IMPROVING THE INTERSECTION OF POLYHEDRA IN
3-MANIFOLDS

BY
RoBeERT CrAGGS!

1. Introduction

Bing showed [10] that for a pair of intersecting 2-spheres S and &’ in E*
such that § is tame there is a small homeomorphism of E* onto itself which
adjusts S so that the components of its intersection with S’ consist of a finite
number of mutually exclusive simple closed curves in the inaccessible part of a
Sierpinski curve together with sets of small diameter which fail to intersect
the Sierpinski curve. Theorems 6.1 and 6.2 of this paper show that analogous
results hold for topological embeddings of polyhedra in 3-manifolds. In
order to prove these theorems we will need to extend to the case of polyhedra
certain results about tame Sierpinski curves on spheres. These results were
developed by Bing in [5]-[9].

In general we follow the definitions employed in [1]-[10]. We include a
few important old definitions here as well as introduce a few new terms.

We use the term complex to mean geometric complex and we allow infinite
complexes. Simplexes are closed. That is, they contain their boundaries.

An n-manifold is a separable metric space such that each point has a neigh-
borhood which is homeomorphic to Euclidean n-space E". An n-manifold
with boundary is a separable metric space such that each point has a neighbor-
hood which is homeomorphic to either Euclidean n-space or the closed upper
half space of Euclidean n-space. We use the term surface as a synonym for
2-manifold with boundary.

In a 3-manifold a set X which is homeomorphic to a polyhedron is fame
if there is a triangulation of the manifold in which X underlies a subcomplex.
For triangulated 3-manifolds an equivalent definition is that there is a homeo-
morphism of the 3-manifold onto itself which carries X onto a polyhedron
[1], [22]. A set X in a 3-manifold is locally tame at a point p if there is a
neighborhood N of p in the 3-manifold and a homeomorphism of Cl (N)
into a 3-simplex which takes Cl (N) n X onto a polyhedron. A set X in a
3-manifold is locally tame if it is locally tame at each of its points. In [1],
[22] it is shown that if a closed subset X of a triangulated 3-manifold is locally
tame then there is a homeomorphism of the 3-manifold onto itself which
carries X onto a polyhedron.

An arc ab in E® pierces a disk D at a point p of Int (ab) if there is a neigh-
borhood of p in ab-which intersects D only at p and a positive number £ such
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that no arc of diameter less than & connects ap to pb without intersecting D.
An equivalent condition is that for any simple closed curve J in E° containing
a neighborhood of p in ab there are simple closed curves in D arbitrarily near
p whichlink J. Here the linking is homology linking with Z, coefficients which
is a symmetric form of linking. In [6, Sections 1-3] it is shown that the first
condition implies the second, and the other implication follows from argu-
ments like those employed in [7, special case]. An arc ab in a 3-manifold
pierces a disk D at a point p if there is a neighborhood O of p in the 3-manifold
and a homeomorphism % of O into E* so that the image under h of some subarc
of ab pierces at h(p) the image under h of some subdisk of D.

A null sequence or a null collection of sets is a sequence or collection of
sets such that for each positive number ¢ at most a finite number of the sets
have diameters exceeding . A Sierpinsks curve is any topological space which
is homeomorphic to the complement in a 2-sphere of the union of the interiors
of a dense null sequence of mutually exclusive disks on the sphere. A point of
a Sierpinski curve is an accesstble point of the curve if there is an embedding
of the curve into a 2-sphere so that the image of the point is arcwise accessible
from the complement of the image of the curve. If no such embedding exists
then the point is called an snaccessible point of the curve. Any two Sierpinski
curves are homeomorphic; further, the image of an accessible point of a
Sierpinski curve under any embedding of the curve into a 2-sphere is arcwise
accessible from the complement of the image of the curve [24]. A Sierpinski
curve in a 3-manifold is tame if it lies on a tame disk.

A disk D is normally situated in a surface S if D either lies in Int (S) or
intersects Bd (S) in an arc. A Sierpinski curve is normally situated in a
surface if the closures of the components of its complement in the surface
are mutually exclusive normally situated disks. Suppose that S is a surface
and suppose that X is a Sierpinski curve which is normally situated in S.
Define A(X, 8) to be those points of X which are arcwise accessible from
S — X, and define I(X, S) to be those points of X which are not arcwise
accessible from S — X. If Sis a disk it is possible for points of I(X, S) to
be accessible points of the Sierpinski curve X so one should not equate 4 (X, S)
and I(X, S) with respectively the accessible and inaccessible points of X.

A topological space is of pure dimension two if it is two-dimensional and
has no open subsets of dimension less than two. Suppose that W is a
topological space which is homeomorphie to a finite polyhedron of pure dimen-
sion two. We call a compact set X in W a universal curve in W if W possesses
a curvilinear triangulation T'w such that the intersection of X with each 2-sim-
plex of T'w is a Sierpinski curve which is normally situated in that simplex.
We say that a universal curve X in W is normally situated with respect to a
curvilinear triangulation Tw of W if X misses the O-skeleton of T'w and if
the intersection of X with each 2-simplex of T'w is a Sierpinski curve which
is normally situated in that 2-simplex. If X is a universal curve in a space
W we denote by A(X, W) the set of points of X which are arcwise accessible
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from W — X and by I(X, W) the set of points of X which are not arcwise
accessible from W — X. Note that a universal curve in a space W is not
connected if W is not connected.

We use the term general position in the following senses. A collection of
points in Euclidean space E" is in general position if no k + 2 of them lie
in the same k-plane (kK < n). A pair of complexes K and L in E" are in
general position with respect to each other if for each simplex s of K and each
simplex ¢ of L the vertices of s and ¢ miss each other and the combined col-
lection of vertices is in general position. Polyhedra K and L in a piecewise
linear n-manifold, or a polyhedron K and a complex L in a piecewise linear
n-manifold, or a polyhedron K and a complex L in E” are in general position
with respect to each other if for each point p of K n L there is a polyhedron
N(p) which contains a neighborhood of p in the manifold or E", there are
polyhedra K(p) and L(p) in N(p) n K and N(p) n L which contain neigh-
borhoods of p in K and L respectively, and there is a piecewise linear homeo-
morphism of N(p) into E” which takes K(p) and L(p) onto complexes in
general position with respect to each other.

We denote the join of a pair of joinable simplexes s and ¢ by st. Similarly
we denote the join of a pair of joinable complexes K and L by KL. See [26]
for a definition of join.

