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1. Introduction

A fundamental property of a r-separable group H, r a set of primes, is the
fact that H is v-constrained; that is, O(H/O,(H) contains its own centralizer
in H/O,(H) (Theorem 6.3.2 of [3]’). This concept plays a basic role in al-
most all of the general classification problems solved to date (see, for example,
[1], [2], [4], [5], [6], [7], [8]). On the other hand, in the classification of groups
with abelian Sylow 2-subgroups [9], large portions of this analysis involve
non-constrained subgroups of the simple group under consideration. It is clear
that the latter situation will be typical in more general classification problems.

It is therefore natural to ask whether there exists in an arbitrary finite
group H a suitably chosen subgroup of H/O,(H) containing its own centra-
lizer which can be used effectively in place of O(H/O,(H)). In Theorem
1, we prove the existence of such a subgroup. Then in Theorem 2, we study
the inverse image of this subgroup in H. This leads to the concept of the
--layer and the r-components of the group H. In Section 3 we derive a number
of elementary properties of the r-layer and the r-components of a group; and
in Section 4, we prove some general lemmas which are useful in analyzing the
r-components of a given group.

It will be convenient to adopt what we may call the "bar" convention:
Namely, if H is a group and X is an element, subset, or subgroup of H and
if//is a homomorphic image of H, then 2: will always denote the image of
X intl.

2. The --layer of a group
We say that a group G is quasisimple if it possesses a perfect normal sub-

group H with the following properties" (i) H/Z(H) is a nonabelian simple
group, and (ii) Ca(H)

_
Z(H). These conditions imply that H is the

unique such subgroup of G and hence that H is characteristic in G. Further-
more, since H is perfect, no proper subgroup of H covers H/Z(H). If G
H, we say that G is perfect quasisimple.
A central product L of perfect quasisimple groups L, 1 _< i _< r, will be

said to be semisimple. (This definition is an extension of the usual notion of
semisimple.) The factors L of L are actually uniquely determined. In-
deed, our conditions imply that Z(L) II=l Z(L), whence L L/Z(L)
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is the direct product of its subgroups L, each of which is simple, 1 _< i _< r.
Because the L are nonabelian, i 1, 2, r, they form the set of minimal
normal subgroups of L. Hence they re the uniquely determined components
of ,. Since any normal group of L is normal in L nd since no proper
subgroup of L covers L/Z(L), it follows that L is the unique minimal
normal subgroup of L whose image is L nd consequently the L re
uniquely determined, 1 _< i _< r. They will be called the components of the
semisimple group L. For completeness, we also call L semisimple if L 1.

If L is semisimple, uny product of components of L will be clled u semi-
simple factor of L. Clearly ny such product is perfect semisimple normal
subgroup of L.
We remark parenthetically that for some applications it is convenient, for

technical reasons to include the central product of two copies of SL(2, q), q
odd, q > 3, in the definition of quasisimple group and hence also in that of
component of a semisimple group.
We note two useful general properties of semisimple groups. First, if G

is a group such that G/Z(G) is the direct product of nonabelian simple
groups, then the derived group G’ of G is semisimple and covers G. Indeed,
if L, 1

_
i

_
r, denote minimal normal subgroups of G which map onto the

distinct components of G, then each Li is perfect and their product L covers. This implies that L G’ and that G’

_
LZ(G). Since G’ is perfect,

these conditions force G’ L. Furthermore, we have [Li, L.] Z(G) for
all i j, whence [Li ,,L., Li] 1. Since L is perfect, the three-subgroup
lemma yields that Li centralizes L for all i j. Clearly also L n Z(G)
Z(L) and so each L is a perfect quasisimple group. Thus G’ is the central
product of perfect quasisimple groups and so is semisimple.

Second, we claim that any group G possesses a unique maximal normal
semisimple subgroup. Indeed, if L and M are semisimple normal subgroups
of G, we need only show that K LM is semisimple. Clearly Z(L) is normal
in G, whence

[Z(L), M]

___
Z(L) n M

_
Z(M).

The three-subgroup lemma together with the perfectness of M now yields that
M centralizes Z(L). Thus Z(L)

_
Z(K). Similarly Z(M) Z(K).

