ON THE EMBEDDING OF COMPLEXES $\operatorname{IN} 3$-SPACE ${ }^{1}$

BY
P. H. Doyle
\section*{Introduction}

This paper is a sequel to [5], [6], [7]. The example in [5] was discovered to be tame by R. H. Bing, but a similar and wild one can be found in [4].

By a complex we mean a finite geometric simplicial complex [11]. If K is such a complex and if h is a homeomorphism from K into a euclidean space $E^{n}, h(K)$ is said to be a topological complex with the understanding that the simplices of $h(K)$ are the topological images of the simplices of K under h. Similarly the i-skeleton of $h(K)$ is the image under h of the i-skeleton of K.

Our main result asserts that if K is a finite complex and if $h(K)$ is embedded in E^{3}, then $h(K)$ is tame [9] if and only if h carries the 1 -skeleton of K onto a tame set while each 2 -simplex of $h(K)$ is tame [2], [14]. Of course, if K is 1-dimensional the result applies only trivially; the 1-dimensional case is considered in [7].

The characterization of tame sets as locally tame in [2] and [14] permits a reduction of our problem to complexes which are stars; that is, to complexes which are the closed star of a vertex. In $\$ 1$ certain special 2 -complexes are shown to be tame. In $\mathbb{T} 2$, the special case of a 2 -dimensional complex which is a star is studied. The theorem is then established in $\$ 3$ by reducing the general 2 - and 3-dimensional cases to the special case of $\mathbb{T} 2$.

1. Unions of disks and arcs

If S^{2} is a 2 -sphere in $E^{3}, \operatorname{ext}\left(S^{2}\right)$ denotes the component of $E^{3}-S^{2}$ with non-compact closure, and $\operatorname{int}\left(S^{2}\right)$ is the other component. An n-frame is defined in [4] and is simply the topological image of a 1 -complex which is the star of a vertex, the branch point of the n-frame. The 1 -simplices of an n-frame are called its branches. If D is a simplex, $\operatorname{Bd} D$ is its boundary.
(1.1) Lemma. Let G be a tame n-frame and S^{2} a tame 2-sphere in E^{3}. If two branches (one branch) of G lie in S^{2} while the remainder of G lies in $\operatorname{ext}\left(S^{2}\right)$, then $G \cup S^{2}$ is a tame set.

Proof. Let B_{1} and B_{2} be the branches of G which lie in S^{2} while b is the branch point of G. Then $G_{1}=\left(G-\mathrm{U}_{1}^{2} B_{i}\right) \cup b$ is a tame $(n-2)$-frame with branch point b and $G_{1} \cap S^{2}=b$. We show first that G_{1} lies on a tame disk D, while $D \cap S^{2}=b$.

Since G is tame, $G_{1} \cup B_{1}$ is tame and there is a tame disk D_{1} which contains

[^0]$G_{1} \cup B_{1}$ while $D_{1} \cap B_{2}=b$ and $B_{1} \subset \operatorname{Bd} D_{1}$. Then by the Schoenflies Theorem for E^{2} there is a disk P in S^{2} which contains $B_{2}-b$ in its interior, $B_{1} \cap \mathrm{Bd} P=b$ and $P \cap D_{1}=b$. Now let U be an open set in E^{3} which contains $\operatorname{int}(P), U \cap D_{1}=\square$. There is a homeomorphism g of E^{3} onto E^{3} which leaves G_{1} ч B_{2} fixed and $g\left(S^{2}\right) \subset U$ u P; this follows from the tameness of S^{2}. We note that $g\left(S^{2}\right) \cap D_{1}=b$. Evidently the disk $D=g^{-1}\left(D_{1}\right)$ meets the conditions we required. The lemma will follow if we show that D u S^{2} is tame.

