CHARACTERISTIC CLASSES

BY
E. H. ConNELL!

Conner and Floyd have developed a theory of characteristic classes in gen-
eralized cohomology [17]. The purpose of this paper is to present an abstract
development of their theory. The theory holds for real, complex, or quaterni-
onic bundles, and the proofs for the three cases are essentially identical. The
results hold for bundles over infinite complexes provided we consider only
representable ecohomology theories (called r-theories). The theory is based
upon one theorem, the Thom-Dold isomorphism for r-theories and infinite
complexes. A simple proof of this theorem is included.

To outline the general development, consider only real vector bundles for
the moment. If 4 is an r-theory, then any two of the following are equivalent:

(i) There exists an element p e 4' (RP®) such that A** (RP%) is an h** (pt)
power series module over p.
(ii) The Hopf bundle ¢ over RP” is h-orientable.
(iii) For each finite n, the Hopf bundle ¢, over RP" is h-orientable.

If h satisfies (i) above, 4 is said to be real orientable and p is said to be a real
orientation for the cohomology theory h. Then the generalized Stiefel-Whit-
ney classes exist, i.e. for each real bundle « over X, wi(a) e A*(X). If
= ¢ B*(RP™) is zero when restricted to any RP", then x is zero, i.e. h'(PR™)
has no phantom classes. Also 4°(B0,) and A*(BO) have no phantom classes.
The groups h** (B0, ) and h**(BO) are h** (pt) power series modules over the
Stiefel-Whitney classes. Every real bundle is h-orientable. Any other
orientation p gives another set of SW classes %, , however w; and w; will agree
when restricted to the -skeleton X°. The set of all orientations corresponds
to the set of all series of the form ==p+ a; p° + a5 p° + - -+ where a; ¢ 1™*(pt).
Let KO(X) = [X, BO X Z] be defined for infinite complexes. Then the do-
main of the characteristic classes can be extended so that w; : KO (X) — »*(X).
Since real vector bundles are orientable for the ordinary theory H (—; Z,),
it follows that H* (PR”, Z.) is a Z. polynomial algebra, that the classical SW
classes exist, and that H* (BO, ; Z,) and H* (BO; Z,) are polynomial algebras
over the SW classes. (Here it is unnecessary to pass to the direct product

Now suppose 4 is an r-theory such that, each complex Hopf bundle £, over
CP" is h-orientable. Then any orientation p e R*(CP™) determines Chern
classes ¢; 1 K(X) — h**(X), and the theory is analogous to the real case. The
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spectrum M U determines a cohomology theory (called an s-theory) for which
complex bundles are orientable. The spectrum maps

MU c MSO ¢ MSPL ¢ MSTOP ¢ MSH < K(Z)
n n n n n
MO < MPL < MTOP < MH c K(Z,)

determine natural transformations of cohomology theories which send orienta-
tions into orientations, and thus send Chern classes in one theory into Chern
classes in another theory. For complex bundles over finite complexes, the
theory of Chern classes holds for any of the above theories, and in fact gives a
graphic way to compare h*(CP"; MU) and h*(CP"; MSO), for example.
However, for complex bundles over infinite complexes, the theory does not hold
for h(—, MU) because MU is not an Q-spectrum. The theory does hold for
the associated Q-spectra MU < MSO C --- .

The theories 2 (—; Sp), h(—; MU), and h(—; MO) are universal in the
classes of orientable theories. That is, if #(— ) has a complex orientation p,
then there exists a natural transformation 7' : h(—; MU ) — h(— ) which sends
the canonical orientation for h(—; MU ) to p. The Hopf bundle ¢ over CP*
is orientable for the cohomology theory K, and thus there is a natural transfor-
mation

T: K (—; MU) > K (—) = K(—).
Also there is an additive natural transformation given by the first Chern class
a:K(=)—Hr(—;M0).
For reduced theories and connected X, the composition
Te : R(X) - B(X; MU) —» K(X)

is the identity. Thus K theory is a direct summand of cobordism.
Any choice of complex orientation for K theory yields Chern classes

¢ KX)—- K¥(X) = K(X).

If we select the usual K-orientation & — 1, these classes may be expressed in
terms of the exterior powers and are, of course, already known (see e.g. [27]).
A corollary to these proceedings is that K (CP* = BU,), K (BU,), and K (BU)
have no phantom classes and that they are merely power series in the Chern
classes.

1t is with sincere pleasure and gratitude that the author makes the follow-
ing acknowledgements. The basic approach of this paper is due to Conner-
Floyd [17]. The proof of the Thom-Dold isomorphism for infinite complexes
was shown to the author by Ed Brown. The idea for handling the phantom
classes is due to Milnor [28]. Some of the results, such as the computation of
the cohomology of classifying spaces, are contained in Stong’s notes [33]. The
computation of K (BU,) was done originally by Atiyah-Hirzebruch [7]. Some
of this paper is a presentation of conversations with Don Anderson, Dennis
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Sullivan, and Brian Sanderson. A. Dold also has results on characteristic
classes in generalized cohomology theories. The classical techniques used
may be found in Milnor’s notes [29], Hirzebruch’s book [26], and Husemoller’s
book [27]. No claim for originality is made. The purpose of this paper is to
present a unified exposition of the general theory of characteristic classes.

1. Notation

All spaces will be CW complexes. Spaces such as X /\ Y are assumed to
have the weak topology. Unless otherwise specified, all cohomology theories
will be multiplicative theories with unit element defined over CW complexes
and not merely finite complexes. Suppose E is a ring spectrum and S — E
is a map of the sphere spectrum into E (see [35, p. 270]). Suppose 1 ¢ 2°(S°; S)
= K" (pt) and 1 € A°(S% E) = h’(pt; E) are the unit elements and the natural
transformation A’ (pt; S) — 4’ (pt; E) sends 1to 1. Then h(—; E) is called a
multiplicative spectrum cohomology theory with unit element, or briefly, an
s-theory. An s-theory satisfies the Eilenberg Steenrod axioms (except the
dimension axiom ) for infinite complexes, although this is proved only for finite
complexes in the classical reference [35]. If F is another spectrum and
T : E — F is a spectrum map with

T.:E,—F,
N A
S”

commutative, then 7T induces a natural transformation of s-theories,
T:h(—;E)— h(—;F). Inparticular, T(1) = 1.

If E is an Q-spectrum, i.e., if B, — QF,,; is a homotopy equivalence, then
h(—; E) is said to be a representable multiplicative cohomology theory with
unit element, or briefly, an r-theory. Thus 4*(X; E) = {X, E}, free homo-
topy classes of maps. If X has a base point, then 4*(X; E) = [X, E|], based
homotopy classes of maps. Every r-theory is an s-theory. An r-theory 4 has
the following properties.

() If X = U X, where the X, are pairwise disjoint open sets, then
B(X) & [Joea B (Xa).

(i) IfX = UnzoXa, Xo C Xui1, an € h*(X,), and 4n (@n1) = an where
%+ X — Xnp1 18 the inclusion, then 3 a class a € A*(X) 3 j%(a) = a, where
Jn * X, — X is the inclusion.

(Bach of (i) and (ii) holds for s-theories provided X is a finite complex. )
Suppose E is a spectrum. Then the associated -spectrum % is defined by
E, = limp+e@E,. Theinduced natural transformationh(—; E) —h(—; E)
sends the s-theory to an r-theory and is a natural equivalence when restricted
to finite complexes.
If b is an s-theory, then A" will denote A" (pt) = A" (S°) and h* will denote the
coefficient ring @ A" where the sum is over all integers. If X has a base point,
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then A*(X) = A"(X, ) and A" will be considered as subgroups of A" (X).
Under this convention we have the “‘equality” 2" (X) = A" (X) @ »". If X is
connected and without base point, then A" (X) and 4" are still well defined sub-
groups of A" (X) because 2o — X is unique up to homotopy.

