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O. Introduction
We say that a function v from a ring (=- commutative ring with unit)

A to the nonnegative integers N is a control if for any two nonzero elements
a, b of A and each prime ideal P of A, ab P’, where n v(a) A- v(b) -4- 1,
and P is the n symbolic power of P, i.e.

P /P e A for some c A P, cp P’}.

We also say that A is -con$rolled. A is called controlled if it is v-controlled
for some v. (Note that the value of v (0) is quite irrelevant.)
The condition that a ring be controlled is rather strong, since the value of

v (a) does not depend on either b or P. However, the author knows of no
Noetherian domain which is not controlled. On the other hand, it is quite
difficult to prove that given domains are controlled, and many obvious con-
jectures (e.g. a finitely generated extension domain of a controlled Noetherian
domain is controlled) remain unverified.
The object of this paper is to prove that a large class of Noetherian domains

is controlled. In fact, we will prove the following:

THEOREm. Let A be a Noetherian domain such tha either (a) each element is
contained in only finitely many maximal ideals; (b) A is finitely generated over a
Dedekind domain (we regard fields as Dedekind domains); or (c) A is a restricted
power series ring over a local domain. Then A is controlled. In particular,
local and semilocal domains are controlled.

The proofs depend in part on the fact that if (A, M) is a regular local ring
and P is any prime ideal of A, then for each n e N, P( M. This result,
which was proved independently by Zariski and Nagata, is equivalent to
Theorem 1 of [3], where Zariski’s proof, utilizing monoidal transformations,
is presented. We include here a completely different proof for the unramified
case (4), which depends on the theory of 2 and on analyzing the relationship
between symbolic powers in A[[t]] and A [], where A is local and is an analytic
indeterminate. For Nagata’s proof, see [6, p. 143].
At this point we ought to point out that a controlled ring mus be a domain.

For if a, b are not zero and P is any prime, ab P(, where

n v(a) - v(b) -4- 1,
and thus ab O.
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The question of whether a control exists for a given ring is a global question,
since there is no dependence on P. This is one difficulty in the proofs. We
note that our proofs of the existence of controls are constructive enough so
that if the ring is given in an effective way, the control can be exhibited. Our
main technique is to consider various kinds of homomorphisms (-- unitary
homomorphisms) A --, B and find conditions under which the existence of a
control for A implies the existence of one for B, or vice versa. This is a delicate
matter. For example, the adjunction of indeterminates and certain kinds of
integral extension can be dealt with very nicely. On the other hand, one might
naturally conjecture that the adjunction of a fraction to a controlled No-
etherian domain yields a controlled ring, but the author cannot prove this,
even if the extension is integral to boot. Again, if A is a controlled Noetherian
domain, M is contained in the Jacobson radical of A, and the completion of A
with respect to M is a domain, one might well conjecture that the completion
is controlled, but at the moment this can be proved only in special cases.
Similarly, it is not known whetherA controlled A [[t]] controlled, an analytic
indeterminate over A.

Residue class domains of controlled rings need not be controlled in general,
but this might be true in the Noetherian case. There does not seem to be any
way of approaching it.
Even the fact that regular local rings are controlled (all local domains are)

is not obvious. It is well known [6, p. 203] that in a complete local domain the
symbolic powers of any prime are eventually contained in higher and higher
powers of the maximal ideal, and our results are related to theorems of this
kind, but they are mostly in a somewhat different direction.
Most of the results of this paper are greatly improved forms of theorems in

the last part of the author’s doctoral thesis [4, 10], where he considered the
much weaker property s-boundedness. (A ring was defined to be s-bounded
if for each nonzero a there existed an n such that for every prime P, a e p(n+l).
A controlled ring satisfies this condition trivially: take n v (a) v (1) and
apply the definition with b 1. Our results here can be specialized to obtain
all the results of 10 of [4]. The rest of the thesis will appear separately [5].
Added in proof. Define a control v to be strong if for all a, b O, v(ab) <_

v(a) v(b) and for all a 0 and for every prime P, a P(()+I). The
results of this paper go through almost without exception for strong con-
trols, with only slight modifications of the proofs. In particular, the theorem
above can be strengthened to assert that A has a strong control.
With regard to the use-of the terms ’local", "semilocal", quasilocal

etc. we follow [6]. An indeterminate over a ring A will frequently be regarded,
tacitly, as an indeterminate over various rings associated with A, e.g. residue
class rings and localizations. If P is a prime ideal of A, Ap represents, as usual,
the localization (A P)-A of A at P. If A is a domain, A* represents the
field of fractions of A. Finally, if I is an ideal, /I represents the radical of I.
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1. Basic facts about controls
We observe that the function which is constantly one is a control for any

given field. For a Dedekind domain A and a nonzero a e A, let P P
be the prime factoriztion of aA and let v(a) max n. Let v(0) 0.
Then v is a control for A.

If A is v-controlled and S is a multiplicative system in A, then S-A is con-
trolled. In fact, for each 0 u e S-A choose s e S such that s u e A nd
let v (u) v (s u). Let v (0) 0. It is trivial to verify that v is a control
for S-A. We see that by taking s= 1 whenever u e A, we may assume
that v I v.
We also have this useful fact.

PROPOSITION 1.1. Let h" A --> B be an injective homomorphism from the
domain A into the v-controlled domain B where i runs through a finite index set,
and suppose U Im Spec h Spec A, i.e. for each prime P of A there is an i
and a prime Q of B such that h-( (Q P. Then A is controlled. In fact,
v defined by v (a) max v (h (a)) for all a A is a control. It is not even
necessary to assume that the index set is finite if we know in some other way that
max v (h (a)) < for every a.

