is then established in 3 by reducing the
general 2- and 3-dimensional cases to the special case of 2.

1. Unions of disks and arcs

If S is a 2-sphere in E3, ext(S) denotes the component of E if with
non-compact closure, and int(S) is the other component. An n-frame is
defined in [4] and is simply the topological image of a 1-complex which is the
star of a vertex, the branch point of the n-frame. The 1-simplices of an
n-frame are called its branches. If D is a simplex, Bd D is its boundary.

(1.1) LEMMA. Let G be a tame n-frame and S a tame 2-sphere in E. If
two branches (one branch) of G lie in if while the remainder of G lies in ext(S),
then G u S is a tame set.

Proof. Let B1 and B2 be the branches of G which lie in if while b is the
branch point of G. ThenG1 (G- (JB) u bisatame (n 2)-frame
with branch point b and G n S b. We show first that G lies on a tame
disk D, while D .n S b.

Since G is tame, G u B1 is tame and there is a tame disk D which contains
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G1 u B1 while D n B. b and B Bd D. Then by the Schoenflies Theorem
for E there is a disk P in S which contains B2 b in its interior, B n Bd P b
and P n D1 b. Now let U be an open set in E which contains
int(P), U a D1 [-]. There is a homeomorphism g of E onto E which
leaves G u B. fixed and g(S) c U u P; this follows from the tameness of S.
We note that g(S) n D b. Evidently the disk D g-(D) meets the
conditions we required. The lemma will follow if we show that D u S is
tme.

If B is brnch of G1, then Ba B2 is tame since G is tame. The branch
B. lies on the boundary of a disk Q in int(S)" such that Q is tame
and Q a S B. Thus by selecting an arc J on Bd Q having b as an end
point while J b c int(S) we see thatJ B is a tame arc piercing S t b.
Whence, by [13], Ba u S is tame.

There is no loss of generality in supposing that Ba lies in the interior of D
except for its two end points. We assume this is the case and let / be a
homeomorphism of D onto a triangle T so that/c(b) is vertex of T. Let
l/ be sequence of segments in T such that each l is parallel to the side of
T opposite k(b) and spans Bd T;it is supposed that ]c(B) is a segment and
that {/’} converges monotonically to k(b). Then let l lc-(l).
The set S B is tame and so there is a homeomorphism f of E onto Ea,

which throws S onto the boundary B of a tetrahedron while f(B) is a segment
meeting B orthogonally in the interior of a face F of the tetrahedron. If U
is any open set in E containing f(b), there is a value j such that f(l.) U
and the component C of f(D) f(l) which contains f(b) lies in U. The
set f(D) C is a disk L and by construction f(S B) L is locally tme
and so tame [2], [14]. It follows that in U there is a tme 3-cell C which
meets F in a disk on Bd C, C c_: ext B, Bd C, a L is a spanning rc of
Bd f(D) between f(l._) and f(l.) with its end points on f(l-),

Bd C y(S) L y(Ba)

is tame nd Bd Cu n f(Ba) is a pair of points one of which is f(b). We ssert
that C may be chosen so that Bd C n C f(b). For if Bd C is not
f(b) the tameness of (2 permits the removal of other intersections with Bd C
by a homeomorphism of E onto E which is fixed outside of U and leaves L
and f S fixed.

It is now possible to select a sequence of 3-cells C,I with the follmving
properties:

(i) C u f(S) f(B) is tame, fl C,: f(b);
(ii) Bd C n f(D) is an arc spanning Bd f(D) plus f(b);
(iii) Bd C f(B) is pair of points;
(iv) C n f(S) is a disk on Bd C while C,+ C,i and

Bd C+ n Bd C int(C,i n S2).
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Imagine a standard model M consisting of the boundary T1 of a tetrahedron
in E which is met by a triangle T at a point bl which is a vertex of T,
T bl c ext T1. One can clearly find a sequence of polyhedral 3-cells
C’i} meeting all conditions (i)-(iv) for the standard model. There is
homeomorphism of E onto E which carries f(S u D) onto M. This can be
seen by noting that in the 3-cell Li C C+1, the segment f(B) n L is
unknotted and so the disk f(D) L is also unknotted in Li. Thus we can
define a homeomorphism f from E C1 onto E C such that
fl(f(S2) T, f(f(D) C) T C’1 and f can be extended so that f
carries f(D ,J S) onto M, by successive extensions to the
We write some corollaries to the proof of (1.1).