Let 1* ¢ £*(S*) correspond to 1° = 1 ¢ A°(S°) under the suspension isomor-
phism. Then A" (X) ~ A" (X A §*) corresponds to multiplication by 1%,
andso1* A 1' = 1**', If his an s-theory, of is a real vector bundle over a con-
nected X, and T () is the Thom space of «, then an h-orientation is a class
U ¢ i* (T (a)) which, when restricted to a “fibre” S* gives #=1*. Some classical
s-theories come from the spectra

MSp € MSU € MU < MSO ¢ MSPL < MSTOP c MSH C K(Z)
n n n n n
MO c MPL < MTOP c MH <C K(Z)

and their associated Q-spectra. Any simplectic bundle o™ has a canonical
orientation U e A" (T (a); MSp). Let E(a) — E(y.) be the map of total
spaces covering the classifying map X — BSp,. The class U is determined
by the induced map 7T (a«) — MSp.. The natural transformations

h(—; MSp) = h(—; MSU) — -+ — K(Z,)
and
h(—; MSp) — h(—; MSp) = h(—; MSU) — -+ — K(Z,)

send orientation classes into orientation classes. Similarly, complex bundles
and real bundles have canonical orientations in the theories determined by
MU and MO respectively. Since the spectrum map MU — K(Z) sends an
orientation class to an orientation class, this gives a (strange) way to prove
that complex bundles have an orientation class in ordinary cohomology with
Z coefficients.

This paper is developed along three lines—real, complex, and quaterionic.
W P" will denote RP", CP", or HP"; the real, complex, or quaterionic projective
spaces. Thus WP° = pt, and WP' = 8, 8% or 8'. Let &, denote (ambigu-
ously) the real, complex, or quaterionic Hopf bundle over WP" with group
Wi. In this last instance, W, denotes Oy, Ui, or Sp.. Let £ denote (am-
biguously ) the Hopf bundle over WP*. Now fix once and for all copies of
WP" with WP € WP' € WP c ... = WP®. Alsoidentify the total space
E (£,) with (WP™" — pt.) and T (¢) with WP™", TUnder this convention,
£, | WP™ is not equal to £, , although it is equivalent to &,_; .

2. The Thom-Dold isomorphism

THEOREM 2.1. Suppose h is an r-cohomology theory, E, B, and F are CW
complexes, and = : E — B 1s a continuous function mapping E onto B.  Suppose
ACB,E' CE,F' CF,and ' (4) C E are subcomplexes, and the following
conditions hold.
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(1) If K © L < B are subcomplexes with K a deformation retract of L, then
the pazr (7 (K), 7 (K) n E') is a deformation retract of (v (L), (L) n E’).
(2) For each b e B, 3 a homotopy equivalence of pairs

Gt FF)— (a (@), 7 (b)nE).
(3) I classes c; e h"” (B, E') for i = 1,2, + -+ k such that for each b ¢ B,
Jo (1), 35 (ea)y ==+ 5 b (e)

18 a free h*-basts for h*(F, F').
Then

f:h*(B,A) ® k*(B,A) ® -+ ® h*(B, A) - h*(E,E' un ' (4))

defined by
F@, @2, oo @) = 7%@)e + -+ + 7*(z)e

28 an (additive) tsomorphism.

(Note 1. The map f is an h*-module homomorphism but it is not a ring
homomorphism. If A = @, then ¢, ¢z, <--, ¢ is a free h*(B)-basis for
h*(E, E').

Note 2. If B is a finite complex, then the hypothesis may be weakened by
allowing c; e h* (E, E'), and the proof below holds. For B infinite, the author
does not know whether or not the theorem is true, even if B is connected.

Note 3. 1If B is finite, then the theorem holds for any s-theory A.)

Sketch of proof. Consider first the case A = @. The conclusion may be re-
stated as follows: Anyeeh”(E, E') may be written uniquely as

e=a*@)o + -+ + 7*(@)o  where z; ¢ B (B).

The proof follows from the following observations.

(I) Suppose B is the union of disjoint open sets, B = Uqsee Bo. If for each
o € a, the conclusion holds for the bundle restricted to B, and the classes
C1,C2, " ,Crestricted to this bundle, then the conclusion holds for the bundle
over B. This follows from A" (B) ~ [] 2" (B.).

(II) If B = By u B; and the conclusion holds for the bundle restricted to
By, B:, and B; n B,, then the conclusion holds for the bundle over B. This
follows from two Mayer-Vietoris sequences and the five lemma.

(III) The theorem holds for B = D*and B = 8'. In the case of B = D",
it follows from the hypothesis that (E, E’) has the homotopy type of (F, F').
The case of B = §* follows from induction on #, part (IT), and the fact that
S' = Dj u D} where Di n D} = 8%,

(IV) The conclusion holds for the bundle restricted to any skeleton B’
It holds for B’ by (I). Suppose inductively that it holds for By = B, Let
B, be the disjoint union of #-cells, By = U, D;. Then B* = B; u B; and
Bin By = Us 8. (Actually B; is the t-skeleton expanded slightly and B,
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is the ¢-cells contracted slightly.) The conclusion now follows from (1), (II),
I11).
(V) The conclusion holds (when A = @). Let

B=B"X[0,1luB"'X[1,2luB*X [2,3]u ---
where B* X [¢ + 1] € B* X [1, ¢ + 1] is identified with
B XE+11cBTX[E+1,i4+2].
Then B has the same homotopy type as B. Let
Bi=UB"'X [4,i+ 3] and B, = UB'X [i + %4+ 1].

Then the conclusion holds for B, , By, By n By, and thus the conclusion holds.

(VI) The conclusion holds in general (A void or not). This follows from
the exact sequences over the pair (B, A), the fact that the theorem holds over
B and over A, and the five lemma.

3. Phantom classes

Aclassz e B*(X) or z e h*(X) is called a phantom class if it is non-zero but
its restriction to each finite skeleton X" is zero. The skeleton X* may be in-
finite. If f: Y — X is a homotopy equivalence then x is a phantom class iff
f*(x) is a phantom class. In particular, the notion of phantom class does not
depend upon the CW structure of X. Note that if X is pointed, 2*(X) has no
phantom classes iff 4°(X) has none.

TraEOREM 3.1. Let h be an r-theory, ¢ an integer, X a CW complex, and
X; c X; © -+ = X be a sequence of subcomplexes with "™ (Xnp1) — b (Xa)
onto for allm > 0. Then

(1) 4f x e h* (X)) 4s zero when restricted to each X, , then x is zero;
(2) f each X, is finite-dimensional and each finite skeleton X* is contained
in some X, , then h* (X)) has no phantom classes;
(8) if t is a positive integer and X, = X™, then X has no phantom classes;
@) o
X=A1XA2X M XAk,

t is a positive integer, and X, = A1" X A" X -+ X A;", then X has no phantom
classes.

Proof. Parts (3) and (4) are special cases of (2), and (2) follows im-
mediately from (1). To prove (1) it suffices to consider the reduced case
zeh(X). Let E;be the classifying space for #° and let f : X — E; represent z.
Suppose inductively that f(X._1) = base pt. Since /" (X,) — A" (Xn1)
is onto, the following is exact.

0 = A (Xu/Xna) = B (Xa) = hi(Xaa),
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or
0 — [(Xa/Xna), Eil » [Xn, Bi] = [Xau, Ei,

[ga] — [fal

Letf, = f| X, and let g, ¢ (X,/Xa1) — E;be the map such that the composi-
tion
X, > (Xu/Xas) —22 E;

is f». Since [f.] is the zero class, [g.] is the zero class. Thus ¢, is null homo-
topic and thus f, is null homotopic mod X,—;. By the homotopy extension
property, f is homotopic mod X, to fi with f; (X.) = base pt. This allows
the construction of a null homotopy of f and completes the proof.

4. The cohomology of projective space
Tueorem 4.1. Suppose h is an s-theory, n > 0, and

pny1 € BN(RP™), RE(CP™™), or B*(HP™™).