Proof. Let a, b be nonzero elements of A and let P be a given prime of A.
Choose i and a prime Q of B such that h- (Q) P. Then h(a), h(b) are
nonzero elements of B, so that h(a)h(b) h(ab) Q(’), where

n v(h(a)) + v(h(b)) + 1 <_ v(a) + v(b) + 1.

But then ab h. (Q(’) P(’), and the result follows.

COrOLLArY 1.2. If h" A --* B is injective and Spec h is surjective, then if
B is v-controlled, vl is a control for A. In particular, this holds if B is an
integral or a faithfully fiat extension of A.

We conclude this section with some trivial observations.
(1.3) If v is a control for A and v >_ v is integer-valued, then v is a con-

trol for A.
(1.4) If X) is a chain of controls for A then the (pointwise) minimum of the

elements of X) is a control for A. Hence if A is controlled it has a minimal
control.

(1.5) If a is a fmily of subrings of C directed by inclusion whose union is
C and each A ea has a control v such that if A, Bea and A B then
v v.l, then the function on C whose graph is the union of the graphs of
the v is a control for C.

2. Adjunction of indeterminates

Let v be control for A. We want to show, among other things, that if
{t}x, is u family of indeterminutes over A, then A [tx ), e A] is also controlled,
and we want to see the explicit relution of a control for it to v.
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We first discuss the case of one indeterminate t. Let B A[t]. We need
to consider in detail the relation between primes of B and primes of A. Let Q
be a prime of B and let P Q n A. Let d [(B/Q)*" (ALP)*] (possibly,
d ). Then either Q PB, in which case d , or else 1

_
d <

and there is an element H e B of degree d with leading coefficient not in P,
unique modulo P, such that the image ofH modulo P is irreducible in (A/P )*[t]
and

Q {qB:forsomeaeA P, aqPB-HB}.

Conversely, if P is a prime in A, PB is prime in B, and if H B is of degree
d >_ 1 with leading coefficient not in P and the image of H modulo P is irreduc-
ible in (A/P )*[t], then

Q(P,H) {qeB:forsomeaeA -P, aqPB-HB}

is prime, and do(e,) d.

PROPOSITION 2.1. With notation as above, if dq < and J is an ideal of B
such that Q c /J properly, then J meets A P.

Hence, for each n N,

Q(’) {b e B" for some a

{b B" for some a A P, ab %o PH’-B}.

Proof. Reducing modulo P, we can assume Q n A (0). Then QA*[t]
HA*It], a maximal ideal, while (/J)A*[t] is larger, so that (/J)A*[t] A*[t].
But this is impossible if /J n A (0), so that /J meets A (0), and it
follows at once that J meets A (0). This proves the first statement.
To prove the second part, let b e Q(’) be given and let J Qn" b. Then

/J properly contains Q, so that Q:b meets A P, and the result then follows
from the form of Q.

]:)ROPOSITION 2.2.
and Q(’) P(’)B.

If d , i.e. if Q PB, then for each n

The proof is straightforward, and is omitted.

PROPOSITION 2.3. If d < , b e B {0}, say b oat, and a P(),
i > j, but a P(), then b Q(+r), where r is any integer > (j/d) 1. In
particular, if a, P() then b Q(+) and if m O, i.e. b ao, and ao
then ao Q(). Thus Q() A P(). This last statement holds when d
as well.

Proof. Let Q Q(P, H). Say b e Q(+). Then, by (2.1), for some
a A P, ab e (PB HB)+ P()B - H+B. Modulo P()we have
ab H+c for some c e B. The leading coefficient of H e P the right hand
side is 0 or has degree _> (r W 1) d, according as c =-- 0 or c 0. But the
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degree of the left hand side isj, whence c 0 andj >_ (r + 1 ) d, contradicting
the condition on r. The other statements follow trivially.
Now let 0 be the function which assigns to each polynomial in B[t] its degree

(0 (0) 0 for this purpose) and let " be the function which assigns to each
polynomial in B[t] its leading coefficient (" (0) 0 as well).

THEOREM 2.4. If V is a control for A, then v + 0 is a control for B A[t].

Proof. Let b, b’ e B {0} have leading coefficients a, a’, respectively, and
degrees m, m’. bb’ has leading coefficient aa’ and degree m -b m’. Let

n (v W O)(b) + (v W O)(b’) + 1

(a) -I-v(a’) "-t- 1 W m -b m’ k -b m -t-m’,
where k v (a) -b v (a’) -b 1. Now aa’ P(*), where P Q n A. If dq ,
this implies, by (2.2), that bb’ Q(*) Q(,O, and we are done. If d < then
(2.3) gives that bb’ Q(*++’’) Q("), as required.

COROLLARY 2.5. Let tl ..’, tr be indeterminates over the v-controlled ring A,
and let B A[h tr]. Let b ’, av t[ t e B, where , runs over r-
tuples of nonnegative integers (, ,). Let

(Let v (0) 0.) Then vl is a control for B.

Proof. We may construct a control for B inductively, using (2.4) to get
controls for A [tl], A[t, t], ..., B successively. It is quite easy to see that the
value of this control on b 0 is one of the terms v (av) -t- -t- + . Now
apply (1.3).

COROLLARY 2.6. Let {tx}x, be a family of indeterminates over he controlled
ring A. Then A[tx ), e A] is.controlled.

Proof. For each finite subset {h, t} of the family of indeterminates,
define a control on A[t, t] as in (2.5). Then apply (1.5).
We conclude this section with a result which we shall need in 4.
PROPOSTIO 2.7. Let B A[t], as before, let Q Q (P, H) be a prime of B,

and suppose that, in addition, H is monic. Then for each n N, Q,o
oPH’*-B.