(1.2) COROLLARY. Let D and D be tame dislcs in E such that D D. p,
a point of both Bd D and Bd D. If Bd D t Bd D is tame, then D t De is
tame.

(1.3) COROLLARY. Let SI and S be tame 2-spheres in E which meet in a
point p. Then S t S is tame if and only if there is a tame arc J from a point
of S p to a point of S p,J S t S.
Though this lemma and its corollaries have particular interest where Fox-

Artin examples arc concerned [9], their main use here will be in the character-
ization of tame complexes in general.
We exted Theorem 3 of [7].

(1.4) LEMMA. Let {Di}, where i 1, 2, ..., n, be a finite collection of
lame dislcs "in E. If J is an arc on the boundary of each D, and if each pair
of these dislcs meets in J only, then Q [J=l D is tame.

Proof. The case n 2 is established in [7]. It will, therefore, be assumed
that the theorem has been proved for n < tc. Proceeding inductively let
n ]c. There is then no loss of generality ir assuming that B =1 Di is
a polyhedron nd that each D, for i _< l l, is a polyhedral disk.
Sbce B is a polyhedror, B lies in a tame 3-cell C and all but at most two

of the disks in B span the boundary of C. Further Bd C u B is tame. Evi-
dently C may be selected so that C a D J. It follows from [14] that
Bd C Bd D is tame and thus the argument in Theorem 3 of [7] can be
applied to obtain a homeomorphism g of E onto E such that g(C
polyhedron and g(J) is a polygonal path. The disks g(Di) for i

_
/c 1

can ow be made polyhedral without disturbing g(D) by [1.4].

(l.5) COROLLARY. Let K be a finite simplicial 2-dimensional geometric
complex and h a homeomorphism from K in E. If h carries each 1-simplex
and each 2-simplex of K onto a tame set in E, then h(K) is locally tame except
perhaps at its vertices.

Proof. If 2 is a 2-simplex let int(z) deote its interior. By hypothesis
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if 2 is a 2-simplex of K, then h(K) is locally tame at each point of h(int(a2) ).
If ’ is a 1-simplex of K, then h(K) is locally tame at each point of h(int(a’)
by (1.4). Thus, h(K) is locally tame except perhaps at points corresponding
to vertices of K.
We note that the converse of (1.2) is certainly false as shown by Example

1.1 of [9]. This example can be rendered 2-dimensional by the traditional
"swelling of an arc".

2. Tame stars

In this paragraph we show that the general characterization of tame
complexes hold for a 2-dimensional star-complex.

(2.1) THEOREM. Let K be a 1- or 2-dimensional complex, v a vertex of K
such that St v K, and let h be a homeomorphism of K into E3. If h(K) has
a tame 1-skeleton and if each 2-simplex in h(K) is tame, h(K) is tame.

Proof. We will establish this result by induction on k, the number of
2-simplices in K. If ] 0, then K is an n-frame and tame by hypothesis.
Further let B1 and B2 be branches of K and suppose that S is a tame 2-sphere
such that

h(B) u h(B) c S
while

h(K) h(B u B) ext(S2).

Then by (1.1), S u h(K) is tame.
Suppose we have proved (2.1) for all k < j and that for all K having fewer

than j 2-simplices it is true that for each tame 2-sphere S meeting h(K) in
just two 1-simplices, while h(K) ext S, h(K) u S is tame. We suppose
that K has j 2-simplices and that h(K) meets the hypothesis of (2.1). Let

be a 2-simplex of K. Then 2 has a 1-simplex a’ which is opposite v, the
center of the star. Let and be the other 1-simplices of K. Since h(z:)
is tame there is by Lemma 5.1 of [10] and the approximation theorem of Bing
[3] a 2-sphere S such that S h(K) h(ai u ae), 2 is locally polyhedral
except at points of h(z ),

h(K) h(z) ext(S), and h(z) h(z’ ) int(S).