If B_{3} is a branch of G_{1}, then $B_{3} \cup B_{2}$ is tame since G is tame. The branch B_{2} lies on the boundary of a disk Q in $\overline{\operatorname{int}\left(S^{2}\right)}$ such that Q is tame and $Q \cap S^{2}=B_{2}$. Thus by selecting an arc J on Bd Q having b as an end point while $J-b \subset \operatorname{int}\left(S^{2}\right)$ we see that $J \cup B_{3}$ is a tame arc piercing S^{2} at b. Whence, by [13], $B_{3} \cup S^{2}$ is tame.

There is no loss of generality in supposing that B_{3} lies in the interior of D except for its two end points. We assume this is the case and let k be a homeomorphism of D onto a triangle T so that $k(b)$ is a vertex of T. Let $\left\{l_{i}^{\prime}\right\}$ be a sequence of segments in T such that each l_{i}^{\prime} is parallel to the side of T opposite $k(b)$ and spans $\mathrm{Bd} T$; it is supposed that $k\left(B_{3}\right)$ is a segment and that $\left\{l_{i}^{\prime}\right\}$ converges monotonically to $k(b)$. Then let $l_{i}=k^{-1}\left(l_{i}^{\prime}\right)$.

The set S^{2} u B_{3} is tame and so there is a homeomorphism f of E^{3} onto E^{3}, which throws S^{2} onto the boundary B of a tetrahedron while $f\left(B_{3}\right)$ is a segment meeting B orthogonally in the interior of a face F of the tetrahedron. If U_{1} is any open set in E^{3} containing $f(b)$, there is a value j such that $f\left(l_{j}\right) \subset U_{1}$ and the component C_{b}^{2} of $f(D)-f\left(l_{j}\right)$ which contains $f(b)$ lies in U_{1}. The set $f(D)-C_{b}^{2}$ is a disk L^{2} and by construction $f\left(S^{2}\right.$ u $\left.B_{3}\right)$ u L^{2} is locally tame and so tame [2], [14]. It follows that in U_{1} there is a tame 3 -cell C_{u} which meets F in a disk on $\operatorname{Bd} C_{u}, C_{u} \subset \overline{\operatorname{ext} B}, \operatorname{Bd} C_{u} \cap L^{2}$ is a spanning arc of $\operatorname{Bd} f(D)$ between $f\left(l_{j-1}\right)$ and $f\left(l_{j}\right)$ with its end points on $f\left(l_{j}\right)$,

$$
\operatorname{Bd} C_{u} \cup f\left(S^{2}\right) \cup L^{2} \cup f\left(B_{3}\right)
$$

is tame and $\operatorname{Bd} C_{u} \cap f\left(B_{3}\right)$ is a pair of points one of which is $f(b)$. We assert that C_{u} may be chosen so that $\operatorname{Bd} C_{u} \cap C_{b}^{2}=f(b)$. For if $\bar{C}_{b}^{2} \cap \operatorname{Bd} C_{u}$ is not $f(b)$ the tameness of \bar{C}_{b}^{2} permits the removal of other intersections with $\mathrm{Bd} C_{u}$ by a homeomorphism of L^{3} onto E^{3} which is fixed outside of U and leaves L^{2} and $f\left(S^{2}\right)$ fixed.

It is now possible to select a sequence of 3 -cells $\left\{C_{i}\right\}$ with the following properties:
(i) $\quad C_{i} \cup f\left(S^{2}\right) \cup f\left(B_{3}\right)$ is tame, $\cap C_{i}=f(b)$;
(ii) $\operatorname{Bd} C_{i} \cap f(D)$ is an arc spanning $\operatorname{Bd} f(D)$ plus $f(b)$;
(iii) $\mathrm{Bd} C_{i} \cap f\left(B_{3}\right)$ is a pair of points;
(iv) $C_{i} \cap f\left(S^{2}\right)$ is a disk on $\mathrm{Bd} C_{i}$ while $C_{i+1} \subset C_{i}$ and

$$
\operatorname{Bd} C_{i+1} \cap \operatorname{Bd} C_{i} \supset \operatorname{int}\left(C_{i} \cap S^{2}\right)
$$