Proof. It is clear that QOO ..o PH’-B. To prove the other in-
clusion, let b e Q. By (2.1) we can choose a e A P such that

We shall now prove by induction onj that for each j, 1 < j _< n 1, we can
choose b. such that

ab . _,+ P(H’-B and b b . ..o P()H’-B.
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Once we have shown this, we can let j n 1, and we will have

ab,_l e P)B b_ e P’)B,
while b b,_ e o P)H’-B, whence b e _-.o P)H-B, as required.
We take b_ b. Now suppose that we have b._, j

_
0, satisfying the

condition and we wish to find b#. ab#_ e P)H-B; hence, ab#_ is a
multiple of H- mod P+)B. Now, H is monic H-# is monic. Hence,
for suitable q and r e B, b#_ qH’- - r mod P#+)B and deg r < deg H-#.
Moreover, r and q are uniquely determined mod P+)B. Now, since
ab#_ aqH’- r mod P#+)B and since ab_ is a multiple ofH-#mod P#+)B,
it follows that ar is also. But a e P a is not a zero divisor mod P+)B, and
we can conclude that r 0 mod P#+)B. Thus, for suitable q e B and r P#+)B
we have b#_ qH’- r. We take b. r.

Abbreviate J +P)H"-B. To complete the proof, we must show
that ab# ar e J and b b. b r e =0P)H’-B. We first observe that
b r (b b._l) -- (b’_l r) and since b bj-1 e Z-o P()HE-B, it will
be enough to prove, for the second part, that b_l r e P()H’-B. Now,
b_l r qH-, so that it suffices to show that q e P(J)B. Now

re P(J+I)B C P()B and ab_ e _’.. P()H’*-B P()B.

Hence, aH-]q a (b#_ r) ab#_ are P(J)B, which is the jth symbolic
power of PB. Since H is monic and a e P, we huve that aH- PB, so that
q e P(#)B, us required.

It remains to show that are J. Now,
r eP(+)B and ar a(b_--qH’-),

where qH- e P(J)H-JB and b#_i e _,P()H-B, sothat are .,P()H’-B.
But then

ar P(#+)B n (P()H-B) P(#+)B (P(#)H-#B -t- J).
Since J P(#+)B, ar e (P(#+)B P(#)H’-#B + J. Since H PB, it is easy to
see that

P(#+I)B P(#)H-#B P(+I)Hn-B (U. P(+)H’-J-B J,

and are J. This completes the proof.

3. Integral extensions

We restate part of (1.2).

COROLLARY 3.1. If B is a controlled integral extension of A, then A iscon-
trolled.

The converse is false in general. For example, the ring of integers Z is con-
trolled, but Z[2 v 1/2, 1/4, , is not controlled, becuuse 2 is in every power
of the ideul generuted by the elements 2 1/2, 1/4, , }. The author does
not know whether, in general, u finitely generated integral extension domain of
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a controlled domain must be controlled. However, the partial results of this
section may be applied in a great many cases.

THEOREM 3.2. Let A be a domain, and let c be an element of an algebraic
closure of A* whose monic irreducible equation over A* actually has all ofits coef-
ficient in A. (This condition is satisfied automatically if A is normal and c is
integral over A.) Then C A[c] is controlled if A is.

The proof depends on the following result.

PROPOSITION 3.3. With the same hypothesis as (3.2), let d be the degree of c
over A. Then for each prime ideal R of C and each r N, we have
R+1)r-1) n A c Pr) where P R A

Before proving (3.3), we show how to deduce (3.2) from it. Let v be a con-
trol for A. For each c e C, let vl (c) (d -t- 1)v (7 (a)) + [d/2] (here, is
the integral part function), where (a) is the field norm of a from C* to A*.,
and is actually a nonzero element of aC A. Now

R) (a)7 (b) e PR() (a)7 (b) Aabe v
for each r such that (d -t- 1)r 1

_
n. But we must have

r

_
v(v(a)) + v(,(b)) (d + 1)(,(v(a)) - v((b)) + 1) 1 > n,

i.e.n < (d-l- 1)v(7(a)) + (d+ 1)v(7(b))-l-d. But

vl (a) - v (b) -t- 1 (d -t- 1 )v (7 (a)) + (d + 1 )v (7 (b)) -t- 2[d/2] - 1

and 2[d/2] - 1 >_ d, so that ab R(’) when n vl (a) + vl (b) -t- 1.
The following is an obvious consequence of (3.2).

COnOLLARY 3.4. Let A be a domain, K an algebraic closure of A*, and let
(A) be the least class of extensions C of A in K closed under the two operations

(a passing to an A-subalgebra and (b) adjoining an element whose monic ir-
reducible equation over the fraction field of the domain has all its coecients in the
domain.

Then if A is controlled, so is every ring in (A ).

It is not difficult to show thut for each C e (A), we must huve C A* A.
The uthor does not know whether every finitely generated integral extension
C of A in K such that C n A* A must be in (A), or whether, if A is normal,
every finitely generated integral extension of A in K must be in (A).

It remains to establish (3.3).

Proof of (3.3). Let F e B Air] be the monic irreducible polynomial of c
over A*. Then there is a unique A-isomorphism b B/FB

_
C such that

(t) c. We identify C with B/FB, c with (t). Let Q be the inverse image
of R under B --. B/FB. Q A P, clearly, and F e Q. Hence d < , in the
notation of 2. Then we can regard Q as Q (P, H) for suitable H e B, where
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deg H d, the leading coefficient of H is not in P, and the image ofH modulo
P is irreducible over (ALP)*. Let Ae[t] B, and let PA, P.
F e Q =, F GH P B for some G e B. Choose k as large as possible such
that F GH e P B for some G B. Let B ---. B/PB :y. (A/P )*[].
Then this is the largest k such that (H) divides b (F) in (A/P )*[t], and there
is a largest such k because the leading coefficient of H is not in P andF is monic.
In fact/ _< deg F d. We thus know that 1 _< k _-< d. We will show that
J GB HB PB. To prove this, we observe that /J contains P, G,
and H. Thus, we want to show that b (G) and (H) generate the unit ideal in
(A/P)*[]. (H ) (A/P *[t] is a maximal ideal; therefore, we need only show
that (G) (H) (A/P)*[t]. But this follows from the maximality of k. We
can now apply Hensel’s lemma (as stated in [6, (30.4), p. 104]) to B#P.
We can do this because, in the terminology of [6], this ring is a complete local
ring which may not be Noetherian.