By an e-set in a metric space we mean a set of diameter less than . We
use the expression pwl as an abbreviation for piecewise linear. The letter p
denotes the metric on a metric space, and the letter I denotes the identity
homeomorphism of a space onto itself.

2. Fattening up polyhedra

In this section we prove some lemmas about thickening up topological
embeddings of polyhedra in 3-manifolds. These lemmas will later help us to
extend certain self homeomorphisms of topological embeddings of polyhedra
in 3-manifolds to homeomorphisms of the 3-manifolds onto themselves. In
some cases alternate polyhedral versions of lemmas are stated in parentheses.
These alternate versions will not be used here but will be used in [11], [12].

The proof of Lemma 2.1 was suggested to the author by Joseph Martin.

Lemma 2.1. Suppose that M is a 3-manifold and Dy, -++, D;, +++, Dy
(n > 1) s a collection of disks in M whose pairwise interseciions are all the
same, an arc A in N\ Bd (D;). SetH = UD;and B = (UBd (D)) — Int (4).

Suppose that O s an open set in M contatning H — B.

Then there is a reordering D;,, -+ , Ds,, Di,,, = D, of the disks D;, and
there is a connected open subset U of O which contains H — B such that
U — (H — B) has exactly n-components U, , --- , U, where each Cl (U;) n H
= Di;u Dyj,,. Further each open disk Int (Di;u Ds;,,) separates U into two
components U; and (U;; U;) U (UD‘,‘D,.’.M Dijp Int (D.)).

Proof. From [19], H has a neighborhood in M which can be embedded in
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E? s0o we might as well assume that M = E°’. Further H is an absolute
retract so there is a mapping r of Cl (0) onto H such that 7|z is the identity.
Let O denote the subset of O which consists of the points x such that p(x, r(x))
is less than p(z, B). A neighborhood of H — B is contained in 0’. Define
U to be the component of O which contains H — B.

Let P(k) (2 < kE £ n) denote the followmg proposﬂnon The disks

Dy, ---, D can be reordered D%, , ---, D, D ,,M = D’f, so that
U — ((H B) n (Ui« Dy)) has exactly k components U%, .-, U¥ where
each

Cl (U%) n (Ui Dy) = Df;u DS,

and where U is separated by each Int (D} ;U D'fj +1) into two components
Us and (Ui UD) U (Uick ana pisnk or b . Int (D;)).
’Ij ‘lj+

If P(n) is valid then the lemma follows by setting each D;; = Dy and each
U; = U;". We show that P(k) is valid for all £ (2 < k < n) by induction.

Proof that P(2) is valid. The open disk Int (Dy u D,) separates U. To
see this use [6, Theorem 5.3] to find an arc ¢ in U which pierces D, u D, at
a point p and otherwise fails to meet Dy u D,. If Int (D, u D,) does not
separate U then ¢ can be completed to a simple closed curve J in U whose
intersection with D; u D. is p. Since ¢ pierces Dy u D, at p there are simple
closed curves on D; u D, which link J. Any such simple closed curve is
homotopic to Bd (D, u D,) missing J so Bd (D; u D.) links J. But J can
be pushed into H — B missing Bd (D; u D;) by pushing each point z of J
along the line segment missing B from « to r(x), and then 7(J) can be shrunk
to a point in the contractible set H — B which does not meet Bd (D; u D).
Thus Bd (D; u D,) cannot link J, and we conclude from the contradlctlon that
Int (Dy u D;) separates U.

From [4, Theorem 5] and the fact [25, Theorem 5.35 of Chapter 2] that a
2-sphere in E® is locally two sided it follows that a connected surface which
is a closed subset of a connected 3-manifold separates the 3-manifold into at
most two components and is the boundary of each component. We conclude
that there are two components Ui and Uj; of U — Int (Dy u D). Set
D}, = Dy, D}, = D;,and D}, = D;. We then have the relation

Cl (U) n (Dyu Dy) = Di;u Di,,,.
This verifies that P(2) is valid.

Proof that P(k) tmplies P(k + 1). Suppose that we have established for an
integer k that P(k) is valid. Then we have a reordering D}, , ---, D%,
D'ﬁk“ = D% of the disks Dy, :--, D; and components U}, ---, Ux
of U — ((H — B) n (Uix D;) such that each

Cl (U’;) n (Uig:Di) = Dk u D';+1
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Let U® denote the U¥ which contains Int (Dyy1).

The open disk Int (Ds41) separates Ur into two components U% and U,
and it is contained in the closure of each. To see this choose an arc s in UY
which pierces Dy at a point g and otherwise fails to meet Dyyy .  If Int (Dyy1)
fails to separate U% then there is a simple closed curve J' in U* which contains
s and whose intersection with Dj41 is ¢. An argument like the one in the
case of P(2) obtains a contradiction by showing that J' both links and fails
tolink Bd (Dsyau D). Thus we may conclude that Int (Dy,1) separates U .

Just as in the case of P(2) we conclude that U? — Int (Dy;1) has exactly
two components U%y and U%, and that the closure of each of these contains
Dyy1. Suppose for convenience that Cl (Ux) n Int (Df,) 5 @. If C1 (U%)
shared a point with Cl (U%,) in Int (D%,) u Int (D}, +1) it would follow from
[4, Theorem 5] and [25, Theorem 5.35 of Chapter 2] that U% n U¥ would be
non empty. Thus we may conclude that

Cl (Ux) n (Ui D)) = D’:, U Dy

and Cl (U ) n (Uz<lc+1 D ) = 1.,+1 u Dk+1
Set D}, = Dij* (j < r) Dk+1 = D'.‘:“jl,D" = ijjl Gzr4+1),Us=U"

G <), Ut = U':'H, Uk, = USL,and U = U1 (j > r 4+ 1). The reader
may use these terms to verify that the first half of the conclusion in P(k + 1)
is valid. To verify that the second half of the conclusion is valid note that
for each integer j the sets

U,;'H and (Ui;ej U?H) U (Ui5k+1 and ni;gp’f or D¥ Int (D:))
.7

are mutually exclusive open sets whose sum is U — Int (DIt u DELD.
Since U™ is connected it follows from our remarks in the proof of P(2)
that the other open set is connected.

We have established that P(k) implies P(k + 1) and that P(2) is valid.
By induction we may conclude that P(k) is valid for all k (2 < k < n) and
thus that the lemma is true.

