MEAN GROWTH AND COEFFICIENTS OF H” FUNCTIONS'

BY
P. L. Durex anNnDp G. D. TAvLor

Let f(2) be analytic in the unit disk |z | < 1, and let
u 1 27 1 1p & i/p
() ={g [[lp sl 0<p<

Mo (r,f) = max | () |.

The function f is said to belong to the class H” (0 < p < ) if M, (r, f)
is bounded for 0 < r < 1. Hardy and Littlewood [4], [5] proved that f ¢ H®
implies

Mo, f) = o(M=m)"%), 0 < p<g< o,
and they pointed out that the exponent (1/¢ — 1/p) is best possible. In
the present paper, we show that the Hardy-Littlewood estimate is best possible
in a stronger sense, and we apply this result to prove that several known
theorems on the Taylor coefficients of H” functions are also best possible.

TreorEM 1. Let0 < p < ¢ < 0, and let ¢ (r) be positive and non-increas-
ingon 0 <r <1, withe(r)—>0asr— 1. Then there exists a function f ¢ H”
such that

Mo(r,f) # 0(0(r) (1 — r)"*%),

For ¢ = o, this theorem was obtained in [6]. The more general result
is now deduced from this special case. We shall need the following elementary
lemma (see [2, Kap. IX, §5]).

Lemma. Letl <p < w,andletp = (14 7)/2, where0 < r <1. Thenas

r—1,
27

f lpe — r[™®dt = O((1 — r)"™®).
0

Proof of Theorem 1. Let f e H?, p < g, and suppose first that 1 < ¢ < .,
Ifp= 1+ r)/2, we have

f(z) = §L F&) dg, 2 = re”.

e J|flmp § — 2
Thus, by Hélder’s inequality and the lemma,

My(r,f) S C1 - "')nl/qu(P:f)-

From this it is clear that the theorem for 1 < q < « follows from the case
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¢ = o, which was proved in [6]. If ¢ = 1, essentially the same argument
can be used to obtain the desired conclusion. Finally, suppose 0 < ¢ < 1,
and observe that for f ¢ H”,

Mi(r, ) < {Mao(r, DY ™M, (r, )}

C@ — )P0 (r, Y.

Mo(r,f) = O(p(r) (1 — r)*7?),
for some p < ¢ and all f ¢ H”, it follows that
My(r, ) = O(fp@)* (A — r)71'7),

which contradicts what we have already proved.
We now turn to coefficient theorems for H” functions. Hardy and Little-
wood [5] proved that if

IA A

Thus if

f(z)=2:-0anznery O<p-<-17

then @, = o(n""™), and the exponent (1/p — 1) is best possible. The fol-
lowing theorem shows that the estimate cannot be improved at all. This re-

sult is due to Evgrafov [1], but we believe our proof is simpler and more nat-
ural.

TaeorEM 2. Let {3,} be an arbitrary sequence of postitive numbers tending
monotonically to zero. Then for each p (0 < p < 1), there exists

f@) = 2 ane" e H?
an % 0, n'7™).

Proof. If the theorem were false, then for each f ¢ H” there would exist a
constant C such that

{Ma(r, )Y = 2000 lanlzr’"
< C Zw 2/p—2 2n
< O 0 4 Gy T 4,

where »(r) = [(1 — )™, the greatest integer not exceeding (1 — 7)™~
Hence

such that

{(Ma(r, )} = O )™™) 4+ 0@n (1 — r)77)
= 0@ (1 — r)™)
for each f e H® (0 < p < 1), which contradicts Theorem 1. Implicit here is
the assumption, which can be made without loss of generality, that {8,} tends

to zero so slowly that the second term dominates. Thus the proof of Theorem
2 is complete.
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Hardy and Littlewood [3] also proved that if

) = 2 and" e H?, 0<p<2
then
w1 07 |an [P < o,

For p = 1 this is a theorem of Hardy; for p = 2 it is Parseval’s relation. In
the case 0 < p < 1 it may be viewed as a slight sharpening of the fact that
n* | a, |?—0. The Hardy-Littlewood theorem is best possible in the follow-
ing sense.

TaeoreMm 3. Let {\.} be an arbitrary sequence of posttive numbers tending
monotonically to infinity. Then for each p (0 < p < 2), there exists
f@) = 2 an2" ¢ H” such that

St M 2 | an P = .

Proof. First consider the case 0 < p < 1. If Theorem 3 were false, we
would have foreach fe H* (0 < p < 1),

DL, Y = oo an [
< C %0 | an [P n@rO G2,
< O % M | [P} 0 NIy 112

by the Cauchy-Schwarz inequality. But, as in the proof of Theorem 2, this
would imply

Ma(r, f) = ONEH (L — 1))
for every f ¢ H”, contradicting Theorem 1.
Now suppose 1 < p < 2. If there is a sequence {\,} such that
S M |a.|? < o for each f e H?,
then by Hélder’s inequality
(Ma(r, )} = 2o | 0 7™ |
< aof + {2 M”72 20 ™ | 0 [},
where 1/p + 1/¢ = 1, ta = 37%%, and @ = (2 — p)g/p. Thus
{(Ma(r, P} < C 251 ™ | 0 |
< CL 20 4 Cliny Domewtn 27 | 0 |97,

wherenow »(r) = [(1 — 7)" ", Buta calculation gives (2 — p)(a + 1) =
o, S0 we have

28 = 0 (™) = 0 — )™
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On the other hand, because
Ap = i | e

is bounded (by the Hausdorff-Young theorem), we find after summation by
parts that

Dot 1% | @ | = Dt (0 — (0 4+ 1)} An "
= Yaain® — (0 + 1) 4"
+ @ =7) 2 0+ 1)4nr"
=0((1 —r)™) = 0(1 — r)"P9),
Therefore, for each f ¢ H® (1 < p < 2) we have
My(r, f) = O(mas (1 — r)71?),

which again contradicts Theorem 1. This concludes the proof of Theorem 3,
since the case p = 2 is trivial.

As a final application of Theorem 1, we point out that the following result of
Hardy and Littlewood [3] is also best possible. If1 <p <2andg=p/(p —1)
is the conjugate index, then f ¢ H” implies

et e < o, k=1-3/q, p<s<yq

This result may be viewed as an interpolation between the Hardy-Littlewood
theorem considered in Theorem 3 and the Hausdorff-Young theorem.

TueorEM 4. Let {\.} be a positive sequence tending monotonically to infinity.
Then for each p (1 < p < 2) and for each s (p < 8 < q), there exists
f@) = 2 a.2" ¢ H? such that

Zn-l M * l Qn | = o,

Proof. Since the argument is similar to the ones already given, we shall

only sketchit. If 1 < p < s < 2, Hélder’s inequality gives
Yt | [ < A e M | 1 Dt 6 0 | @ [P,

wherea = (¢ — s)/(q — 2),8 = a/ (@ — 1),y = kB/a, and s = A;'. Sum-
mation by parts and the Hausdorff-Young theorem now gives a contradiction,
as in the last part of the proof of Theorem 3. Thecasel = p < 8 < 218
handled similarly. If 2 < s < ¢, we have

En—l lan l2 2n < { ”_1 ) ~k la l }lla{ Zw Mﬁ/an'yr%n}llﬁ,

where now a = 8/2 and 8, v, and u, are as above; we then obtain a contradie-
tion as in the proof of Theorem 2. In the case p < 8 = 2, we write

X lanr < e M ™ [ an P ™ + X
< Cl» (7‘)] + Zn—l p v ) k Ian Izn"rz”,
where » (r) = [(1 — 7)™%]; a summation by parts then leads to a contradiction.
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