It follows that we can choose G,H eB such that G G eP B, H H e

PB, degH deg H, and F GH e P. Hence we can find % e A P
such that ,G,H e B andF (G) (yH) e P’B. Multiplying through
by-, we have ,F (G) (?H1) e P’B. Let , let G2 "},G, and
let H2 H. ReplacingH byH (we have this much latitude in the choice
of H) we have

F G2 H2 e PB where e A P, G., H e B and H H e PB.

Lets (d+ 1)r-- 1. Then

Q {qeB" for someaeA P,aq (PB+HB)}

{qeB" for someaeA -P,aqePB+Ha"B}.
Now, Ha"B H"B (since k <_ d) (HB) (PB + H B)" PB + H B
PB + H B. Substituting, we find that

Q(*) {q e B for some a e A P, a q . P()B + H B}.

Now let a e a A. Then a is in the inverse image of R(’) under

B B/F=v Q S J (Q() + FB)’a,

whence, by (2.1), for some a e A P, a a e FB + Q() FB + P’)B + H B.
Multiplying by t and observing that F e P()B + H B, we find that
a a e P(")B + H B. Reducing modulo P(’), we have a a H. b for some
b e B. Since degH deg H deg H, since H H. e PB, and since the
leading coefficient of H does not belong to P, it follows that the leading coef-
ficient of H also does not belong P. Thus, modulo P(), every nonzero
multiple ofH has degree greater than or equal to the degree of tH degH.
Then/a a must be congruent to 0 modulo P(’), i.e. a a e P(’). But/a P,
so that a e P(). Since a was an arbitrary element of R(’) a A, we have
R(’) o A P(’), as required.



SYMBOLIC POWERS IN NOETHERIAN DOMAINS 17

It is difficult to give an enlightening characterization of (A), and this limits
the usefulness of (3.3). It is natural to ask whether the proof can be gen-
eralized to handle extensions which are not simple. This would require a gen-
eralization of Hensel’s lemma to ideals and several variables. While such
generalizations exist (see, for example, [2]), they are far from our needs. The
following conjecture would be more to the point:

Let A be a quasilocal domain with maximal ideal M, let K A/M, and let
t, t be indeterminates over A. Let F be a prime ideal of A[t, t]
such that F A (0), and suppose that C A[t, ..., t]/F is a finite A-
module such that C A* A. Modulo M, F is contained only in maximal
ideals and has a unique primary decomposition. We can write this decomposi-
tion as a product rather than an intersection, for the factors are pairwise co-
maximal. Let q be one of the factors and q’ the product of the rest. Then
(conjecturally) for each n e N there is a lifting of this factorization of F modulo
M into qq’ to (A/M’)[t, ..., t] in the following sense: there exist ideals
Q, Q’ of A[h, ..., t] such that Q reduced modulo M is q, F M’A[t]
QQ’ -+- M’A[], and (Q W MA[t]) A M, where we have abbreviated
A[h, ..., t,] to A It].

This conjecture implies that if a domain C is a finite integral extension of a
domain A and C n A* A, then C is controlled if A is. The proof mimics the
proof of (3.3) and (3.2). In fact, we note that the transition from (3.3) to
(3.2) cn be nbstmeted s follows.
Call a homomorphism A C tight if for eaeh nonero ideal I of C, - (I)

is nonero. If q is an inclusion, this means that each nonero c e C has a non-
ero multiple in A. We also say that C is a tight extension of A. Thus, if
A, C are domains and C is an integral extension of A, then C is a tight extension
of A.

PROPOSITION 3.5. Let v be a control for A, let C be a tight reduced extension of
A, and suppose there exists an s N such that for every prime Q of C and every
n N, a Q(") n A a P("), where P Q n A. Define vl on C thus: for each
nonzero c C let a (c) be a nonzero element of cC n A (let a (0) O) and let
vl (c) v (a (c)’). Then v is a control for C.

Proof. Suppose not. Then we can find nonzero c, c’ in C such that cc’
(n)where n v (a (c)’) + v (a (c) -t- 1. But then a (c)a (c) e Q nd hence

a (c)% (c’)’ e P", contradiction.

We now approach the question of integral extensions from another direction,
with much more satisfying results. The only difficulty is that the conditions
we must put on the original domain are much more restrictive. We first handle
the case of purely inseparable extension, which is very tractable.

PROPOSITION 3.6. Let C be a domain integral over A, and suppose C* is a

finite purely inseparable extension ofA *, and that C n A* A (this is automatic
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if A is normal). Let d [C*’A*]. Then for each prime Q of C and r N.
Q(r) p(r),c c where P Q n A.

Proof. Let C-. C via c -- c. Then is a homomorphism and
(C) c CnA* A. (Q) cPand(C- Q) A -P, clearly. Now
c e Q() for some cl in C Q, cl c can be written as a sum of terms of the form
ql q,, where the q’s are in Q. Then (c)O (c) is a sum of terms of the form

P p()(q) (q) and hence (c) (c) e (c) e

COROLLARY 3.7. With the same hypothesis as (3.6), suppose that v is a control
for A. Define vl on C by v (c v (ca). Then v is a control for C.