We leave the proof of the following lemma to the reader.

LemMa 2.2, Suppose that vA™ ™ is an n-simplex in E™ which s the join of a
point v and an (n — 1)-simplex A™™. Suppose that O is an open set (open
polyhedron) in E™which contains Int (A" ™) and which is separated by Int (A™™)
wnto two components, Or and O, .

Suppose O is the component of O — Int (A™™) such that A" lies in the closure
of Oy n Int (vA™ ™).

Then there is a (pwl) homeomorphism ¢ of vA™ " into stself which s the identity
on A" and which sends VA" — A" into O, .

Lemma 2.3. Suppose that M s a (triangulated) 3-manifold, D is a tame
(polyhedral) disk in M, A s an arc on Bd (D), and O is an open set (open
polyhedron) containing Int (4).
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Then there is a tame (polyhedral) disk Dy whose boundary contains A such
that DynD = A and D, — Bd (A) C O.

Proof. If M does not have a triangulation use [3], [20] to give it one.
From [1], [22] the triangulation can be chosen so that D is a polyhedron. Let
B be a polyhedral cube in M whose interior contains D, and let k; be a pwl
homeomorphism of B into E’.

From [15, Section 4] there is a pwl homeomorphism %, of E® onto itself
which takes hi (D) onto a 2-simplex vo where ¢ is a 1-simplex that is the image
of li(A). Let A be a 2-simplex which has o as a face, which lies in the same
plane as vo, and which intersects vo in exactly . Let P denote the plane which
contains A; and ve. Now hhi(O n Int (B)) n P is an open set (open poly-
hedron) containing Int (¢). Thus we may apply the appropriate version of
Lemma 2.2 to find a (pw!) homeomorphism ¢ of A; into itself such that

#(A1) nve = o, ¢[p = I and ¢(A) — Bd(e) C hy ha(0).
For the tame (polyhedral) disk D; we take (hs h1) ™ (¢(Ar)).

LemMma 2.4. Suppose that M is a (triangulated) 3-manifold, D is a tame
(polyhedral) disk in M, and O is a connected open set (open polydedron) con-
taining Int (D) such that O — Int (D) has two components O, and O, .

Then there is a (polyhedral) 3-cell C in M such that

D cBd(C) and C — Bd (D) c 0.

Proof. Asin the proof of Lemma 2.3 we choose a triangulation of M if one
has not been provided so that D is a polyhedron in that triangulation; and
we find a polyhedral cube B in M whose interior contains D, a pw! homeo-
morphism & of B into E°, and a pwl homeomorphism h, of E* onto itself
which takes hi(D) onto a 2-simplex A.

Let » be a point of E* which does not lie in the plane of A and which is on the
side of A such that the points of ¥A — A near points of Int (A) liein hy h(01).
Use Lemma 2.2 to find a (pwl) homeomorphism ¢ of vA into itself such that
¢la = I and ¢(vA — A) C O,.

For the tame (polydedral) 3-cell take (hohy) ™ (p(vA)).

3. An engulfing lemma for universal curves

Bing showed [10] how to adjust the inaccessible part of a Sierpinski curve on
a 2-sphere so that it engulfs a closed one dimensional subset of the sphere.
Here we will prove the same sort of result about universal curves on topological
images of polyhedra. Just as in the proof of the engulfing lemma in [10] we
will wish to employ the following lemma.

Lemma 3.1. Suppose that S is a surface which s either a 2-sphere or a disk
and X s a Sierpinski curve which ts normally situated in S.
There is a map g of X onto S which maps I(X, S) homeomorphically onto
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the complement of a countable dense set of points in S and which maps distinct
components of A(X, S) onto distinct points in the countable dense set.

Proof. Let @G denote the upper semicontinuous decomposition of S into
points and disks where the non-degenerate elements of G consist of the closures
of the components of S — X. From [23] we find that there is a homeo-
morphism % of the decomposition space G’ associated with G onto S. Let =
denote the projection map of S onto @' which sends each element of the de-
composition G onto a point of G'. The map ¢ is then given by Ar|x. Each
component of A(X, S) is the boundary of one of the non-degenerate elements
of G'so g maps A(X, S) onto a countable dense set of points in such a way that
distinet components of A(X, S) go onto distinet points. The map g is
clearly a homeomorphism on I(X, S).

Here is a construction which we will employ several times in the rest of
this paper. We have a normally situated Sierpinski curve X in a surface S,
and we wish to construct a certain one dimensional set in I(X, S). We map
X onto S by the map g promised in Lemma 3.1, construct a one dimensional
set in S, adjust the set slightly so that it misses the image of the components of
A(X, 8), and bring the adjusted set back under g~ into I(X, S).

Lemma 3.2. Suppose that M is a 3-manifold, W s a subset of M whach is
homeomorphicto a finite polyhedron of pure dimension two, and T'w is a curvilinear
triangulation of W with <-skeleton W ;.

Suppose that X is a universal curve in W which <s normally situated with
respect to Tw and which is such that each component of W — X has diameter less
than €.

Suppose that Y s a closed one dimensional subset of W whose distance from
W exceeds € and whose intersection with W1 is zero-dimensional. Suppose that
W 1s locally tame at each point of the closure of each component of W — X whose
closure intersects Y, and suppose that Z is a closed subset of M whose intersec-
tion with W s contained in I(X, W).

Then there is a homeomorphism h of M onto tself which takes each simplex
of Tw onto dtself, which moves no point by as much as &, which s the identity
on both Z and the complement of an e-neighborhood of Y, and which adjusts
I(X, W) so that h(I(X, W)) = I(h(X), W) contains Y.

Proof. We will define % first on W and then use the lemmas of Section 2
to extend h to a homeomorphism of all of M. Consider the components of
of W — X whose closures intersect Y. Denote the closures of these com-
ponents by Hy, -+, H;, --+. Thisis a null collection of mutually exclusive
e-sets. We use Lemma 3.1 in the manner indicated by the remark followmg
its proof to find a new null collection of mutually excluswe a-sets Hy,---,H;,

- such that (1) each H;is contamed in some H and each H; contains some
H 7, (2) the intersection of an H; with a k-simplex of Ty is either empty or a
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k-cell, (3) for each integer 7,
Hin ClL (W — H;) c I(X, W),

(4) each H; misses Z, and (5) W is locally tame at each point of UH:. A
similar construction is employed in the proof of the engulfing lemma in [10].
Condition (1) and the fact that each H; has diameter less than ¢ insure that
no H; intersects W,.