Imagine a standard model M consisting of the boundary T_{1} of a tetrahedron in E^{3} which is met by a triangle T_{2} at a point b_{1} which is a vertex of T_{2}, $T_{2}-b_{1} \subset$ ext T_{1}. One can clearly find a sequence of polyhedral 3 -cells $\left\{C_{i}^{\prime}\right\}$ meeting all conditions (i)-(iv) for the standard model. There is a homeomorphism of E^{3} onto E^{3} which carries $f\left(S^{2} \cup D\right)$ onto M. This can be seen by noting that in the 3 -cell $L_{i}=\overline{C_{i}-C_{i+1}}$, the segment $f\left(B_{3}\right) \cap L_{i}$ is unknotted and so the disk $f(D) \cap L_{i}$ is also unknotted in L_{i}. Thus we can define a homeomorphism f_{1} from $\overline{E^{3}-C_{1}}$ onto $\overline{E^{3}-C_{1}^{\prime}}$ such that $f_{1}\left(f\left(S^{2}\right)\right)=T_{1}, f_{1}\left(f(D)-C_{1}\right)=T_{2}-C_{1}^{\prime}$ and f_{1} can be extended so that f_{1} carries $f\left(D \cup S^{2}\right)$ onto M, by successive extensions to the L_{i}.

We write some corollaries to the proof of (1.1).
(1.2) Corollary. Let D_{1} and D_{2} be tame disks in E^{3} such that $D_{1} \cap D_{2}=p$, a point of both $\mathrm{Bd} D_{1}$ and $\operatorname{Bd} D_{2}$. If $\operatorname{Bd} D_{1} \cup \operatorname{Bd} D_{2}$ is tame, then $D_{1} \cup D_{2}$ is tame.
(1.3) Corollary. Let S_{1} and S_{2} be tame 2 -spheres in E^{3} which meet in a point p. Then $S_{1} \cup S_{2}$ is tame if and only if there is a tame arc J from a point of $S_{1}-p$ to a point of $S_{2}-p, J \subset S_{1} \cup S_{2}$.

Though this lemma and its corollaries have particular interest where FoxArtin examples are concerned [9], their main use here will be in the characterization of tame complexes in general.

We extend Theorem 3 of [7].
(1.4) Lemma. Let $\left\{D_{i}\right\}$, where $i=1,2, \cdots, n$, be a finite collection of tame disks in E^{3}. If J is an arc on the boundary of each D_{i}, and if each pair of these disks meets in J only, then $Q=\bigcup_{i=1}^{n} D_{i}$ is tame.

Proof. The case $n=2$ is established in [7]. It will, therefore, be assumed that the theorem has been proved for $n<k$. Proceeding inductively let $n=k$. There is then no loss of generality in assuming that $B=\bigcup_{i=1}^{k-1} D_{i}$ is a polyhedron and that each D_{i}, for $i \leq k-1$, is a polyhedral disk.

Since B is a polyhedron, B lies in a tame 3 -cell C and all but at most two of the disks in B span the boundary of C. Further $\mathrm{Bd} C$ u B is tame. Evidently C may be selected so that $C \cap D_{k}=J$. It follows from [14] that $\mathrm{Bd} C$ u $\operatorname{Bd} D_{k}$ is tame and thus the argument in Theorem 3 of [7] can be applied to obtain a homeomorphism g of E^{3} onto E^{3} such that $g\left(C \cup D_{k}\right)$ is a polyhedron and $g(J)$ is a polygonal path. The disks $g\left(D_{i}\right)$ for $i \leq k-1$ can now be made polyhedral without disturbing $g\left(D_{k}\right)$ by [14].
(1.5) Corollary. Let K be a finite simplicial 2-dimensional geometric complex and h a homeomorphism from K in E^{3}. If h carries each 1-simplex and each 2-simplex of K onto a tame set in E^{3}, then $h(K)$ is locally tame except perhaps at its vertices.