Forany t with 0 < t < n + 1, let 4, : WP* — WP™ be the inclusion and
pe = 1 (pny1). Then () @ () & (¢) = ) = (e), and if B’ =~ Z or Z,,
(e) = (a).

(a) The class puy1 78 an h-orientation for &, .

(b) The class p1 ¢ B (RP* = §'), B*(CP* = §°), or B*(HP' = §*) is an
ortentation for & .

(¢c) Foranytwith0 <t < n+1,p,eh (RP'), B*(CP"), or K (HP') is an
h-ortentation for ..

(d) Foranytwith0 < t < n + 1, A*(WP*) is a free h*-module with free
basis pe, pt, *++, pe. The kernel of

g%« F*(WP") — k*(WP™)

1s the sub- (h*-module) genemted by pi. Also h* (WP?) is a free h*-module with
free basis 1, p,, AR
(e) There exists a unit u e h° such that upa1 is an h-orientation of ., .

Proof. The proof is essentially the same for the three cases W = R, C, or H,
and therefore is presented only for the case W = R. First note that for
n = 0, (b) and (¢) are merely restatements of (a).

Show (a) & (b). Assumen > 0 (noinduction is necessary). There exists
a homeomorphism u : RP*™ — RP™" = T'(¢,) which is isotopic to the identity
and which maps §* = RP" onto T (¢, | pt.). This is because 3 an orthogonal
homeomorphism R™? — R™** which interchanges the x, and @,y axes. If
j = u | S8 = RP', then by definition, p, is an h-orientation for &, iff
§*(£ap1) = £1'. Since j is homotopic to the inclusion 4; : RP* — PR™", this
proves (a) & (b).

To show (¢) = (a), taket = n + 1. The proof that (a) = (c¢) is obvious
using (b). Thus (a) © (b) & (c).



CHARACTERISTIC CLASSES 503

Show (¢) = (d). Supposen = 0 and p; ¢ ' (RP' = §') is an orientation
for &,i.e. pp = ==1". Since 4*(S°) is a free A*-module with basis =1, and the
suspension isomorphism 4* (8°) /& £*(8") is an A*-module homomorphism, it
follows that A* (S') is a free A*-module with basis p, = 1"

Now suppose 7 > 0, pn41 is an orientation for &, , and pn, pa, *++, pn iS &
free basis of A" (RP"). ShoOW pat1,pat1, - , puisis a free basis of 5" (RP™).
Consider the following commutative diagram where ¢ and j are inclusions, = is
the bundle projection, and T is the map induced by the Thom-Dold isomor-
phism.

K @ B*(RP™) L ¥ (RP™)

=l ~ |r* ., R~
WH(E()) = b @ B*(E() JRME(E), S()]
T~ v ® g(pny1)
B*[E (&), S(&)].

By the inductive hypothesis, A* (E (£.)) has a free basis
1, 5*1g (ns1)], 7*1g (Prga)]s =+, 5¥[9 (oms)].
Also T(1) = ¢(pay1) and by the bottom triangle,

T (5*lg (0as1)]) = g(pnt1) ® g(pni1) = g (pria).

Thus A*[E (£.), S (£.)] has a basis g (ont1), * + + , ¢ (oat1) and the first statement
of (d) follows because ¢ is an isomorphism. The statement that kernel

J* : B*(WP*) — R*(WP'™)

is generated by p;: follows from Theorem 4.2 below. Thus (¢) = (d).

Now suppose (d) is true and show (e). The class p; is a generator for the
free h*-module #* (RP* = §'). Thus 3 a unique classu e k* 3 up; = 1' A (S"),
and in fact, u € B. Thus up; is an orientation for & and since (b) = (a),
Upny1 is an orientation for £,. To see that u is a unit of A°, note that if
veh® = B () is the unique class which suspends to p;, then uv = 1. Thus
@) = (e).

If ° = Z or Z,, then =1 are the only units of 4, and thus (e) = (a). This
completes Theorem 4.1.

The above theorem yields the classical computations of H*(RP"; Z,),
H*(CP"; Z), and H*(HP"; Z). Tt also applies to K*(CP"), KO*(HP"),
h*(CP™; MU), h*(CP"; MSPL), etc.

The following lemma, is Lemma (7.1) of [17], except the restriction X be a
finite complex is removed. The proof given in [17] also holds for the infinite
case.

LeEmMA 4.2. Let h be an s-theory, X be a CW complex, and X" be its n-skele-
ton. Let F' = Kernel [i*: h*(X) — h*(X™")]. Then if aeF" and beF",
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we have ab e F™**.  Thus for example if X is a connected complex of dim < n and
@, Gy 0, G eh¥(X), then araz <+ ana = 0. As another example, if
x ¢ i*(RP™), k*(CP™), or h* (HP™), then 2™ = 0.

In the real case, Theorem 4.1 has a special implication; namely that the
orientability of line bundles implies that the cohomology theory 4 is strictly
commutative.

Tuaeorem 4.3. If h is an s-theory, any two of the following are equivalent.

1) 14+1=0.

Q) If X is a CW complex and a ¢ h*(X), then a + a = 0.

() The cohomology theory h is strictly commutative, t.e. if X is a-CW com-
plex and a, beh*(X), then ab = ba.

(4) The Hopf bundle & over S* is h-orientable.

Proof. It is obvious that (1) & (2). Suppose (2) is true and a ¢ 2*(X),
beh'(X) with k and ! odd. Then ab = (—1)*ba = —ba. According to
(2), ba = —ba and thus (2) = (3).

Suppose (3) is true and show (1). Consider 1'e¢ £ (S") and 1' A 1' =
—1' A 1'eh*(S?). Now 1* = 1'-1' is a free basis for A*(S?), and since
1+ 1)1? = 0, it follows that1 +1 = 0. Thus (1) = (2) < (3).

Now suppose (4) is true, i.e., p e &' (RP?) is an orientation for & . Accord-
ing to Theorem 4.1, 4* (RP?) has a free basis p, p. However p’ = —p’ and
thus 1 ¢1)¢’ = Oand thusl +1 = 0.

Finally suppose (1), (2), (3) and show (4). Since 1' = —1', the trivial
line bundle over a point has a unique orientation 1' e A'(S"). 8'is the union
of two intervals, 8' = D; u D, and the trivial bundles £ | Dy and & | D, have
unique orientations

aleﬁl(T(&IDl)) and meﬁl(T(EllDz))

Since a; and a, restrict to the same class in A' (T (¢1| 8°) ), they pull back to an
orientation class p e 2 (T (#1)). This proves theorem 4.3.

Lemma 4.4. Suppose h is an s-theory, n > 0, and p, e i (RP™), i (CP™),
or B*(HP") is an h-orientation class for £,—1. If &, is h-orientable, then 3 an
h-orientation class pay1 € B (RP™™), K(CP™™), or K*(HP™™) such that
i* (Pn+l) = Pn.

Proof. The proof is given for the real case. Let « ¢ ' (RP"™) be an orienta-
tion for £,. By Th. 4.1, A*(RP™™) has a free basis z, 2%, +++, 2" and
i*(RP™) has a free basis ¢* (z), 1*(2"), - -+, ¢*(z"). Thus

% B (RP™) — K (RP™)

is onto and thus 3 p,41 With 2* (0p41) = pn. By Theorem 4.1 again, ps41 is an
orientation for £, iff p, is an orientation for £,.,. This proves 4.4.
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TrEOREM 4.5. If h is an r-theory, any two of the following are equivalent.

(1) Aaclasspeh (RP?), F(CP%), or B*(HP®) > for eachn > 0, h* (WP")
is a free h*-module with free basis pn, pn, *++, pn. Here p, = in(p) where
i s WP™ — WP® is the inclusion.

(2) For each n > 0, &4 is h-orientable.

() & 1s h-orientable.