As in [10] we will define & so that it is the identity except on U H; and so
that it moves each Hi n I(X, W) to contain Hin Y.

Each H; that does not intersect W, is contained in the interior of some
2-simplex of Tyw. The intersection of X with H; is a Sierpinski curve X
such that the boundary of the disk H; is contained in I(X, W) and in
I(X:, Hi). The proof of the engulfing lemma in [10] shows how to define a
homeomorphism h; on H ¢ which is the identity on Bd (H;) so that

h(I(X:, Hi)) = hi(Hin I(X, W))

contains ¥ n H; .

For each H; that intersects Wylet Hiy , - - - , Hi;, - - - denote the disks which
are the intersections of H; with the 2-simplexes of T . We define a homeo-
morphism h of Hi onto itself which takes each H;; onto itself, which is the
identity on each Bd (Hi;) — (H:i;n Wy), and which moves H; n I(X, W) n W
so that hi(H: n I(X, W) n W,) contains ¥ n Hi n Wi.

For each H;; let Xi; denote the Sierpinski curve hi(X n Hi;). Consider
the components of Hi; — X7; whose closures intersect both ¥ and Wy. Let
H 2,'1 y ooy H ; ik, + - - denote these closures. Define a second homeomorphism
k% of H; onto itself so that A} sends each Hi; onto itself, is the identity on
each Bd (H;;), and adjusts each Hi;; so that h2(H:;) misses Y. For each
Hi; let X7; denote the Sierpinski curve hi(X7;).

For each H:;let Hi; denote the disk which is obtained from H;; by deleting
the components of Hi; — X7; that intersect Bd (H{;). Now Y n H i < Hij
and ¥ n Bd (H};) © I(X%;, Hi;). Thus as before we may employ the
construction in [10] to define a homeomorphism &} of H ; onto itself which is
the identity except on each Int (H7;) so that for each X77, hi(I(X:;, H )
contains ¥ n Hi;.

We define a homeomorphism ; of H; onto itself by the rule h; = ki b ki .
The set ho(I(X:, H:)) contains ¥ n H; .

The homeomorphism & is defined to be the identity on W — U H; and it is
defined to be k; on each H;. Since no H; intersects Z and since each H; has
diameter less than ¢ we see that the part of h thus far defined is an e-homeo-
morphism of W onto itself which is the identity on Z n W and which moves
each simplex of T’y onto itself.

To extend h to all of M first construect a null collection of mutually exclusive
open sets of diameter less than ¢, Oy, ---, O;, -+, so that each O; misses
Z and contains H; — (Hin Cl (W — H})). Since W is locally tame at each
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point of U H; it follows from the two dimensional Schoenflies theorem that
arcs in tame disks are tame so each H; is locally tame and therefore tame
(1], [22]. For each H; which is a disk that intersects W; use Lemma 2.3 to
find a disk H{ such that
H'aW =HinW, and H — Bd(H{ nWy) C 0;.

Let HY denote the disk H; u Hi'. For the remaining (H:)’s set H; = Hj.
Let W’ denote the sum W u (U H{'). Extend h to W’ by defining it on each
H{ sothat it takes H{ onto itself and is the identity on Bd (H{') — (H{ nW).

If an H{ is a disk then h is the identity on Bd (H7). Use Lemma 2.4 to
find a pair of 3-cells Ciy and Ci in M such that

CanCy = H:’ CBd(Cia)uBd (C) and (CauCy) —Bd (H;,) c 0;.

Define h to be the identity on Bd (Cy) — Hi (k = 1, 2) and then extend &
to take each Cy onto itself.

If H7 is not a disk then use Lemmas 2.1 and 2.4 to locate a finite collection
of 3-cells Ciy, -+ -, Cix, -+ so that the sets Cy — (Ci n Hi) are mutually
exclusive sets in O; and so that each Cy n Hy is a disk on Bd (C) of the form
Hijiayu Hijay. Define b to be the identity on each Bd (Ca) — Bd (C) n Hi
and then extend h so that it takes each Ci onto itself.

For each integer 7 define a 3-cell C; = U Cy. These 3-cells are mutually
exclusive ¢-sets which miss Z. The part of h thus far defined moves only
points in the interiors of the C’s. Thus we can define h to be the identity
on M — (W u (U C;)) and we have the promised homeomorphism.

If we forget about curvilinear triangulations in the case of a disk we ob-
tain the following corollary to Lemma 3.2.

CoROLLARY TO LEmMMA 3.2. Suppose that M is a 3-manifold, D s a disk
i M, and X is a Sterpinski curve normally situated in D such that each com-
ponent of D — X has diameter less than e.

Suppose that Y is a closed one dimensional subset of D whose intersection with
Bd (D) is either zero-dimensional or is contained in I(X, D). Suppose that
D is locally tame at each point of the closure of each component of D — X whose
closure intersects Y, and suppose that Z is a closed subset of M whose intersec-
tion with D s contained in I(X, D).

Then there is a homeomorphism h of M onto itself which takes D onto itself,
which moves no point by as much as &, which is the identity on both Z and the
complement of an e-neighborhood of Y, and which adjusts I(X, D) so that
MI(X, D)) = I(MX), D) contains Y.

4. Tameness modulo tame sets

Lemma 4.1. Suppose that M is a 3-manifold, D is a disk in M, and {X}
28 a countable collection each of whose elements is either a tame arc or a tame
Sierpinski curve normally situated in D.

Suppose that D is locally tame modulo U X .
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Then D s tame.

Proof. As shown in [19] a neighborhood of D can be embedded in E*
so we might as well assume that M is E°

For each X that is an arc let {X;} be a collection of arcs in Int (D) such
that Uinj = X;n Int (D).

For each X; which is a Sierpinski curve let J; denote that unique simple
closed curve in X ; which bounds a disk D; containing X;. Use Lemma 3.1 as
previously to find for each X; a collection of simple closed curves {J;;} in
Int (D;) such that each J;; lies in I(X;, D) and such that if D;; denotes the
disk which J;; bounds then Int (D;) = U;D;;. For each X; and each D;;
let X ;; denote the Sierpinski curve X;n D;;. 'We have for each 7 the relation
X:n Int (D;) = U;jX;;. For each X; let {A;} denote the collection of
components of A(X;, D) which lie on J;. Unless J; = Bd (D) each 4;is
a spanning arc of Bd (D). For each A;; let {A,;} be a collection of ares in
Int (D) such that Urdi = Ay n Int (D).