Then S is tame by [8]. Let K1 be the complex obtaied from K by deleting
the interior of a and ’. Then h(K) has (j 2.-simplices and so is tame.
Further h(K) u S is tame by the inductive hypothesis. So there is a homeo-
morphism g of E onto E and g(h(K1) u S) is a polyhedron. Note that
g(S) and g h(z’ ) are polyhedra, while g(h(z)) lies in the interior of
the polyhedral 2-sphere g(S) except for the polygonal path h(z’ u ).
But now by an application of Moise’s theorem on smoothing an annulus [14]
as in [7] one can find another homeomorphism of E oto E which is fixed i
ext(g h(S)) and g: g(h(z’)) is a polyhedral disk. Thus g g(h(K)) is a
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polyhedron and h(K) is tame. It follows by mathematical induction that
(2.1) is true.

3. Tame 2-and 3-complexes
The ease of the 2-complex will first be considered.

(3.1) THEOaEM. Let K be a finite 2-complex and h a homeomorphism from
K into E. Then h(K) is tame if and only if each 2-simplex in h(K) is tame
and the l-skeleton of h(K) is tame.

Proof. The sufficiency of the condition follows from (2.1). For by (2.1),
h(K) is locally tame and then by [2] or [14], h(K) is tame. We show the
necessity by noting that this follows immediately from (3.2).

(3.2) LEMMa. If K is a 2-complex and h a homeomorphism of K into E
such that h(K) is tame, then there is a homeomorphism g of E onto E which
carries h(K) and its l-skeleton onto polyhedra.

Proof. If g is a homeomorphism of E onto E which carries h(K) onto a
polyhedron and if ’ is a 1-simplex of K such that gh(’) is not a polygonal
path, evidently a’ lies on precisely two 2-simplices of K. So by repeated
application of the Schoenflies Theorem in the plane we may assume that for
each a’, gh(r’) is locally polyhedral except perhaps at its end points.

Let v be a vertex of K and suppose that in St(v) there is a 1-simplex ’ and
gh(a’) is not locally polyhedral at gh(v). We select in gh(St(v)) a disk D
containing gh((’) in its interior except for its end points; D is a subcomplex
of gh(K) and D is maximal with respect to the property that gh(K) is locally
euclidean at all interior points of D except perhaps at gh(v) or on a single
1-simplex having gh(v) as end point. It is not difficult to see that gh((r’)
may be thrown onto a path on D which is locally polygonal at gh(v). This
procedure can then be applied to each 1-simplex and each of its vertices.
This proves (3.2).

(3.3) THEOREM. Let K be a finite geometric simplicial complex and h a
homeomorphism of K into Ea. Then h(K) is tame if and only if h carries the
1-stceleton of K and each 2-simplex of K onto a tame set.

Proof. The sufficiency of the condition follows from (3.1) and J. W.
Alexander’s polyhedral Schoenflies Theorem [1].

Following Moise we denote by BK the subcomplex of K consisting of all
points at which K is not 3-dimensional along with the 2-simplices of K which
are faces of just one 3-simplex. Then if h(K) is tame, h(BK) is tame. By
(3.2) we may suppose that each 1- and 2-simplex of h(BK) is a polyhedron.
If lc is the nu,nber of 3-simplices in K, then (3.3) is true for lc 0. If (3.3)
has been shown for lc < j, let K have j 3-simplices. Since the subcomplex
of K consisting of the closure of those points at which K is not 3-dimensional
is carried by h to a polyhedron, we assume without loss of generality that K
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is homogeneous and that further K is connected and is separated by no 0- or
1-simplex. Evidently the 1-skeleton of h(K) is locally tame at each vertex
of h(K BK). So let h(v) be a vertex of h(BK) and h(G) the 1-skeleton
of h(BK). If a2 is a 2-simplex in BK with v as a vertex, let a3 be the 3-simplex
containing . Then by (1.1), a3 u h(G) is locally tame at h(v). Evi-
dently by applying (1.1) and [8] to the 3-simplices having v as vertex re-
peatedly, we can show that the 1-skeleton of h(K) is locally tame at h(v).

If vl is a vertex of K in K BK, then St(v1) is a closed 3-cell and the
1-skeleton of h(St v) is locally tame at h(v). Thus h(K) has a tame 1-skele-
ton. That h(K) has tame 2-simplices follows from [8].
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