Proof. The proof is given for the real case. It follows from Theorem 4.1
that (1) = (2). Suppose (2) is true. Let py = == 1' be an orientation for
£ and use Lemma 4.4 to construct a maximal tower p1, p2, ps, +++. This
determines a cohomology class p satisfying (1). Thus (1) & (2). It will
be shown later that the sequence p1, p2, -+ determines p uniquely.)

It is immediate that (3) = (2). Show (1) = (3). Let peA' (RP”)
satisfy (1), and let j : RP® — T (¢) be the inclusion. There exists a homeo-
morphism p : T (¢) — RP” which is isotopic to the identity Id: T (¢) — T (¢),
and with pj = Id: RP® — RP”. Itis clear that p*(p) is an h-orientation for £.
This completes 4.5.

DEeriNiTION. Let W = real, complex, or quaterionic. Then an r-cohomol-
ogy theory is said to be W-orientable if for each integer n > 0, the Hopf
bundle ¢, over WP" is orientable. A W-orientation for % is a class p € &' (RP®),
R} (CP™), or h* (HP®) such that p*(p) is an k-orientation for the Hopf bundle
& over RP”, CP%, or HP®. Thus p is a W-orientation for A iff p satisfies (1)
of Theorem 4.5

THEOREM 4.6. Let h be an r-theory and p ¢ B* (RP%), B*(CP®), or h*(HP®)
be a W-orientation for h. Let k be a posttive integer and

X = WP* X WP* X -+ X WP®

be the k-fold product. Let m; : X — WP™ be the i-projection and u; = =7 (p).
Then we have the following.

(1) Rh*(X) has no phantom classes.

(2) any yeh'(X) can be written uniquely as an infinite power series in the
UitY =G+ aur+ +* CulUn+ Gaate+ +--. Herea;eh’ wheres = s(z)
18 such that the total degree of the term involving a; 18 t. Furthermore each such
power series determines a unique y. Thus h**(X') s a power series module with
variables uy, uz, + - , Uy and scalar “ring” h**,

Proof. Consider only the case W = R. Consider first the case k = 1. It
follows from 4.1 that A*(RP*™) — h (RP") is onto. Thus by 3.1, A* (RP”)
has no phantom classes. Now consider an expression ay + a1 41 + g us + « - - .
From the fact that w; = p lives in reduced cohomology, and from 4.2, it fol-
lows that this sum is finite when restricted to any RP". Thus the expression
does determine a class in A* (RP”) and since there are no phantom classes, it
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determines a unique class. Conversely, any y ¢ A' (RP™) when restricted to
RP", is a polynomial in p, and thus y determines a power series in p. This
proves 4.6 for k = 1.

Now suppose £ > 1. Let X, = RP" X RP" X --- X RP", the k-fold
product. It follows from 2.1 that 2*(X,) is a polynomial algebra with coeffi-
cients in A* and over variables u;, uz, -+ , up withui = Ofors=1,2, -+, k
andj > n. It follows from 3.1 that A* (X') has no phantom classes. The rest
of the proof is as for the case ¥ = 1 above. This proves 4.6.

Note that in general, the direct product A** is not a ring. However, if
k' = 0 for 7 > 0, then A** and h** (X ) are rings and h** (X)) is a power series
ring.

5. The splitting principle

Let o be a real, complex, or quaterionic bundle over X with total space
E(a). If P(a) is the space of lines in E (a), then = : P(a) — X is a fibre
bundle with fibre WP™™"  Let I(a) be the line bundle over P (o) which, when

restricted to a fibre, is £,—1. Then P(a) — X pulls back « to I(a) @ (an
(n — 1)-bundle).

TareoreMm 5.1.  Let o be a W-bundle over X and h be a W-orieniable r-theory:
Then w* : h*(X) — h*(P(a)) is monic. There exists a space Y and map
f 1 Y — X such that f* (a) s the sum of line bundles and f* : h*(X) — h*(Y') vs
monic. Also the map

Y, = WP" X WP" X -+ X WP"— BW,
which classifies £ X £ X +-+ X & induces a monic map h* (BW,) — h*(Ya).
(W is used for R, C, or H, and correspondingly, for O, U, or Sp.)

Proof. Consider the real case. Let p ¢ &' (RP™) be a real-orientation for .
Let u : P(a) — RP” classify I(a) and w1 = u*(p). Then from 2.1 it follows
that 1, wy, wi, -+, wi™" is a free h*(X)-basis for h* (P (a)). Thus =*: A*
(X) —» h*(P(a)) is monic. The second statement follows from induction.
Let g : V — BO, be a splitting map for v,. This map factorsas V— Y, —
BO,, and thus proves the last statement in 5.1.

6. The characteristic classes
TuEOREM 6.1. Suppose h is an r-cohomology theory and p ¢ A'(RP®),
RE(CP%), or K (HP®) is a W-orientation for h. Then the following hold.
I. There exists a unique transformation assigning to each real, complex, or
quaterionic vector bundle o over a CW complex, an element
w(a) =1+ wi(a) + we(a) + - e A*(X),

cl@) =1+ al@)+ al@)+ - eh*(X),
or

g(@) =14+ q(a) + @) + - eh*(X)
satisfying the following.
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0) wi(e) eh (X), ci(a) e B (X), or g;(a) € h* (X ), where X is the base of a.
Ifi > dima, then wi,ci,org; = 0. Ifi> dim X, thenw; = 0. If2¢> dim X,
then ¢; = 0. If4i > dim X, then ¢; = 0.

(1) If B s a real, complex, or quaterionic bundle over Y, and f : X — Y is
covered by a bundle map from o to B, then

Fw®@) = wla), f*c®) =cl@) or f*@B)) = ¢().
2) If a and B are real, complex, or quaterionic bundles over X, then
wla®B) =w@w@), cla®p)=cl@)®B) o gla®pB)=g(x)g®).
() If & is the real, complex, or quaterionic Hopf bundle, then
w(E) =1+ peh*(RBP®), c(t) =1+ peh*(CP), q(§) =1+ peh*(HP”).

4) If X is connected and o ts a bundle over X, then w;(a), c:(a), or q(a)
lives in the reduced cohomology for © > 0.
II. Letn and k be positive integers. Denote (ambiguously) by v» the classifying
bundle over BW, . Let Y be the k-fold product

Yy = BW, X BW, X -+ X BW,,

and m; . Y, — BW, the projection on the i-factor. Then
1) h*(Y%) has no phantom classes,
) h**(Y:) ts a power series module with variables

W;.k (wl('yn))’ ) 7";: (W1('Yn)), 7":‘ (w2 (va)), +* -, 7";:‘ (wn (vn))

and coefficient “ring” B** (ry (c1(vn)) + -+ or 1 (@1 (ya)) -+ resp.).
III. (1) For each integer t and positive integer n,

0 — W (BW,_1) < K (BW,) « K*(MW,) <0
s split exact.

(2) If BW 4is the union BW1 C BW, C -+ = BW and y e h*(BW) is a
class such that for each inclusion 5, : BW, — BW, ix(y) = 0, then y = 0.

(8) Let Yy be the k-fold product Y, = BW X BW X --- X BW. Then
h* (Y1) has no phantom classes.

(4) Letw;(v) e A (BO) be the unique class which, when restricted to BO, gives
wi(vn). (Analogously for c;(v) and g;(v)). Then h** (BW') is a power series
module with variables wy(v), wa(y), -+, and coefficient “ring” h**. Also
h**(Y}) is a power series module with variables

@i (r)), 72 (i () -+ m (), 71 e (y)) -+

(If W = C or H, use c; or g; resp.)
IV. There is a unique function V which assigns to each real, complex, or quater-
donic bundle " over a connected base, an h-orientation class V (&) € A" (T (a)),
(w = 1, 2, or 4), and satisfies the following.