Consider the collections of tame arcs and tame Sierpinski curves {4}
and {X;;} in Int (D). The set (U;;Xi) u (Uijx Aip) is equal to
(UX,) n Int (D). Now Int (D) is locally tame modulo (U X)) u (U 4,4)
so from [9, Theorem 3.1], Int (D) is locally tame. From [1],[22] thereis a
homeomorphism h of E? onto itself such that A(Int (D)) is locally polyhedral,
and from [16, Lemma 5] there is a 2-sphere S8’ in E® which contains 4(D)
and which is locally polyhedral modulo A(D). Let S denote the 2-sphere
F(S8’). Tt is locally tame modulo Bd (D) u (U X,).

From [8, Theorem 8.5] we see that S is locally tame at each point of Bd (D)
which misses UX;. Theorem 3.1 of [9] shows that S is tame since it is locally
tame modulo U X;. Since D is a subset of S it is tame by the two dimensional
Schoenflies theorem.

Lemma 4.2. Suppose that M is a 3-manifold, W is a subset of M which is
homeomorphic to a finite polyiwdron of pure dimension two, and T'w 1s a curvilinear
triangulation of W with i-skeleton W ; and 2-stmplexes Ay, -+, A;, -+

Suppose that {X ,} 18 a countable collection of sets each of which is ezther a
tame arc which lies in some A; and misses Wy or a tame Sierpinsks curve which s
normally situated in some A; and misses W .

Suppose that W is locally tame modulo U X; .

Then W is tame.

Proof. From Lemma 4.1 we find that each 2-simplex A; is tame. This
shows that Wi is locally tame modulo W,y. The fact that Wy is locally tame
at points of Wy follows from our assumption that W is locally tame at each
point of W — U X; and that U X fails to meet Wo. Thus W, is tame [1],
[22].

Theorem 3.1 of [13] says that a set in E® which is homeomorphic to a finite
polyhedron is tame if it has a curvilinear triangulation whose one skeleton
is tame and each of whose 2-simplexes is tame. The proof uses local arguments
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to show that such a set is locally tame. For this reason the theorem applies

equally well to sets in 3-manifolds, and we may thus conclude that W is
tame.

5. The existence of tame universal curves

In this section we show that for a given set W in a 3-manifold M where W
is homeomorphic to a finite polyhedron of pure dimension two and for a
given curvilinear triangulation T'w of W, there are many universal curves
which are normally situated with respect to T'w whose intersections with each
2-simplex of T'w are tame Sierpinski curves.

Lemma 5.1 extends a result of Martin [18] that a disk in E® contains many
tame arcs which reach out to its boundary.

LEmMa 5.1. Suppose that M is a 3-manifold, D is a disk in M, and € is a
posttive number.

Then there is a tame Sierpinski curve X in D which ts normally situated in D
such that each component of D — X has diameter less than €.

Furthermore if {X;} is a finite collection of sets each of which is either a tame
arc in D or a tame Sierpinski curve normally situated in D, then X may be chosen
so that UX; < I(X, D).

Proof. We may assume as in the proof of Lemma 4.1 that M is E°. For
convenience we assume there is at least one X; and ¢ is so small that each X
has diameter greater than ¢. That we may make the first assumption fol-
lows from [5].

Let & be a positive number such that each 35-subset of D is contained in an
e-disk which is normally situated in D.

First we construct a Sierpinski curve X’ in D which contains Bd (D)
and which lies on a disk that is locally tame modulo Bd (D). Let @ denote
the surface D — ((UX;) u Bd (D)). From [9, Theorem 6.1] we find a null
sequence of mutually exclusive §-disks Dy, ---, D;, - -+ which are dense in @
so that the set Xo = Q — UInt (D;) lies on a locally tame surface in M.
The proof of Theorem 6.1 of [9] shows that any surface in M is locally tame if
it contains Xg, is locally tame modulo X, and is homeomorphic to @ under
a homeomorphism that is the identity on Xq. We use [2, Theorem 7] to
define a homeomorphism g of D into M which is the identity on
Xou (UX;) u Bd (D) and which replaces each §-disk D; by a new s-disk
that is locally tame modulo its boundary. We assume for convenience that
g moves points so little that each 35-subset of the disk D’ = ¢(D) is contained
in an e-disk that is normally situated in D’. The disk D’ is locally tame at
each point of g(Q) and is thus locally tame modulo (U X;) u Bd (D). The
proof of Lemma 4.1 shows that D’ is locally tame modulo Bd (D’) = Bd (D).
Let X’ denote the Sierpinski curve Xo u (U X;) u Bd (D).

Just as in the proof of Lemma 4.1 the disk D’ lies on a 2-sphere S. Follow-
ing the construction in the proof of Theorem 9.1 of [8] we find a tame Sierpinski
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curve X” in 8 such that UX; < I(X”, 8) and such that each component of
8 — X” has diameter less than 6.

It is an inconvenience for us when the closures of two components of
D’ — (X" n D') intersect in Bd (D’) so we will cut away part of X” to find
a Sierpinski curve X" for which this does not occur. Consider the components
of 8§ — X" whose closures intersect Bd (D). Let Ey, ---, E;, -+ denote
these closures. Employ Lemma 3.1 to find an uncountable collection of
mutually exclusive simple closed curves {Ji.} in I(X”, 8) so that each Jia
bounds a §-disk Ej. on S which misses U X; and whose interior contains Ej .
The disk D’ cannot contain an uncountable collection of mutually exclusive
continua which separate it into three or more pieces. Thus we can find a
J1a such that each non-degenerate component of Ji, n D’ is an arc which
spans Bd (D’). Let E1 denote the corresponding Ei,. Let E;, be the first
E; that is not contained in E;. We repeat the step just outlined to find a
s-disk E; which fails to meet By u (UX;) such that Bd (E;) < I(X", 8)
and each non-degenerate component of Bd (Ez) n D’ is an are which spans
Bd (D). By proceeding in this manner until all the E/s are covered up we
obtain a null collection of mutually exclusive s-disks E1, - -+, E;, - - - which
miss U X; such that each E; is contained in some Int (Ej), each
Bd (E;) c I(X", 8), and each non-degenerate component of a Bd (E;) n D’
is an arc which spans Bd (D").