We now consider the general case. If (A, M) is a local (-= Noetherian
quasilocal) ring, let d (A) be, equivalently, the least number of generators of
M or dim/M M/M2. For any Noetherian ring A, let

(A) max {d(A) P prime in A}.

Quite possibly, (A) . This is the situation we must avoid.

])ROPOSITION 3.8. Let A be a Noetherian ring. If B is a residue class ring
or localization of A, then (B <_ (A ). If B is a regular local ring, (B is the
dimension of B. If B is an extension of A generated by r elements,
(B) <_ (A) - r, with equality if the elements are indeterminates.

Proof. Only the last part is nontrivial. From the fact about residue class
rings, the problem reduces to the case where B is obtained from A by adjoining
r indeterminates. By induction, we may assume r 1. Thus, we can let
B A[t], an indeterminate. We may assume i (A) < , and we must show
(B) (A) - 1. IfPis aprime of A such that d(Ae) (A), then
Q PB - tB is a prime of B such that d(B) 8(A) -t- 1. Hence,
(B) >_ (A)-t- 1. Now let Q be any prime of B. IfQ PBforsomeP,
d(B) d(Ae). Hence, we may suppose that Q Q(P, H), with notation
as in 2. Then H together with a basis for PA, is a basis for QB, and
d (B) _< d (Ae) -t- 1. It follows i (B) _< (A) - 1.
With this preparation, we are ready to state a main result.

THEORE 3.9. Let A be a normal Noetherian domain such that
and suppose that C is an extension domain, integral over A, such that
[C* A*] < . Then if A is controlled, C is controlled.

Proof. By extending further, we may assume that C* is a normal extension
of A* and that C is the integral closure of A in C* Let K be the separable
part of the extension C*/A*. The integral closure of A in K is a finite A-
module [7, p. 264], and by virtue of (3.1), (3.7), and (3.8), we can assume that
C is the integral closure of A in a finite separable normal (i.e. finite Galois)
extension field K of A*.
By (3.5), the problem then reduces to establishing the following result.
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PROPOSITION 3.10. Let A be a normal Noetherian domain such thal
(A) o, let K be a finite Galois extension field of A*, and let C be the integrat

closure ofA in K. Then there is an s 1 such that for each prime Q of C and each
n e l, a e n A e P where P Q a A.

In fact, let d [K’A*]. C is a finite A-module; hence, (C) < o. Let m
be any integer >_ (C) and let r be any integer such that C can be generated as an
A-module by r or fewer elements. Then we may take s dr(m 1).

Proof. We first reduce to the case where A is local with maximal ideal P.
In making this reduction, we must, of course, be careful to keep s the same,
since our result is supposed to be global in P.

Let A’ A, P’ PAe C’ (A P )-IC, and Q’ QC’. A’ is normal,
local, A’* A*, and C is the integral closure ofA in C’* C* K. Further-
more, Q’ is prime and Q’ n A’ P’. Also, d’ ]C’* :A’*[ K A*] d is
the same, C’ can be generated as an A’-module by r or fewer elements, and
(C’)

_
(C)

_
m, so that d, r, and m play the same roles as before and s may

be kept the same. Finally, if a e Q(n) n A but a e P(n), then a e Q’(’) A’ but
a" P’() since P’() P’ (P’ is maximal) and

Thus, we may assume without loss of generality that A is local with maximal
ideal P. In this case, C is semilocal, the maximal ideals Q Q1, Q, Q
being exactly the primes of C which lie over P. Furthermore {Q, Q} is

complete set of conjugate ideals under the action of the Galois group
9 (K/A*) [6, (10.12), p. 31]. In particular, g _< d.
Now, /(PC) 1 Q Q Q (the Q are maximal pairwise co-

maximal). We will show that each Q has a basis containing _< 1 + d (C) <:
m -t- 1 elements, where we have written C for the localization of C at Q.
To see this, choose a basis of _<m elements for Q C we can actually take these
elements in C. Q cannot be contained in the union of the other maximal ideals
of C; hence, we can pick q e Q not in any other maximal ideal of C. It is easy
to see that q together with the basis for Q C is a basis for Q, and our claim is
established.
Now, since /(PC) Q Q and g _< d, it follows that V’ (PC) has a

basis with _< (m -t- 1) elements. Let s’ (m + 1).
We next wish to show that c e /(PC) c e PC. To prove this, we con-

sider the set of all elements of C which are roots of a monic polynomial with
nonleading coefficients all in P. This set is clearly a radical ideal of C and con-
tains P, and thus it contains /(PC). Now the irreducible monic polynomial
of a given c e /(PC) over A* (which actually has its coefficients in A is then
a factor of this polynomial, and it is easy to see that it also must have all of its
nonleading coefficients in P. Since this polynomial is of degree _< d, it follows
that c is in PC, as claimed.

Since I /(PC) has a basis of s elements, and since each element of I has
its d power in PC, it follows that Ix’’ PC.
Now suppose a e Q(") A. Since Q is maximal, Q(n) Q’. Since a is in-
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variant under the action of (K/A*), a e Q for each i. But then
a e tQ Q’" Q (for theQ are pairwise comaximal) (Q1 Qg) F,
and ad’ (I )d’ (io )n c (PC )n PC.

Since s r ds’, we can conclude the proof by showing that if a (in our case,
a’ ad’) is in JC n A, where J is an ideal of A (in our case, J pn), then
a’r e J. This follows from the usual argument: if cl, ..., cr is a basis for C
over A, we can write act e c for each i, where the e’s are in J, and it
follows that a is a characteristic root of an r X r matrix with entries in
Ja’rJ.