(@) V() = p*(p) where p : T (¢) — WP* is the homeomorphism which is
homotopic to the identity Id : T (¢) — T (¢).
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(b) If a" is a bundle over X then V (a) maps to w, (a) under
B (T (a)) & " (B (a), S(a)) = k" (B (a)) =~ h"(X)

or V (o) maps to ¢, (o) under B (T (a)) — 1** (X)) or V (o) maps to ¢ () under
(T () — K™ (X).
(¢) If &" and 8™ are bundles over X and Y resp.,

V@XB)=V(@ AVEB) e ™(T(@XB) =T A TE®)).
(@) If &" is a bundle over X and 0 is the trivial line bundle over X,
VO@a)=VOAV()==£1"AV(@) el T 0@ a) =8"AT()),

where w = 1, 2, or 4.

(e) Iff: X — Y iscovered by a bundle map from ato Bthen T (f)*(V (8)) =

V().
V. Letpeh' (RP®),F?(CP%),or k' (HP®)bedefinedbyp = p+ azp’ + asp’ + - - -
where a; € B™® is such that the dimension of the term involving a; is 1, 2, or 4.
Then p is an orientation for h. Furthermore, if p is an orientation for h, 43 may
be written in this form.

Letp = p+ azp + -+ and @;, &, or §; be the corresponding characteristic
classes. Then for any bundle a over X, ®;(a) = w;(a) + y where y has the
formy = byys + byys + -+ . Here by e i™? (X), the dimension of b; y; 1s
1, 20, or 47, and m(j) > %, 2¢, or 4¢ resp. (Note: If X is connected,
yi e i"?(X).) Furthermore, if p = —p, then ®;(a) = (—1)'w;(a) for all a.

Ifp=p+ap + -, then ®:(a) = wi(a) when restricted to X*, &;(a) =

ci(a) when restricted to X, or §: (o) = qi () when restricted to X**.
VI. Suppose h is an r-theory, p is a W-orientation for h, and T : h — h is a
natural transformation of r-theories with T (8) = p. If a 1s any real, complez, or
quaterionic bundle, then T (0; (a)) = wi(a), T (E:(a)) = ci(a), or T (G:(a)) =
gi(a).

Proof of I. 'The proof of all parts will be given only for the real case. De-
fine w(¢) = 1 + p. Since & over RP” is the classifying bundle for real line
bundles, this defines the classes for line bundles. Let o” be a real vector bundle
over X and 7 : P(a) — X be the bundle with fibre RP*™, Here r*(a) =
l(a) @ [an (n — 1)-bundle] where I (e) is the line bundle which gives £, when
restricted to a fibre RP*™. Let wy = wi(l(a)) € &' (P(a)). By the Thom-
Dold isomorphism, A* (P (.)) is a free A* (X )-module with basis 1, wy , w; , « - -

n—1

wy . The classes w; () are defined to be the unique classes which satisfy
w = w70 (@)) — wiTT* e le)) + v (1) * (wa ().

The proof of I follows in the standard manner (see, for example, [17, p. 47],
[29], or [27]).

Proof of II. The proof is given for k = 1. Suppose
f:Y.=RP*X .-+ X RP° — B0,



CHARACTERISTIC CLASSES 509

classifies £ X £ X +++ X &.  According to Theorem 4.6, * (Y, ) has no phantom
classes. By the splitting principle, f* : h*(B0,) — h*(Y,) is monic, and thus
h*(BO,) has no phantom classes.

Let u; = w1 (p) where m; ¢ Y, — RP” is the i-projection. By 4.6, any ele-
ment in A*(Y,) is a unique power series in the u;. Now

WEXEX - XE) = Q4+u)+uw) - A+ u),

i.e. w; is the ¢-symmetric function in the ;. Any map Y, — Y, which simply
interchanges factors, is covered by a bundle map, and thus if y ¢ h*(BO,),
*(y) e h*(Y,) is a symmetric power series in the u;, i.e. is a power series in the
w;. Since f* is monic, this proves I for k = 1. The proof for & > 1 follows
from the Thom-Dold isomorphism.

Proof of 111, part (1). The total space E (v,.) has the homotopy type of
BO,., and the sphere bundle S (v, ) has the homotopy type of BO,—1. Thus

1 (B0, , BOyy) = (T (va) = MO,).

The map BO,1 — BO, pulls v, back to v»—1 ® 6 and thus pulls back SW
classes. It follows from II (2) that 2*(BO,) — h*(BO,_1) is onto. The split-
ting map A‘(BO,_1) — h‘(BO,) sends a power series in w;(y,—1) to the cor-
responding series in w;(y,). The image A*(M0,) — h*(BO,) is the ideal
generated by w. (v»). Note that

h*(BO,) ~ h*(BO,-1) ® h*(MO,)
is an A*-module isomorphism but not, of course, a ring isomorphism.

The proof of (2) is immediate from (1) above and Theorem 3.1 part (1).

Proof of (8) fork = 1. If y ¢ k*(BO) is zero when restricted to (BO)’, then
it is zero when restricted to (B0O,)". Then by II (1), y is zero when restricted
to (BO,). BylIll (2),yiszero. Theproof fork > 1issimilar.

Finally, part (4) follows from III (2) and the computation of A’ (B0,) in
I (2).

Proof of IV. Define V (v,) e k" (M0,) to be the unique class which maps to
Wy (v») under A" (M0,) — k" (BO,). Since the BO, are the classifying spaces,
this defines V(a) for any bundle @. Consider the following commutative
diagram.

'wn('Yn) ® 'wm(’Ym) g wn(’)’n) X ’wm('Ym) = 'wn+m('Yn X 'Ym) — wn—l-m('7n+m)
k" (BO,) ® k" (BO,) — h*™(BO, X BOw) B*™ (BOnim)

T 1 Tg
K" (MO,) ® h"(MOp) — F™™ (MO0 \ MOy)

= M(0n X On)) = B (MOpm)
V(va) ® V(ym) = V(¥a) A V(¥n) V(vn X ¥m) & V (Ynim)

It follows from II above and the Thom-Dold isomorphism that ¢g* is monic.
This implies that V(va) A V(vn) = V(¥a X Ym).
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It is immediate that V (y1) is an orientation class for v;, namely V (y1) =
p*(p). Assume inductively that V (v.) and V (y.) are orientations. Since

1" A 1" = 1" e "™ (S" A 8™ = §™™),

it follows that f* (V (vusm)) = V(va) /\ V (vn) is an orientation for v, X vm,
from which it follows that V (ys4m ) is an orientation for vs.m . This completes
the proof of IV.

Proof of V. Any p e h(RP®) may be written uniquely as p =
ap+asp + . According to4.2, p° = 0 when restricted to the 1-skeleton
forallt > 1. If4: 8 = RP'— RP” is the inclusion, ¢*(3) = a; t*(p) =
+a; 1'. Thus p is an orientation for £ iff @y = =+1 ¢ A’

Now supposep = p + azp” + -+ . To prove that ®; has the specified form,
it is only necessary to prove it for the classifying bundles, and by the splitting
principle it is only necessary to prove it for £ X & X .-+ X £ over
Y, = RP* X .-+ X RP®. Let; = m: (3) and u; = =; (p) so that

wEX o XE) = T+uw)A+w) - A+ u)

and

BEX -+ XE) = QA+ @)L+ %) Q-+ ).
Since %; = ui + 7f (@20’ + as p® + - - +), the result is immediate. If s = —p,
then #; = —u; and thus w; = (—1)"w;.

Suppose % is a connected theory, ie. A" = 0 for n > 0. This implies
h"(X*) = 0forn > 7 and this implies that in the equation @; = w; 4+ y,y = 0

when restricted to X*. Thus for the connected theory A (—) = h(—; MO),
we have @; = w; when restricted to X". The general case follows from the

universality of h(—; MO), (the real analogue of Theorem 8.1).

Proof of VI. From the hypothesis it follows that T (6 (a)) = w () for all
line bundles @. Therefore this equality holds if « is the sum of line bundles,
and the general result follows from the splitting principle.