Let X” denote the Sierpinski curve X" — (X" n (UInt (E;))). Each
component of § — X" has diameter less than 8. Use the Corollary to Lemma
3.2 to find a é-homeomorphism A of M onto itself which is the identity on
Cl (S — D) u (U X;), which takes D’ onto itself, and which adjusts I(X’, D")
= I(X’, D) so that h(I(X’, D')) contains X" n D’. The s-homeomorphism
R pulls X” n D' back into I(X’, D) so we have k(X" n D’) < I(X’, D).

Define the promised Sierpinski curve X to be that component of
'(X" n D") whose diameter exceeds e. In the next paragraph we show that
there is exactly one such component.

Since each X; has diameter exceeding ¢ and is contained in (X" n D’)
there is at least one component of 2~'(X” n D’) whose diameter exceeds e.
Suppose there were two such components, X (1) and X(2). Let Z be a set
in D' — AY(X"” — D') which is irreducible with respect to separating X (1)
from X (2). Since D’ is unicoherent Z is connected and is contained in some
component of D' — B~ (X" n D) which is the image under A~ of some com-
ponent of D’ — (X” n D). Because of this h(Z) has diameter less than
80 Z = K '(h(Z)) has diameter less than 35. Thus Z is contained in a
normally situated e-disk in D’. Such a disk neither separates D’ nor contains
all of X (1) or of X(2) so Z cannot separate X (1) from X (2). This contradic-
tion comes from our assumption that there was more than one component of
(X" n D") with diameter exceeding . Thus X is well defined.

We now show that X is a tame Sierpinski curve normally situated in D
such that the components of D — X have diameters less than ¢ and such that
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UX;cI(X,D). ThesetXisasubsetof i (X")soifitisa Sierpinski curve
itisatameone. Note that U X; ¢ n*(I(X", 8)). Let Oy, -+ ,0i, -
denote the components of D — X. For each integer 7, Cl1 (0:) n X n Int (D)
must be contained in (4 (X", 8)). Thusif Cl (0;) is contained in Int (D)
then Bd (C1 (0;)) is a simple closed curve of diameter less than 35 which is
a component of A (4(X”, 8)), and hence CI (0;) is a disk of diameter less
than & which misses U X;. Similarly if Cl(0;) meets Bd (D) then
Cl1(0;) n X is an arc in 2 (A(X"”, 8)) which misses UX;, spans Bd (D),
and has diameter less than 36 so Cl(0;) is a disk of diameter less than ¢
which meets Bd (D) in exactly an arc whose interior is contained in O;.
It follows from the one dimensionality of X that Cl1(0y), -+, C1(0.), ---
is a dense null sequence of mutually exclusive e-disks which are normally
situated in D and miss U X;. Considered asa subset of S, X is the complement
of the union of the interiors of those CI (0;)’s which are contained in Int (D)
and the interior of the big disk which is the sum of Cl (S — D) and all those
Cl (0;)’s which meet Bd (D). Thus X is a tame Sierpinski curve normally
situated in D such that the components of D — X have diameters less than ¢
and such that UX; < I(X, D).

LeMMA 5.2. Suppose that M is a 3-manifold, and that Dy and D, are disks
in M such that Dy n D, is an arc A on Bd (D) n Bd (D,). Suppose that X,
and X, are tame Sierpinski curves normally situated in Dy and D, respectivvly
so that

Bd (Dy) — Int (A) < I(X&, D) (k=1,2).

Then there are tame Sierpinski curves X1 and X » normally situated in Dy and
D, respectively so that X © Xi (k = 1, 2) and so that Xind=X:nd.

/Furthermore if (Xon A) € (X1 n A) then the curves can be chosen so that
X1 = X1 .

Proof. We prove the lemma first for the special case where
(XsnA) © (XinA4).

From the proof of Lemma 5.1 there is a Sierpinski curve X3 in D, which
contains Bd (D:) u X, in I(Xs , D) and which lies on a disk D; that is
locally tame modulo Bd (D7) = Bd (Ds).

Let Dy, - -+, Dy, -+ - denote the closures of those components of D; — X,
whose closures intersect A. Each Dy; n A is an arc whose interior misses X, .
We employ Lemma 3.1 as we have previously to find a collection of mutually
exclusive ares &y, - - , tss, -+ in I(Xs , Dy) which span Bd (D;) and whose
interiors miss X, so that for each #; the closure of one of the components of
D, — ty;is a disk D,; whose intersection with Bd (D.) is the same as Dy; n A.
These properties insure that the D,/’s are mutually exclusive and that each
Dy; — Bd (D2i n A) misses X,.

Let X denote the Sierpinski curve X5 — X5 n (U Int (Dy; u Dy)), and
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set X1 = Xy. Use [2, Theorem 7] to find a homeomorphism g of D1 u D2
into M which is the identity on X3 u X; and which takes (Dyu D;) — (X1u X3)
onto a locally tame set. Lemma 4.1 shows that g(D,) is tame. Thus g(4)
is tame. Since Bd (D;) — Int (4) lies in X, it is tame. But g(Int (D))
is locally tame just as in the proof of Lemma 4.1 so we may conclude from
Lemma 4.1 that g(D.) is tame. This shows that X; is tame. By construc-
tion X; € Xy and (X1n4d) = (Xan 4).

Now we prove the general case of the lemma.

Making use again of the proof of Lemma 5.1 we find a Sierpinski curve
X7 in D, such that Bd (D) © I(X7, D;) and such that X7 lies on a disk Dy
which is locally tame modulo Bd (D{) = Bd (D). Then imitating a step
in the proof of the special case of this lemma we cut out part of X7 to obtain
a tame Sierpinski curve X7 in Dy such that

Bd(D,) — Int (4) € I(X", D) and X' n 4 = X, n A.

From Lemma‘5.1 we find a tame Sierpinski curve X1 in Dy such that
X;u X1 € I(XY,D;). Butnow Xsn A < Xi' n A and we can apply the
Speclal case of thls lemma to find tame Slerpmskl surves X1 = X' in Dy
and X; in D, such that X € Xx (k= 1,2) and (X1n 4) = (Xsn 4).

LemMa 5.3. Suppose that M is a 3-manifold, W is a subset of M which s
homeomorphic to a finite polyhedron of pure dimension two, and Ty is a curvilinear
triangulation of W with i-skeleton W;. Let Ay, --+,A;, -+ denote the 2-sim-
plexes, o1, ++- ,05, + -+ the 1-simplexes, and vy, -+ , vy, - - - the vertices of Ty .