Proof. If σ^{2} is a 2 -simplex let $\operatorname{int}\left(\sigma^{2}\right)$ denote its interior. By hypothesis
if σ^{2} is a 2 -simplex of K, then $h(K)$ is locally tame at each point of $h\left(\operatorname{int}\left(\sigma^{2}\right)\right)$. If σ^{\prime} is a 1 -simplex of K, then $h(K)$ is locally tame at each point of $h\left(\operatorname{int}\left(\sigma^{\prime}\right)\right)$ by (1.4). Thus, $h(K)$ is locally tame except perhaps at points corresponding to vertices of K.

We note that the converse of (1.2) is certainly false as shown by Example 1.1 of [9]. This example can be rendered 2 -dimensional by the traditional "swelling of an are".

2. Tame stars

In this paragraph we show that the general characterization of tame complexes hold for a 2 -dimensional star-complex.
(2.1) Theorem. Let K be a 1- or 2-dimensional complex, v a vertex of K such that St $v=K$, and let h be a homeomorphism of K into E^{3}. If $h(K)$ has a tame 1-skeleton and if each 2-simplex in $h(K)$ is tame, $h(K)$ is tame.

Proof. We will establish this result by induction on k, the number of 2 -simplices in K. If $k=0$, then K is an n-frame and tame by hypothesis. Further let B_{1} and B_{2} be branches of K and suppose that S^{2} is a tame 2 -sphere such that
while

$$
\begin{gathered}
h\left(B_{1}\right) \cup h\left(B_{2}\right) \subset \mathbb{S}^{2} \\
h(K)-h\left(B_{1} \cup B_{2}\right) \subset \operatorname{ext}\left(S^{2}\right)
\end{gathered}
$$

Then by (1.1), $S^{2} u h(K)$ is tame.
Suppose we have proved (2.1) for all $k<j$ and that for all K having fewer than $j 2$-simplices it is true that for each tame 2 -sphere S^{2} meeting $h(K)$ in just two 1 -simplices, while $h(K) \subset \overline{\operatorname{ext} S^{2}}, h(K) \cup S^{2}$ is tame. We suppose that K has $j 2$-simplices and that $h(K)$ meets the hypothesis of (2.1). Let σ^{2} be a 2 -simplex of K. Then σ^{2} has a 1 -simplex σ^{\prime} which is opposite v, the center of the star. Let σ_{1}^{\prime} and σ_{2}^{\prime} be the other 1 -simplices of K. Since $h\left(\sigma^{2}\right)$ is tame there is by Lemma 5.1 of [10] and the approximation theorem of Bing [3] a 2 -sphere S^{2} such that $S^{2} \cap h(K)=h\left(\sigma_{1}^{\prime} \cup \sigma_{2}^{\prime}\right), S^{2}$ is locally polyhedral except at points of $h\left(\sigma_{1}^{\prime} \cup \sigma_{2}^{\prime}\right)$,

$$
h(K)-h\left(\sigma^{2}\right) \subset \operatorname{ext}\left(S^{2}\right), \quad \text { and } \quad h\left(\sigma^{2}\right)-h\left(\sigma_{1}^{\prime} \cup \sigma_{2}^{\prime}\right) \subset \operatorname{int}\left(S^{2}\right)
$$