7. Extending the Chern classes to K theory

Since K theory is usually restricted to finite complexes, a brief review is in
order. All bundles in this section are complex bundles. Consider the Q-
spectrum E defined by Ey; = BU X Z and Eyn = U [7]. For any topological
group @ there is a homotopy equivalence G — QBG and this is used to define the
map Esiy — QFEy;. The homotopy equivalence Ez; — QFE;,; is given by the
Bott periodicity theorem. This is a ring spectrum and the sphere spectrum
maps into it by maps 8* — E; defined by the generators of m; (BU X Z) =~ Z
and w1 (U) = Z. The r-cohomology theory h(—; E) is denoted by
K'X, A) =h"(X, A;E)and K(X,A) = K’(X, A). Thus K(X) = [X,
BU X Z], based homotopy classes of maps. The base point of BU X Z is in
BU X 0. Since BU is 1-connected, the set of based homotopy classes of maps
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of X into BU is isomorphic to the set of free homotopy classes of maps of X
into BU. So K(X) = {X, BU X Z} and K(X) =~ {X, BU X Z}, where, in
the second instance, the maps are required to send the component X, of X con-
taining the base point, into BU X 0. Thus if X is connected, K (X) ~
{X, BU}, free homotopy classes of maps.

If X is any complex, let U (X) be the set of isomorphism classes of complex
bundles over X. A bundle may have different dimensions over different com-
ponents of X. U (X) is an abelian semigroup under @ and a commutative
semiring over ®. The unit element is the trivial line bundle and is denoted by
1. A trivial bundle of dimension % will be denoted by k. There is a natural
transformation from U to K. Due to the semiring isomorphism U (UX,) ~
TI[U (X.)] and the ring isomorphism K (UX,) ~ J][K (X.)], it suffices to
consider connected X. If X is connected, a bundle o over X has a given
dimension 7, and the image of & under U (X ) — K (X) is given by the classify-
ing map

fi: X—-BU, Xnc BU X Z.

Let fo : X — BU,. X mrepresent 8. Then (fi) + (f2) e K (X) is represented
by the
fs: X—>BUpm X m+m) Cc BUXZ

which classifies « @ 8. The product (fi) (f2) € K (X) is represented by
fi: X —>BUu X (nm) C BU X Z

which classifies « ® 8. Thus U (X) — K (X) is a semiring homomorphism.
Define K’ (X) to be the set of ordered pairs (a1, az) of bundles over X with
the equivalence relation (a1, az) ~ (81, B2) iff A bundles & and § such that

(1@ a3,0m®a)~ 5 OB L 7).

If X is a pointed space, K’ (X) < K’(X) consists of pairs (a1, az) such that
a; and a, have the same dimension over the component of X containing the
base point. Addition is coordinatewise Whitney sum and the additive inverse
is given by — (a1, o2) = (a2, a1). K’'(X) is a commutative ring with unit
element, where multiplication is given by

(a1, 0)(B1, ) = (1 ® P Doy ®Pa,on ®P1 ® o ® B).
There is a semiring homomorphism U (X) — K'(X) given by
a— (a,0) ~ (e @ Kk, k).

Two bundles a, 8 ¢ U (X') map to the same element in K’ (X) iff 3 a bundle v
over X witha ® vy~ 8 @ v. Inparticular, « and 8 must have the same dimen-
sion over any component of X. If each component of X is finite dimensional,
then A a bundle v1 so that y2 = v @ v is trivial bundle of some dimension over
each component of X. Thus, for such X, o and 8 map to the same element in
K’ (X) iff 3 a bundle v, which is a trivial bundle of some dimension over each
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component of X and a @ yo X 8 ® v2. Note that 0 ¢ U (X) is the only ele-
ment mapping to 0 ¢ K’ (X).
A ring homomorphism K’ (X) — K (X) is defined by

(a1, @2) > () — (e2) e K(X).

Here () is the image of «; under the map U (X) — K(X). If X is finite-
dimensional on each of its components, an inverse ring homomorphism
K(X) — K'(X) will be defined. Due to the ring isomorphism K’ (UX,) ~
TTIK’ (X.)], it suffices to consider X connected and of finite dimension. If
f: X — BU X Z represents (f) e K (X) then f factors as

H:X—>BU, XkcCcBU XZ

and thus determines an element (f*(y.) @® k, n). Thus for such X,
K X))~ KX).

A “third possible K-theory” is LK. Define LK (X) = Inverse limit K (X")
where X" is the n-skeleton. This definition depends only on the homotopy
type of X and is, in particular, independent of the CW structure of X. There
is a projection homomorphism K (X) — LK (X) and it is obvious that this
map is onto and that its kernel is the set of phantom elements plus 0. Thus
LK (X) is the quotient of K (X) and the ideal of all phantom classes plus 0.
Since K (X") &~ K'’(X"), an equivalent definition of LK is LK (X) = Inverse
limit K’ (X"). The projection K'(X) — LK (X) is merely the composition
K'(X)—> KX)— LKX).

An augmentation is a (semi) ring homomorphism from U (X), K'(X),
K(X), or LK(X) to {X, Z}. Due to the ring isomorphism {UX,, Z} ~
II{X., Z}, it suffices to consider connected X. Suppose X is connected and
identify {X, Z} with Z. Then Aug : U (X) — Z is given by Aug (a) = dim a.
Aug : K’ (X) — Z is given by

Allg (oq, Olz) = Aug (a1) - Aug (az).

Iff: X > BU X k € BU X Z represents (f) e K(X), then Aug (f) = k.
If a e LK(X) and Y C X is any connected finite subcomplex and ¢ : ¥ — X is
the inclusion, then Aug (a) = Aug (¢*(a)) does not depend upon the choice
of Y and thus defines Aug : LK (X) — Z.

Summary. There are contravariant functors U, K’, K, and LK defined on
the category of CW complexes and homotopy classes of maps. The functor U
maps to the category of commutative semirings with unit and semiring homo-
morphisms. The functors K/, K, and LK map to the category of commutative
rings with unit and ring homomorphisms. If X is the union of disjoint open
sets, X = UX,, then F(X) ~ [[F (X,) for each of F = U, K’, K, and LK.
There are five natural transformations which are related by the following
commutative diagram:
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K'(X)
/ N
U(X) LK(X)
N /
K(X)

Each of these functors admits a natural transformation
Aug: U, K,K,LK —{ ,Z}

and the above diagram commutes with these augmentations. The map
K (X)— LK (X) is onto for all X and its kernel is the ideal of all phantom ele-
ments in K(X) plus 0. If each component of X is finite-dimensional,
K'(X)~ K(X)~ LK(X) Finally, if X is any complex and ey and o, are
bundles over X, then a; — ap ¢ K (X) will denote the image of (a1, a2) under
K'(X)— K(X).

Now suppose & is an r-theory and p e A (CP”) is a complex orientation for A.
We wish to extend the domain of the Chern classes from U (X)) to K (X), i.e.
for any (f) e K(X), we wish to define ¢(f) ¢ ] [izo B (X) © h**(X). Let
fi + X — BU be the composition

xL Buxz-BU
and ¢;(f) = f1 (ci(y)) e B**(X). It is obvious that

c((h) + () = c(f)e(fo)

when restricted to any finite skeleton and it will be seen that they are actually
equal. Let A : BU X BU — BU be the map which represents addition, that
is

A | BU, X BU, : BU, X BU, — BUs C BU

classifies the bundle v, ® v,. Let
di = m (ci(v)) and e = ms (ci(v)) e B (BU X BU).

Then A*(c;(y)) = does + dy ess + -+ + di e (because ¥ (BU X BU) has
no phantom classes). The map which determines (fi) 4 (f:) is the composi-
tion

i xBXE, gy« By -4, BU.

Then
i) = A X f)*(doei+ -+ + die)
= fio())fs (ci(y)) + -+ + fi (ci(¥))f? (co(y)).

This proves the product formula.

TureorEM 7.1. Suppose h is an r-cohomology theory and p e B*(CP®) is a
complex orientation for h.
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I. There exists a unique transformation assigning to each CW complex X
and x ¢ K(X), an element

c@) =14 a@) + ak)+ - e**(X)

satisfying the following.