Suppose that € is a positive number.

Then there is a universal curve X in W which is normally situated with respect
to T'w such that each component of W — X has diameter less than & and such that
each X n A; s a tame Sierpinsks curve.

Furthermore if {Y;} is a finite collection of sets in W where each Y; misses
W and s either a tame arc in some A; or a tame Sierpinski curve normally situated
in some A; , then X may be chosen so that UY; c I(X, W).

Proof. TFor each 2-simplex A; and each vertex v, on A; let Ei be a disk of
diameter less than /2 such that its intersection with Bd (A;) is an arc whose
interior contains v;. Choose the (Eiz)’s so that they miss U Y; and so that
two of them intersect only if they are associated with a common vertex v; .
For each Ej; let Bi: denote the arc Cl (Bd (Ex) n Int (A))).

For each 1-simplex o; and each vertex v, on o; let sy be an arc on o; with
endpoints v and p; where pj; is accessible from some Int (A;) by a tame are.
Choose s;i so that it does not intersect any Bi;. Lemma 5.1 shows that such
ares s;; can be found. From Lemmas 5.1 and 5.2 a pj is accessible from an
Int (A;) by a tame arc if o; is a face of A;.

Use Lemma 5.1 to find in each A; a tame Sierpinski curve X which is nor-
mally situated in A; such that each component of A; — X has dlameter less
than £/2, such that every Y; that is contained in A; is contained in I (Xi,A)),
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such that every pj that is contained in Bd (A;) is contained in I(X;, A),
and such that the closure of no component of A; — X; intersects both some
Bi: and some Sit -

Now use Lemma 3.1 to find in each Ei an are By which spans Bd (A;),
liesi in I(X:,A:), and has pj’s for its endpomts The conditions on the choice
of X enable us to find such arcs. For each Eiy let Ey denote the subdisk of
E: which is the closure of that component of A; — By which contains v .

Partition each A; into disks as indicated i in Figure 5.1 so that Bd (G:)
is contamed in I(X;, A;). For each F;; let X,J denote the Sierpinski curve
XinFi. Foreachl-simplexo;letAs g, -+ ,As,q denote those 2-simplexes
which have ¢; as a face.

By repeated applications of Lemma 5.2 we find for each F.(;; a tame
Sierpinski curve X, ¢; in Fs,jp; which contains X3,(;; and which is such that
Xi,»; n o contains each X; y; n o; (r > 1). By further applications of
Lemma 5.2 we ﬁnd in each F; ¢y; (r > 1) a tame Sierpinski curve X ¢y
which contains X, (;; and whose intersection with o; 1s Ximinog.

For each A; let X; denote the Sierpinski curve (XinG)u (U;Xy). Let
X denote thesum U X;. Because the X;, ;s match up along the ¢;’s, X is a
universal curve. By construction no X; meets Wy so X is normally situated
with respect to T'w. Since each X; contains the part of X; which misses the
£/2-sets Ey we see that each component of a A; — X;has diameter less than
¢/2 and thus that each component of W — X has diameter less than e.
Further since each I(X;, A;) contains the Y’s that are contained in A;
we find that UY; < I(X, W). To see that each X is tame use [3, Theorem
10] to find a homeomorphism g of W into M which is the identity on X and

32

Ficure 5.1
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which replaces W — X by a locally tame set. Since each X; is the finite
sum of tame Sierpinski curves each g(A;) is tame by Lemma 4.1 and thus
each X is tame.

6. General position theorems for topological embeddings
of polyhedra

The promised theorems follow Lemma 6.1. The two theorems serve dif-
ferent purposes. Theorem 6.2 is the more natural generalization of Bing’s
result [10]; however, Theorem 6.1 is included because the proofs of the two
theorems are so similar. Theorem 6.1 is tailor made to be used in the proofs
of major theorems in [11], [12].

Lemma 6.1.  Suppose that D is a polyhedral disk in E°, L is a straight line
which pierces D at a point p, and € s a positive number.

There is a pwl homeomorphism h of E* onto dtself which is the identity on L
and outside an e-neighborhood of p so that a neighborhood of p in h(D) lies in
the plane P through p which is perpendicular to L.

Proof. Let T be a rectilinear triangulation of E* of mesh less than &/2 in
which both L and D underlie subcomplexes. Let vA be a 3-simplex in
Int (st(p, T')) which is the join of a point v on L and a 2-simplex A that is
pierced by L and misses D so that p is contained in Int (vA). The set
D n Bd (vA) is a polyhedral simple closed curve J. Since L pierces D at
p,J must separate » from A on Bd (vA). Let J’ denote the simple closed curve
P n Bd (vA). It also separates v from A on Bd (vA).

Define h on Bd (vA) so that it is a pwl homeomorphism of Bd (»A) onto itself
which is the identity on » and on A and so that it takes J onto J'. Extend
h to Int (vA) by sending each interval between p and a point z of Bd (vA)
linearly onto the interval between p and A(zx). Let v’ be a point of L in
E* — vA so that vA € oA < Int (st(p, T)). Extend h to o' (vBd (A)) by
sending each interval from v’ to a point z of » Bd (A) linearly onto the interval
from v’ to h(z). The homeomorphism A is the identity on Bd (»’A) so we may
define % to be the identity on E* — »’A and thus to be the identity except in
an e-neighborhood of p.

Since & is the identity on v, »’, p, and A it is the identity on L. The open
2-cell (D) n Int (vA) is a neighborhood of p in A(D) which lies in P.

TaEOREM 6.1. Suppose that M is a 3-manifold with triangulation T whose
1-skeleton 1s T;, D is a disk in M, and ¢ is a posittve number.

Then there is a tame Sierpinski curve X which is normally situated in D,
there is an e-homeomorphism g of D onto a tame disk in M, and there is an
e-homeomorphism h of M onto itself such that

1. each component of D — X has diameter less than ¢,

2. g 18 the identity on X,

3. h s the identity except in an e-neighborhood of D,
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4. h(D) misses Toand h(D) n Ty s a finite collection of pointsin h(I(X, D))
where 1-simplexes of T pierce h(D),,

5. h(g(D)) s a polyhedron in general position with respect to Ty, and

6. hMgD)nTo=nmX)nT,=h(I(X,D))nT,.