Then S^{2} is tame by [8]. Let K_{1} be the complex obtained from K by deleting the interior of σ^{2} and σ^{\prime}. Then $h\left(K_{1}\right)$ has $(j-1) 2$-simplices and so is tame. Further $h\left(K_{1}\right)$ บ S^{2} is tame by the inductive hypothesis. So there is a homeomorphism g_{1} of E^{3} onto E^{3} and $g_{1}\left(h\left(K_{1}\right) \cup S^{2}\right)$ is a polyhedron. Note that $g_{1}\left(S^{2}\right)$ and $g_{1} h\left(\sigma_{1}^{\prime} \mathbf{u} \sigma_{2}^{\prime}\right)$ are polyhedra, while $g_{1}\left(h\left(\sigma^{2}\right)\right)$ lies in the interior of the polyhedral 2 -sphere $g_{1}\left(S^{2}\right)$ except for the polygonal path $h\left(\begin{array}{lll}\sigma_{1}^{\prime} & \cup & \sigma_{2}^{\prime}\end{array}\right)$. But now by an application of Moise's theorem on smoothing an annulus [14] as in [7] one can find another homeomorphism of E^{3} onto E^{3} which is fixed in $\operatorname{ext}\left(g_{1} h\left(S^{2}\right)\right)$ and $g_{2} g_{1}\left(h\left(\sigma^{2}\right)\right)$ is a polyhedral disk. Thus $g_{2} g_{1}(h(K))$ is a
polyhedron and $h(K)$ is tame. It follows by mathematical induction that (2.1) is true.

3. Tame 2- and 3-complexes

The case of the 2 -complex will first be considered.
(3.1) Theorem. Let K be a finite 2-complex and h a homeomorphism from K into E^{3}. Then $h(K)$ is tame if and only if each 2 -simplex in $h(K)$ is tame and the 1-skeleton of $h(K)$ is tame.

Proof. The sufficiency of the condition follows from (2.1). For by (2.1), $h(K)$ is locally tame and then by [2] or [14], $h(K)$ is tame. We show the necessity by noting that this follows immediately from (3.2).
(3.2) Lemma. If K is a 2-complex and h a homeomorphism of K into E^{3} such that $h(K)$ is tame, then there is a homeomorphism g of E^{3} onto E^{3} which carries $h(K)$ and its 1 -skeleton onto polyhedra.

Proof. If g is a homeomorphism of E^{3} onto E^{3} which carries $h(K)$ onto a polyhedron and if σ^{\prime} is a 1 -simplex of K such that $g h\left(\sigma^{\prime}\right)$ is not a polygonal path, evidently σ^{\prime} lies on precisely two 2 -simplices of K. So by repeated application of the Schoenflies Theorem in the plane we may assume that for each $\sigma^{\prime}, g h\left(\sigma^{\prime}\right)$ is locally polyhedral except perhaps at its end points.

Let v be a vertex of K and suppose that in $\operatorname{St}(v)$ there is a 1 -simplex σ^{\prime} and $g h\left(\sigma^{\prime}\right)$ is not locally polyhedral at $g h(v)$. We select in $g h(\operatorname{St}(v))$ a disk D containing $g h\left(\sigma^{\prime}\right)$ in its interior except for its end points; D is a subcomplex of $g h(K)$ and D is maximal with respect to the property that $g h(K)$ is locally euclidean at all interior points of D except perhaps at $g h(v)$ or on a single 1 -simplex having $g h(v)$ as end point. It is not difficult to see that $g h\left(\sigma^{\prime}\right)$ may be thrown onto a path on D which is locally polygonal at $g h(v)$. This procedure can then be applied to each 1 -simplex and each of its vertices. This proves (3.2).
(3.3) Theorem. Let K be a finite geometric simplicial complex and $h a$ homeomorphism of K into E^{3}. Then $h(K)$ is tame if and only if h carries the 1 -skeleton of K and each 2-simplex of K onto a tame set.

Proof. The sufficiency of the condition follows from (3.1) and J. W. Alexander's polyhedral Schoenflies Theorem [1].