(0) ci(x)eh®(X). IfX isfinite-dimensional, c;(x) = 0 when 2¢ > dim X.

1) Ifg: X—>Y,ye K(Y), and g*(y) = » where g* : K(Y) — K(X),
then g*[c;(y)] = ci(x) for all © > 0 where g* : B*(¥) — K*(X).

(2) Ifxl, wgeK(X), then

c@ + 22) = c(@m)e(r) and clm — @) = c(x1)/c(x2).
(8) If & 1s the Hopf bundle over CP* and k > 0, then
c(¢t — k) =14 peh*(CP”).
(4) If X is connected, c:(z) ¢ B**(X) for all i > 0. Also if
7 ®zeK(X)®K@pt) = KX),

then c(xz) = Land c(xs @ x3) = c(2).

II. Part I above holds with K replaced by K'.

Proof. The existence for I follows from the definition and discussion pre-
ceding the theorem. IfyeK’'(X)ismapped by K/'(X) > K(X)toze K(X),
then define ¢;(y) = c;(@). Thus the existence for II is immediate. The
uniqueness for II follows from the uniqueness in Theorem 6.1 part I. Thus
uniqueness for I holds for finite-dimensional X. Let ¢ denote a set of Chern
classes satisfying I. Let Id : BU — BU be the identity, (Id) ¢« K(B U). To
prove uniqueness, it is only necessary to show ¢;(Id) = ci(y) € R¥ (BU).
This is true on any finite skeleton, and since #**(BU) has no phantom classes,
it is true.

8. The universality of h(—; MU)

TaeoreEm 8.1. Let h(—) = h(—; E) be an r-cohomology theory and
p € P (CP™) be a positive complex orientation for h (i.e. p restricted to S* gives
+1%and not —1%).  Let puv be the canonical complex orientation for h(—; MU).
Then there exists a unique natural transformation of s-theories

T :h(—;MU) > h(=)
satisfying T' (omv) = p. Also there is a natural transformation
T:h(—; MU) — h(—)

of r-theories. If G; e K**(—; MU U) represent the Chern classes determined by the
canonical orientation and c; e h™ (— ) represent the Chern classes determined by p,
then for each x e K(X), T(C:(x)) = c;(®).
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Proof. Define a spectrum map T’ : MU — E by letting T; : MU; — Es;
represent the class V(y:) e A*(MU;). This is a spectrum map because
SE A\ MU; = MUy pulls back V (yip1) to 1* A V(y:). Itis a map of ring
spectra because MU, A\ MU; — MU, pulls back V (vey:) to V(ve) AV (v0).
The map preserves the unit element, i.e.

Ti: MU; —— Ey;
fl\\ //fz
S2i

is homotopy commutative because fr (V (v:)) = 1* which is represented
by f2 : 8% — Es. The canonical complex orientation puyy e A2 (CP®; MU)
is given by the inclusion ¢ : CP* — MU, and T (puv) = t*(V (1)) = p.

To show uniqueness, let I, ¢ A" (MU, ; MU) be the class represented by
Id : MU, - MU,. Then the requirement that 7" (pyr) = p determines
T’ (I,). Since T’ is multiplicative, 7"y A It A -+ N\ ©I) e " (MU, A
.-+ A\ MUy)is also uniquely determined. Letf: MU A <+ AMU,—- MU,
be the ring map of MU and note that f*(I,) = I1 A -+ A\ I,. From the
diagram

" (MU,; MU) -z, R (MU,)
f* f*|monic

!
(MU A -+ A MUy MU) =2 B*(MUL A -+ A MUY
it is seen that 7" (I,,) is determined and this implies uniqueness of 7".

Finally, the map of spectra 7’ : MU — E induces a map of the associated
Q-spectra T : MU — E, but since E = E, this completes Theorem 8.1. 7" is,
of course, merely the composition MU — MU — E.

Note that if E = MSO and p is the canonical orientation, then
T : MU — MRSO is merely the canonical transformation induced by
MU < MSO. Asanother example, take E = K(Z). ThenT : MU —K(Z)
is the canonical transformation induced by MU < K(Z) and sends the
G e K (X, MU) to the ordinary Chern classes c¢; e H> (X; Z).

9. K-Theory and cobordism

The purpose of this section is to present the theorem of Conner-Floyd, that
for connected X, K (X) is an additive direct summand of 5*(X; MT) for
i=1,0,—1,

LemMa 9.1. Let g : K(—=) — K(—) be an additive natural transformation
such that g(¢ — 1) = 0 where (¢ — 1) ¢ K(CP®). Then if X is connected,
glR (X)] = 0.
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Proof. The proof is based upon the fact that K* is a complex orientable 7-
cohomology theory. According to the splitting principle, if
f:Y,=CP°X .-+ X CP°— BU,
classifies £ X £ X -+ X &, then f* : K(BU,) — K(Y,) is monic. Since
Hlm—n)=(EX - XE—n)=(¢-1)X E—-1)X - X (¢ —1)
it follows that ¢ (v» — n) = 0. If X is any connected finite-dimensional com-

plex, any z ¢ K (X) may be written as = (" — n) for some n, and therefore
g(z) = 0. Now consider

Id : BU—-BU X 0 € BU X Z,

ie. (Id) e K(BU). The class g(Id) ¢ K(BU) is zero when restricted to any
finite skeleton. According to 6.1 part II, K(BU) has no phantom classes,
and therefore g (Id) = 0 and the lemma, follows.

Consider the r-cohomology theory K* and identify K* with K. Let
p = (¢ — 1) e K(CP®) be the canonical complex orientation for K-theory.
The natural transformation 7' : A* (—; MU ) — K* (— ) defines an additive and
multiplicative transformation T : %" (—; MU) — K(—). Since T pre-
serves unit elements,

TA) = G—1DA EG—-1)A - A (E—1).

TueoREM 9.2. Let K(—) and h(—) = h(—; MU) have their canonical
complex orientations, X be a connected complex, and © be a positive integer.
(1) The following s commutative.

R(X A 8% <L (X A 8

R(X) —F— F%(X)
(2) The composition
Rx) -5 #x) L Rx)
s the identity.

() The composition of the following four maps s the identity (starting with
EX).

R(X N 8% —2 (X N\ 8¥)
R(X) —L  p(x)

Proof. The isomorphisms in (1) are given by multiplication by
G-DAEG-DA- A E-1)eKES™
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and 1% ¢ #*(8”). The diagram commutes because 7' is multiplicative and
preserves units.

Part (2) will follow from 9.1 if it holds for X = CP” and the class
(¢ —1)eK(CP”). From Theorem 6.1,1 (3), it follows that ¢; (¢ — 1) = the
canonical orientation in 4*(CP®). From Theorem 8.1, T sends the canonical
orientation for % to the orientation for K. Thus Tei (¢ — 1) = (¢ — 1).

The proof of (3) follows from (1) and the fact that the composition

RX A ) -5 Rx A 8% L, R(X A &%)
is the identity.

10. Chern classes in K-theory

Chern classes are defined ¢; : K (X) — h** (X)) where h is any r-theory with a
complex orientation. In this section we restate the results of the previous
sections for the special case & = K and for the Chern classes¢; : K(X) — K (X).
Most of the proofs are immediate and thus omitted.

An orientation for o over a connected X is a class V ¢ K (T (a) ) which, when
restricted to a fibre §* yields

tE-DAEG-DAN A EG—1).
A complex orientation for K-theory is a class p ¢ K (CP®) such that p restricts
to = (21 — 1) e K(S*). The canonical orientation is px = (¢ — 1) e K(CP%).
The following is a special case of the Thom-Dold isomorphism. A fibration

« . E — B is a map satisfying Theorem 2.1 parts (1) and (2).