It is well known that every ring finitely generated over a field is a finite
integral extension of a polynomial ring in finitely many iadeterminates over the
field [6, (14.4), p. 45]. Hence
COROLLARY 3.11. A domain finitely generated over a field is controlled.

4. Formal power series rings
We shall eventually prove that local domains are controlled by first dealing

with the case of formal power series rings.

THEOREM 4.1. Let (B, N) be a regular local ring whose completion is a formal
power series ring over a discrete valuation ring (--- local principal ideal domain;
possibly a field). Then for each prime Q of B and n e N, Qcn N’*. In par-
ticular, the conclusion holds if B is unramified.
To prove (4.1), we first reduce to the complete case; then we proceed by

induction on the dimension. We need to establish some general facts about the
relation between symbolic powers in the ring A [t], A local, and symbolic powers
in A[[t]]. In the following, up to (4.5), let (A, M) be local, let be an analytic
indeterminate over A and let B A[[t]]. We first generalize the Weierstrass
preparation theorem and its corollaries. We say that an element of B is
regular (of order h (in t) if the coefficient of t, i < h, is in M, while the coef-
ficient of a is not (i.e. is a unit). We say that an ideal I of B is regular (in t)
if equivalently, the set of coefficients of elements in I is the unit ideal of A
(this set is always an ideal), or if I contains some regular element. Then

PROPOSITION 4.2. Let c be any element of B and let b e B be regular of order h.
Then there exist unique elements q B and ao, ..., aa_ A such that
c qb + t--o a t.

Proof. The existence proof mimics the proof for their case given in (8,
p. 261]. Uniqueness may be verified by using induction on n to show
qb - t-o at 0 all coefficients of q and all the at are in M for every n.

COROLLARY 4.3. Every element of B regular of order h has a unique monic
associate of degree h in A[t].

Proof. Again, one simply mimics the proof of the corresponding result in
[8, pp. 145-146].
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PROPOSITION 4.4. Le$ Q be a regular ideal of B and le P Q r A[]. Then
Q PB, and for every n e N, Q’* r A[t] P’*( Q’ P’B); moreover, if Q is
prime, hen for each n e N, Q" r A[t] P’* (Q P’*B ).

Proof. Q contains an element regular in ; hence, so does P, by (4.3). Let
b e P be regular. By (4.2), B bB - A[t] (as abelian groups). Hence

PB Q bB- P PB and Q PB.
Now,

Q’ (PB)" P"B P’* (bB - AIt]) P’*bB - P"

P"b (bB - A[]) - P’ P’bB -(similarly) P"bB - P’ P’b’B - P’* bB - P’*.

Hence, Q" A[t] P’* b’*B A[t] b’*A[t], a contradiction, for B is flat over
A[t].

Thus, Q’* r A[t] P’* and Q’* P’B. Now consider any .q, Q A[t].
LetJ Q’*’q. J Q’* J is regular J JoB, whereJ0 J r A[t].
Then J Q J0 = P for some c e A[t] P, cq Q’. Now

cA[t],qA[t] cq Q" A[t] P q P(),
as required.

CoaoAv 4.5. If b B is regular of order h, then for each prime Q of B,
b Q(+).

Proof. Suppose b e Q(a+). Replace b by its monic associate in Air]. Then
b Q(a+) n A[t] P(a+), where P Q A[t]. But b is monic of degree h, and
this contradicts (2.3).
The following observation is very useful.

(4.6) Let (B, N) be a regular local ring, Q a prime of B, and suppose
b Q N, i.e. b e Q and b is prt of a regular system of parameters for B.
Then b Q(), i.e. b is part of a regular system of parameters for B. Hence,
if bu Q("), u O, then n

_
] and u e Q(’-).

Proof. B/bB ._ (B/bB),, where Q is the image of Q under B -- B/bB,and the latter is regular.

Finully, before proving (4.1), we need the following result.

)ROPOSTION 4.7. Let (A, M) be a complete local ring and let

B A[[h, ..., t, t]].

Let b B be such that at least one of its coecients as a power series in the t’s is a
unit of A. Then there is an A-automorphism of B which takes b into an element
regular in t.
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Proof. Let K A/M, and reduce coefficients modulo M. Our hypothesis
is that the image of b in K[[tl, ..., tr, t]] is not zero; call it F. Choose as in
the second paragraph of the proof of Lemma 3 in [8, p. 147] for this F. Then

has an obvious lifting to B, and this is the required automorphism.

Proof of (4.1). Let (B, N) be as in (4.1), and let (B’, N’ be its completion.
Let Q be any prime ideal of B. Let R be a prime of B’ lying over Q. Then if
for each n e N, R) c N’), then we have Q) c R) n B N’ n B N,
.and we are done. Thus, we may assume without loss of generality that B is
.complete, i.e. that B is a formal power series ring over a complete discrete
valuation ring V. We use induction on the dimension of B. Let

B V[[t, t,, t]] :’" A[[t]],

where A V[[tl, tr]], be of smallest possible dimension such that the re-
sult supposedly fails for B. r > 0. Let M be the maximal ideal of A. Then
the maximal ideal N of B is MB -k- tB.
We want to show that for each prime Q of B and n e N, Q) N". We first