Following Moise we denote by $B K$ the subcomplex of K consisting of all points at which K is not 3 -dimensional along with the 2 -simplices of K which are faces of just one 3 -simplex. Then if $h(K)$ is tame, $h(B K)$ is tame. By (3.2) we may suppose that each 1- and 2 -simplex of $h(B K)$ is a polyhedron. If k is the number of 3 -simplices in K, then (3.3) is true for $k=0$. If (3.3) has been shown for $k<j$, let K have $j 3$-simplices. Since the subcomplex of K consisting of the closure of those points at which K is not 3-dimensional is carried by h to a polyhedron, we assume without loss of generality that K
is homogeneous and that further K is connected and is separated by no 0 - or 1 -simplex. Evidently the 1 -skeleton of $h(K)$ is locally tame at each vertex of $h(K-B K)$. So let $h(v)$ be a vertex of $h(B K)$ and $h(G)$ the 1 -skeleton of $h(B K)$. If σ^{2} is a 2 -simplex in $B K$ with v as a vertex, let σ^{3} be the 3 -simplex containing σ^{2}. Then by (1.1), σ^{3} u $h(G)$ is locally tame at $h(v)$. Evidently by applying (1.1) and [8] to the 3 -simplices having v as vertex repeatedly, we can show that the 1 -skeleton of $h(K)$ is locally tame at $h(v)$.

If v_{1} is a vertex of K in $K-B K$, then $\operatorname{St}\left(v_{1}\right)$ is a closed 3-cell and the 1 -skeleton of $h\left(\operatorname{St} v_{1}\right)$ is locally tame at $h\left(v_{1}\right)$. Thus $h(K)$ has a tame 1 -skeleton. That $h(K)$ has tame 2 -simplices follows from [8].

References

1. J. W. Alexander, On the sub-division of space by a polyhedron, Proc. Nat. Acad. Sci. U. S. A., vol. 10 (1924), p. 68.
2. R. H. Bing, Locally tame sets are tame, Ann. of Math. (2), vol. 59 (1954), pp. 145158.
3. ——, Approximating surfaces with polyhedral cones, Ann. of Math. (2), vol. 65 (1957), pp. 456-483.
4. H. Debrunner and R. H. Fox, A mildly wild imbedding of an n-frame, Duke Math. J., vol. 27 (1960), pp. 425-430.
5. P. H. Doyle, A wild triod in 3-space, Duke Math. J., vol. 26 (1959), pp. 263-268.
6. -_, Tame triods in E^{3}, Proc. Amer. Math. Soc., vol. 10 (1959), pp. 656-658.
7. -_, Unions of cell pairs in E^{3}, Pacific J. Math., vol. 10 (1960), pp. 521-523.
8. P. H. Doyle and J. G. Hocking, Some results on tame disks and spheres in E^{3}, Proc. Amer. Math. Soc., vol. 11 (1960), pp. 832-836.
9. R. H. Fox and E. Artin, Some wild cells and spheres in three-dimensional space, Ann. of Math. (2), vol. 49 (1948), pp. 979-990.
10. O. G. Harrold, H. C. Griffith, and E. E. Posey, A characterization of tame curves in three-space, Trans. Amer. Math. Soc., vol. 79 (1955), pp. 12-34.
11. J. G. Hocking and G. S. Young, Topology, Addison-Wesley, 1961.
12. E. E. Moise, Affine structures in 3-manifolds, V. The triangulation theorem and haupvermutung, Ann. of Math. (2), vol. 56 (1952), pp. 96-114.
13. ——, Affine structures in 3-manifolds, VII. Disks which are pierced by intervals, Ann. of Math. (2), vol. 58 (1953), pp. 403-408.
14. -, Affine structures in 3-manifolds, VIII. Invariance of the knot-types; local tame imbedding, Ann. of Math. (2), vol. 59 (1954), pp. 159-170.

Virginia Polytechnic Institute
Blacksburg, Virginia
University of Tennessee
Knoxville, Tennessee

[^0]: Received June 26, 1963.
 ${ }^{1}$ Most of the results here were obtained in the author's thesis written under O. G. Harrold and supported in part by the National Science Foundation.