TreoreMm 10.1. Suppose = : E — B is a fibration with fibre F. Suppose
AC B E CE F' CF,and v (A) C E are subcomplexes. Suppose
K'(F,F') = 0 and 3 classes c; e K(E, E') fori = 1,2, - -+ , k such that for each
be B, ji(a), ji (), ++- ju (ck) is a free abelian basis for the additive group
K(F,F'). (Here

Jot B, F')— (@ (), 7 () nE)

s a homotopy equivalence). Then
f: KB A)®KB,A)® - ®K(B,A)—>KE,Eur'(4))

defined by
f(xl, Lo, fl?k) = 1r*($1)61 + .. r*(xk)ck
1s an additive isomorphism.

The next theorem is the splitting principle for K-theory (Theorem 5.1).
TaeoreM 10.2. Let " be a complex bundle over a CW complex X. Then

w1 K'(X) - K'(P(a))
is monic for © = 1, 2. There exists a space Y and a map f : ¥ — X such that
f*(a) is the sum of line bundles and f* : K*(X) — K*(Y') <8 monic for i = 1, 2.
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Also the map
Y, = CP® X --- X CP° — BU,

which classifies £ X &£ X -+ X & induces a monic homomorphism K (BU,) —
K(Y,).

Stated next is the analogue of 6.1 and 7.1. The statement is somewhat com-
plicated by the fact that the classes ¢; do not determine the total Chern class
¢ unless K (X) has no phantom classes.

TarorREM 10.3. Let p ¢ K(CP™) be a complex orientation for K-theory.

I.  There exists a unique collection {c, ¢;,t = 1, 2, ---} assigning to each CW
complex X and x ¢ K (X ) elementsc(x) e K (X ) and ¢ci(x) e K(X) fori = 1,2, -+
satisfying the following.

(0) Theclass c;(x) = 0 when restricted to X, For any finite-dimensional
skeleton X°, c(z) and 1 + e1(x) + co(x) + - - - are equal when restricted to X°.
If o is a complex n-bundle over X, ci(e) = 0 for © > n and c(a) =
14+ ale)+ - + enla).

A1) Ifg: X—>Y,ye K(Y) and g*(y) = x where g* : K(Y) —» K(X),
then g*[c:(W)] = c:(x) for all 7 > 0 and g*[c(y)] = c(z).

©2) Ifxi,ze K(X) then c (s + 22) = ¢(@1)c(x2) and

en(@ + 22) = co(@1)ea(®2) + c1(Tr)Caa () + -+ cal@1)co ()
forn > 0.
(8) If &isthe Hopf bundle over CP” and k > 0, then
c(¢t — k) =1+ pe K(CP%).
(4) If X is connected, c;(x) e K(X) forallz e K(X), % > 0. Alsoif
7 ®neKX)®K(@pt) = K(X)
then c(x2) = 1, ¢;(@2) = 0for i > 0,c(x1 @ a2) = c(1), ci(@ ® 22) = ci(a1)
for i > 0.

I'.  PartI above holds if the domain K s replaced by K',1.e.¢; : K' (X) — K(X).
II. Letn and k be positive integers, Y, be the k-fold product

Yy, = BU, X BU, X +++ X BU,,

and w; : Y, — BU, be the projection on the i-factor. Then

(1) K (Y%) has no phantom classes,

(2) K(Y3) is a power series ring with variables

w1 (), v+ T (ea(vn)), 71 (ea(va))y -+, i (a ().

@) K'(Tw) =0

ITI. (1) The sequence
0 — K(BUna) «— K(BU,) «— K(MU,) <0

is split exact. K*(MU,) = 0.
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(2) IfyeK(BU) s a class such that for each inclusion
in ¢ BU.— BU, in(y) = 0,

then y = 0.

(8) Let Y} be the k-fold product Yy, = BU X BU X -+ X BU. Then
K (Yi) has no phantom classes. K*(Y3) = 0.

(4) Let ci(y) e K(BU) be the unique class which, when restricted to BU,
giwes ¢; (vn). Then K (BU) is a power series ring with variables ¢ (v), ca(v), - - -
and coefficient ring Z. Also K (Y}) ©s a power series ring with variables

7":‘(01(‘/)); 7": (ea(¥)), +-+, 7":(61(7))7 7":‘ (e2(v)), - -+

IV. There is a unique function V which assigns to each complex bundle o over
a connected base, a K-orientation class V (o) € K (T (a) ) and satisfies the following.
(@) V() = p*(p) where p : T(£) — CP% is the homeomorphism which s
homotopic to the identity Id : T (¢) — T (§).
() If an is a bundle over X then V (a) maps to ¢, () under

R(T(2))~K(E(@)) = KE (@) ~ KX).
(¢) If a and B are complex bundles over X and Y resp.,
VieXB)=V@) AVPB)eK(T(aXB) =T()ATE®).
d) VaA®a)=TA)A V()
+E—-DAV@eRTAB a) =8 A T)).

) If f : X — Y 4s covered by a bundle map from o to B then
TEH*VE)] = V(a).
V. Letpe R(CP”) be defined by p = p + @ p + as p’ + -+ where a; ¢ Z.
Then p is a complex orientation for K-theory. Furthermore, if p is an orientation
for K, then ==p may be written in this form.

Letp =p+anp’+ asp’ + -+ and &, &; be the corresponding Chern classes.
Then c¢(x) = &(x) and ci(x) = &:(z) when restricted to X¥. Furthermore, if
p= —p then&;(x) = (—1)¢c;i(x) for i > 0.

The canonical Chern classes for K-theory will now be computed. If " is a
complex bundle over X, let \*(a) denote the‘i-exi_;erior power of . Then
N@) =1,N(a) =a, - +,\"(a) = aline bundle, \*(a) = 0fori > n. Also

N(a @ B) = ®prg—r N () ® N(B)].

TaeoreMm 10.4. Letc,ci i K(X) — K(X) be the canonical Chern classes, %.e.
those determined by p = (¢ — 1) e K(CP”). Then if «" is a complex bundle,

(@) = N(a) =1, a@ =N@) —n=a-— n,
a(@) = N¥@) — @ — 1N (a) +n@m — 1)/2,
cyea(@) =N @) = N a) + o 4 (1) (@) + (-1)7
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and in general ¢;(a) = @o<ici (—1)'Cn — 7 + ¢, t)\"*(a). The total Chern
class is c(a) = \"(«). Finally, if X is connected and z ¢ K (X), then c (x) = =.

Proof. It is only necessary to prove the formula for the classifying bundle
v» over BU, and by the splitting principle, it suffices to consider
a=§¢(X - Xtover Y, = CP® X -+ X CP®. Let a; = m; (£) where
mi: Y, — CP® is projection on s-factor. By hypothesis, ci(¢) = p =
(¢ — 1) and thus ¢ (e;) = a; — 1. Thus

ci(@) = B(amw — 1) ® (e —1) ® -+ ® (anw — 1)]
where the sum is over all partitions 1 < n(l) < n(s) < -+ <n(i) < n,
i.e., ¢;(a) is the 7-symmetric function in the (a¢; — 1). Note that N () =
the 7-symmetric function in the ;. Expanding out the expression above for
ci(a) gives ‘
c,-(a) = @ogts,' (—1)‘C(n - ’L-l" t, t)X’_t(a).
Now c¢(a;) = 1 + ¢1(@i) = «; and thus
cla) = cla)c(o) -+ clam) =1 @ w ® +++ ® an = \'(a).
Let (Id) e K(BU) be the class determined by the identity
Id: BU - BU X 0 € BU X Z.

To show ¢1(x) = z for all z e K(X), it suffices to show ¢;(Id) = (Id). The
class (Id) is v» — n when restricted to BU,. Since ¢i(y, — n) = v, — 1,
the result follows from Theorem 10.3, IIT (2). This completes 10.4.

The canonical Chern classes above do not agree with the classes v* con-
structed in [27, p. 163]. They do, however, agree for any z ¢ K (X ) where X
is a connected finite complex.
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