show that it is enough to prove this when Q is of dimension one. For otherwise
choose R of dimension one containing Q. If we can show Q") R") and
R") N", we will be done. The latter statement is the case to which we are
trying to reduce. The former statement can be deduced from the induction
hypothesis as follows. Bn and its completion C are of strictly smaller dimen-
sion than B, so that if C is a formal power series ring over a discrete valuation
ring, it will follow (as in the first paragraph of this proof) that Bn has the
property we are trying to establish for B, and from that it is immediate that
Q") c R"). We still need to show that the completion C of B is a formal
power series ring. To this end we consider two cases. Let t be the generator
of the maximal ideal of V. If u R, then B contains the field V* and is equi-
characteristic, and the result follows. This argument also takes care of the
case where V is a field. We now assume that V is not a field, and that u e R.
By (4.6), u is part of a regular system of parameters (u,/31, ..., 0r) for
and these will also be a regular system of parameters for C. (Note that
dim B r q- 2 and R of dimension one dimB r q- 1.) Then there is a
unique V-homomorphism of A V[[tl, .-., tr]] into C such that t --*
Since (u,/1, ,/3r) is a regular system of parameters this homomorphism is
surjective, and since dim A dim C, it must be injective as well. This com-
pletes the proof.
We can now assume that Q is of dimension one. Let b e Q") be given and

suppose that b N. We can write b tkb’, b’ tB, uniquely. If Q, we
also have b’ Q’) N’, while if u e Q we have b’ e Q’*-k) N"-, by (4.6).
Thus, replacing b by b’ (and n by n /, if necessary) we may assume that
bcuB.

This means that b satisfies the hypothesis of (4.7), and after applying a suit-
able V-homomorphism of B, we can suppose that b is regular in t. Passing to
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an associate, we can also assume that b is a monic polynomial in A[t]. Let
Qo Q n A[t], and let P Q n A Q0 A. Since Q0 contains the monic
polynomial b, we cannot have Q0 PAIr], and we therefore have

Qo q e A[t] for some a A P, aq PAIr] - HA[t]},
for suitable H e A[t], as described in the second paragraph of 2. Now

Q() Q(o’)B (by (4.4)) {q e B for some a A P, aq (PB + HB)}.

Since b e Q(n) weknow that if J (PB HB)’ :b, then /J contains Q properly.
But since Q is of dimension one in B, it follows that v/J N or B. In either
case, for some ] e N, tb (PB - HB)’. Now tb is monic, since b is, and it
follows that modulo P some multiple ofH is monic. This cannot happen unless
the leading coefficient of H is invertible modulo P (it is not in P), and since B
is local, this implies that the leading coefficient of H is invertible in B. Passing
to an associate, we may assume that H is monic. We may then apply (2.7)
(which we introduced expressly for this purpose) and obtain

(by the induction hypothesis P() c MS). Now H e Q0 c Q N so that
MH- N’, and we find that b e N’, as required.

COROLLARY 4.8. Let A be a ring all of whose localizations at prime (equiva-
lently, at maximal) ideals are unramified regular local rings. Let P Q be two
primes of A. Then for each n e N, P(’) Q().

5. Local and semilocal domains

THEOREM 5.1. Every local or even semilocal domain is controlled.

Proof. We first consider the case of a local domain (A, M). Let (A’, M’)
be the completion and let P1, Pr be the minimal primes of At, each of
which must be disjoint from A {0/. Let B AI/P. Since each prime of
A lies under a prime of A which in turn must contain one of the P., it suffices
to show, by (1.1), that each B is controlled. But each B is a complete local
domain, and hence a finite integral extension of a formal power series ring over a
discrete valuation ring [6, (31.6), p. 109]. Hence, by (3.9) and (4.1) each B
is controlled.
Now let (A ;M1, Mr.) be a semilocal domain. LetB be the localization

of A at M. Each B is controlled, by the first part, and again we may apply
(1.1).
We can generalize (5.1) slightly as follows. Call a ring locally semilocal if

each nonzero element is contained in only finitely many maximal ideals and the
localization at each maximal ideal is Noetherian. An equivalent statement is
that every proper residue class ring is semilocal. By [6, (E1.1), p. 203], such a
ring must be Noetherian. Dedekind domains constitute one kind of example
of such rings.
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Coov 5.2. A locally semilocal domain A is controlled.

Proof. For each maximal ideal M of A, let v be a control for AM which
vanishes on the units of A and on 0. Apply (1.1), using the set of maximal
ideals as the index set. The finiteness of the max follows from the fact that
for each a 0, v (a) 0 except for the finitely muny M to which a belongs.

6. Restricted power series rings
Let (A, M) be a local ring and let h, "’, t be analytic indeterminates over

A. By the restricted power series ring A t, ..., t,} in the indeterminates t
over A we mean the subring of A[[h, t,]] consisting of those power series
such that for ech power of M, all but finitely many terms of series have their
coefficients in that power. (See [1, 4, n 2, pp. 79-83].) Thus, if
B A{h, ..., t,}, B/M’B --- (A/M’)[t, ,t,]foreveryn e ll. If (A, M)
is complete, then B may be described as the completion of A[t, ..., t,] with
respect to the ideal generated by M. Note that if (A, M) is the completion
of (A, M), then the completion of A[h, ..., t,] with respect to the ideal gen-
erated by M is A{h,
TEogE 6.1. Let (A, M) be a local domain, and let B

be the restricted power series ring in the indeterminates h, , t, over A. Then B
is controlled.