Proof. Let O be an e-neighborhood of D in M. All homeomorphisms &;
constructed in this proof will be assumed to be the identity outside O. In
each case the reference used to assert the existence of a homeomorphism h;
permits this assumption.

From [10, Theorem 3] there is an &/20-homeomorphism #; of M onto itself
so that b (D) misses Ty and k(D) n T is a finite collection of points py , - - -,
Pr, - - - where 1-simplexes of T pierce hi(D). From [4, Theorem 5] and [14,
Theorem 6] each p; lies on a tame arc A; in hy (D), and thus each hy'(p:)
lies on a tame are h1*(A4y) in D.

From Lemma 5.1 we find a tame Sierpinski curve X which is normally
situated in D so that each component of D — X has diameter less than ¢/20
and so that UrT*(4:) < I(X, D).

Use [3, Theorem 10] to find an &/20-homeomorphism ¢ of D into M which
is the identity on X and which takes D — X onto a locally tame set that
misses A1 (Th).

Lemma 4.1 shows that h(g(D)) is tame. From [1], [22] we find an &/20-
homeomorphism h, of M onto itself which is the identity on 7; so that
he h1(g(D)) is locally polyhedral modulo Up; = hehi(D) n T1. Then from
[21, Theorem 2] we find an &/20-homeomorphism A3 of M onto itself which is
the identity on Ty so that Az he ha(g(D)) is a polyhedron.

For any 1-simplex s of T the join of s with lk (s, T') can be simplicially
embedded in E®. Thus we can use Lemma 6.1 to find a pwl &/20-homeo-
morphism Ay of M onto itself which is the identity on T; so that the poly-
hedral disk k4 hs ks h1(g(D)) is in general position with respeet to T'; near the
points px. Let h; be a pwl ¢/20-homeomorphism of M onto itself which is
the identity on a neighborhood of T’ so that the polyhedron ks hy ks iie hi(g(D))
is in general position with respect to T .

Each component of g(D) — X has diameter less than £/20 4 2(¢/20).
Since each h; (7 < 5) is an £/20-homeomorphism of M each component of
hs hahsha ha(g(D)) — hs hs hg he (X)) has diameter less than 3¢/20 + 5(2¢/20)
= 13¢/20. From the corollary to Lemma 3.2 there is a 13e/20-homeo-
morphism kg of M onto itself which is the identity on 7 so that hs takes
hs hshs ho ha(g(D)) onto itself and so that hehshshshe hi(I(X, D)) con-
tains h5 h4 hs h2 h1(g(D) ) n T2 .

The promised homeomorphism % is defined to be hghshahshohy. It is
a 5(g/20) + 13¢/20 or e-homeomorphism of M onto itself. Conditions 1-3
in the conclusion of the theorem are satisfied because of the choice of X andg
and the fact that each h;is the identity except on 0. Since 4 (Bd (D)) misses
T, and since h; (¢ > 1) is the identity on T4, h(Bd (D)) misses T:. Theorem
3.4 of [6] shows that each of the points px of h(D) n T} is a point where a
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1-simplex of T pierces h(D). Thus Condition 4 is satisfied. Since
hshyhaha hi(g(D)) is a polyhedral disk in general position with respect to
T, and since he moves that disk onto itself we see that Condition 5 is satisfied.
Condition 6 is satisfied by the definition of Ag.

In [11], [12] we will make use of Theorem 6.1 in situations where we will
want to avoid the tedious restatement of the conclusions of the theorem.
To this end we define here a property, Property Q, as follows. Suppose that
M is a triangulated 3-manifold with triangulation T' whose z-skeleton is T';,
D is a disk in M, X is a tame Sierpinski curve normally situated in D, and
n is a positive number. If there is an y-homeomorphism ¢ of D onto a poly-
hedral disk in M such that when 7 is substituted for ¢ and the identity homeo-
morphism for & in the statement of Theorem 6.1 the six conditions are satisfied
in the conclusion of the theorem, then we say that the quadruple (D, X, T:, 3)
has Property Q.

TurOREM 6.2. Suppose that M is a (iriangulated) 3-manifold, W is a set
i M homeomorphic to a finite polyhedron of pure dimension two, Tw is a
curvilinear triangulation of W, and V s a tame (polyhedral) subset of M
homeomorphic to a finite polyhedron of dimension less than or equal to two.

Suppose that € is a positive number.

Then there is a triangulation T of M (there is a subdivision T of the triangula-
tion of M) in which V underlies a subcomplex, there is a universal curve X
in W which is normally situated with respect to Tw , there s an e-homeomor-
phism g of W onto a tame set @n M, and there is an e-homeomorphism h of M
onto itself such that

1. each component of W — X has diameter less than ¢,

2. ¢ 18 the identity on X,

3. h s the identity except in an e-neighborhood of W,

4. h(g(W)) s a polyhedron in general position with respect to V where V
18 constdered as a polyhedron in T, and

5. M(gWNHnV =wX)nV =h(I(X,W))aV.

Proof. As before let O be an e-neighborhood of W. Each h; will again be
considered to be the identity outside O.

If M is already provided with a triangulation in which V is a polyhedron let
T be a subdivision of the triangulation in which V underlies a subcomplex,
otherwise use [1], [22] to find a triangulation 7 of M in which V underlies a
subcomplex.

Use Lemma 5.3 and Lemma, 4.2 to find a universal curve X in W which is
normally situated with respect to Tw so that each component of W — X
has diameter less than ¢/6 and so that there is an &/6-homeomorphism g
of W onto a tame set in M such that g is the identity on X.

From [1], [22] there is an £/6-homeomorphism #; of M onto itself such that
h(g(W)) is a polyhedron in 7. We might as well assume that ki (g(W))
is in general position with respect to V.
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Now each component of g(W) — X has diameter less than 3¢/6 so each
component of i(g(W)) — hi(X) has diameter less than 3¢/6 + 2(e/6) = 5¢/6.
Thus from Lemma 3.2 there is a 5¢/6-homeomorphism h, of M onto itself
such that for each simplex s of T'w, h takes hi(g(s)) onto itself and such
that

heh(g(W)) nV = l(g(W)) nV C ke (I(X, W)).

Let h denote the ¢/6 + 5¢/6 or e-homeomorphism Az hy. Just as in the
proof of Theorem 6.1 the five conditions in the conclusion of the theorem are
satisfied.
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