Proof. It is easy to see that MB is the Jacobson radical of B. Let A’ and
B’ be the completions of A and B with respect to M and MB respectively.
B is a faithfully fiat B-algebra so that each prime of B lifts to a prime of B.
Also, B’ may be identified with A{h, "-, t,}. The minimal primes of B are
clearly generated by the minimal primes of A. Hence, it suffices, by (1.1),
to show that for each i, B’/Pi B (A/P){h, t,l is controlled. Hence,
we may assume without loss of generality that (A, M) is a complete local
domain. Then A is u finite module over a complete unramified regular local
ring (C, N) [6, (31.6), p. 109]. x/(NA) M, clearly, nd for some
k lI, M NA. Hence, for each n e , if n > kr then M’ N’A. Let
a, ..., a be a basis for A over C. Then M’* ’. N’ai when n >/or, and
it easily follows that

A @ C{t, t,} A{t t,}

so that A{h, "", t} is a finite module over C{h, "’, t}. Thus, by (3.9),
we may assume without loss of generality that A is an unramified regular local
ring.
We proceed by induction now on the dimension m of A. If m 0, i.e. if A

is a field, then A{h, t} A[t, ..., t], and we are done. Now suppose
that m

_
1 and that for each unramified regular local ring A of dimension

<m, A{t, t} is controlled. Choose x e M M, i.e. let x be part of
regular system of parameters for A. A/xA is then an unramified regular local
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ring, and so B/xB (A/xA){ t, t} is controlled. Let v be a control for
this ring. Let B -- B/xB be the canonical homomorphism. Each nonzero
b e B can be written uniquely in the form xb’, where b’ xB, i.e. (b’) 0.
Then define v (b) k A- v ( (b’)) when b rs 0, v (0) 0. We shall show that
Vl is a control for B.

Suppose, to the contrary, that b, c e B {0} and that bc Q(’), where Q is a
prime ofBandn v(b) -4-v(c) -t- 1. Letb xb’,c xc’,whereb’,
c’ xB. Then n j -t- k -4- v (b’) -4- v (c’) A- 1. Choose a maximal ideal R of
B which contains Q. Then Q() R() R", by (4.8), so that we may assume
without loss of generality that Q is maximal.

bc x+b’c Q’ b’c’ Q"’,

where n’ v (b’) A- Vl (c’) + 1, by (4.6). Now, x MB, the Jacobson radical
of B, so that x e Q. Thus, the image Q of Q in B/xB is also a maximal ideal,
and we have (b’ ) (c’ Q’, a contradiction.

PROPOSITION 6.2. Let V be a complete discrete valuation ring with maximal
ideal ( let t t be analytic indeterminates over V, and letA V{ h, "’, t}
Let P be an ideal of A such that P a V (0). Let B A/P. If g is not a
zero divisor in B (in particular, if P is prime), then B is a finite module over a
restricted power series ring over V.

Proof. B/gB is a quotient of A/gA, and hence B/gB is a finitely generated
K-algebra, where K V/gV. We can therefore choose b, b e B whose
mages b, b in B/gB are algebraically independent over K and such that
B/gB is a finite" module over K[b, b].’ Let x, x be analytic" in-"
determinates over V. We shall show that B is a finite module over the closure
C in the gB-adic topology of V[b, ..., b,] in B, and that there is a V-iso-
morphism of D V{Xl, x,,} with C such that x --* b. That B is a finite
module over C follows from [8, Corollary 2 on p. 259]. Now there is certainly
a unique V-homomorphism (and a necessarily surjective one besides) of
D -- C with x -- b, because C is closed in the complete ring B. We need
only show that this homomorphism is injective. But if some series in D is
taken to zero, we can choose one with not all its coefficients in gV, because tt
is not a zero divisor in B, and we can factor out an appropriate power of tt.
But the fact that the series is taken to zero then gives an algebraic relation
among the b when we reduce modulo (g), a contradiction. This completes
the proof.

COROLLAR 6.3. Let V, A be as in (6.2), and let P be any prime ideal of A.
Then AlP is controlled.

Proof. If P n V (0), then A/P is a finite module over a restricted power
series ring and the result follows from (3.9) and (6.1). If P n V (0),
then P V gV, and AlP is a finitely generated domain over K V/gV.
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The author conjectures the following generalization of (6.3)"

If A is a restricted power series ring over a local ring, then (conjecturally)
every residue class domain of A is controlled.

7. Finitely generated extensions of Dedekind domains

THEOREM 7.1. Let A be a Dedekind domain and suppose that B is a domain
finitely generated over A. Then B is controlled.

Proof. By the Noether normalization theorem [6, (14.4), p. 45] we may
assume that

B A[tl, ..., tr][ul, ..., u][v/a, ..., v/a],

where t’s are indeterminates, the u’s and v’s are integral over A[h, ..., tr],
and a e A {0}. Let aA p[l p., be the prime factorization of aA in A.
Then by (1.1) it suffices to show that the rings B[1/a], and Ap (R) B (i.e.
(A P)-IB ), P P1, "", P,,, are all controlled. But

B[1/a] A[1/a][t, ..., t,][u, ..., u][vl, ..., vl,

and A’ A[1/a] is again a Dedekind domain, so that we have an integral
extension of A[t, t], where A is a Dedekind domain. Thus, by (3.9),
B[1/a] is controlled.
Each of the rings Ap (R) a B is a finitely generated extension of a discrete

valuation ring V Ae, so that we have reduced to the case where A V
is a discrete valuation ring, say with maximal ideal #V. Let B be the com-
pletion of B with respect to uB, and let B, -.., Bh be the quotients of B’
by its various minimal primes. Those primes of B which contain # lift to B’
and hence to at least one of B, Bh, while those which do not contain u
lift to B[1/u]. Hence, again by (1.1), it suffices to show that B[1/u],
B1, ..., Ba are controlled. But B[1/] is finitely generated over the field
V[1/#] V*, while each of the B is of the type of Corollary (6.3). This
completes the proof.
We conclude with another conjecture"

A domain B finitely generated over a locally semilocal domain A is (con-
jecturally) controlled.

This would contain two of our strongest results: (5.2) and (7.1). The proof
would mimic the proof of (7.1). The conjecture following (6.3) would take
the place of (6.3). If we assume that A satisfies the hypothesis of (3.9),
that would be sufficient. For the general case, we would also need the con-
jecture following (3.3), or at least its consequence that if the domain C is a
finite module over the controlled domain A and C n A* A, then C is con-
trolled.
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