Setting/ K/Z(L)Z(M), we have/- L2 with L, normal in/ and
with each the direct product of non-abelian simple groups. Hence also/ is
the direct product of nonabelian simple groups. We conclude therefore from
the preceding paragraph that K’ is a semisimple subgroup of K which covers
/. In particular, K K’Z(L)Z(M) K’Z(K). But K LM is perfect
as L, M, are perfect and each is normal in K. Thus K K’ and so K is
semisimple, as required. In particular, our argument shows that every
normal semisimple subgroup of G is a semisimple factor of the unique maximal
normal semisimple subgroup of G.
We now prove

THEOREM 1. Let H be a group in, which O,(H) 1, r a set of primes, let
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L* be the maximal normal semisimple subgroup of H, set L O’S(L*), and
K LO,(H). Then

(i) CH(K) O(H),
(ii) L is semisimple, L O’I(L) [L, 0(H)I 1, and L r O(H) Z(L).

Proof. Set D O,(H). We first verify that L satisfies the various parts
of (ii). Since Z(L*) is a normal abelian subgroup of H and O,(H) 1,
we have Z(L*) D. In particular, Z(LI) C_C_. D for any component L of
L*. Hence if L1 is not a r-group, the simplicity of L/Z(L) and the perfect-
ness of L1 imply that O(L) L1 and O(L) Z(LI). It follows at once
now from the definition of L that L is a semisimple factor of L*,
that L* LO(L*), that O(L) Z(L), and that L centralizes O,(L*).
Also

[L, D] L* r D O(L*),
whence [L, D, L] c__ [0r(L*), L] 1. Since L is perfect, the three-subgroup
lemma now yields that [L, D] 1. We note also that 0(L*), being char-
acteristic in L*, is normal in H and hence is contained in D. But then L*
LO,(L*) LD K.

Finally suppose O’’(LI) c L for some compoaent L of L. Then
0’(L) C_C_. Z(L) as L/Z(L1) is simple, whence LI/Z(L) is a r’-group. But
then by the Schur-Zassenhaus theorem, Z(L) possesses a complement M1 in
L and so L1 M Z(L). Since L is perfect, this forces Z(L) 1 and
L to be a r’-group. Thus L1 O,(L*) and so O,,(L*) 1. On the other
hand, O,,(L*) is characteristic in L* and so is normal in H, whence
O,(L*) O,,(H) 1, a contradiction. Thus O’’(L) LI for each
component L of L and therefore 0’(L) L. Hence all parts of (ii) hold.
Now set E CH(K). Then E is characteristic in H and so 0,(E) 1.

Let E* be the maximal semisimple normal subgroup of E. Then E* is char-
acteristic in E and so is normal in H, whence E*

___
L*. But we have already

shown that L* K and therefore E* [E*, E*] c_ [E, K] 1.
Observe next that O(E)

_
D and hence

E c,(g) C,(D) C,(O(E)).

Thus O(E) c..C_. Z(E). Applying the Schur-Zassenhaus theorem now to
0, , (E), it follows that

0, ,(E) O(E) 0,,().

Since O,(E) 1, we conclude that 0, ,(E) O,(E).
We shall now argue that E= 0(E), which will suffice to prove (i), as

then E Cu(K) O(E) c_C__ D O(H). Assume false and set
E/O(E). Our conditions imply that 0,(J) 0,(/) 1 and that

E 1. Let N be a minimal normal subgroup of E. Since any prime p is
either in r or r’, N is not an elementary abelian group of prime power order
and so N, being characteristically simple, is necessarily the direct product of
isomorphic nonabelian simple groups. If N denotes the inverse image of N
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in E, then Z(N) Z(E) and N/Z(N) N. It follows that N’ is a semi-
simple group which covers N. In particular, N 1. On the other hand,
N is characteristic in hr and N is normal in E, whence N’ is normal in E.
But then N

___
E*, contrary to the fact that E* 1. This establishes (i)

and completes the proof.
On the basis of the preceding theorem, we introduce the following termi-

nology-

DEFINITION 2. If H is a group in which 0r, (H) 1 for some set of primes, we denote the uniquely determined subgroups K and L of Theorem 1 by
O*(H) and L(H) respectively. We call L(H) the v-layer of H and if
L(H) 1, we call its uniquely determined components the v-components
of H.

In this notation, we have

O*(H) L(H)O(H),

where L(H) is a semisimple group centralizing O(H) and, moreover,
0* (H) contains its own centralizer in H.
By analogy with the notation O,,(H), we define the following additional

terms"

DEFINITION 3. For any group H and any set of primes v, we let O*,,(H)
and L*,(H) denote the inverse images in H of O*(H/O,(H)) and
L(H/O,(H) respectively.

The group L*,.(H) is normal in O*,.(H) and covers the v-layer of
H/O,(H). Our next result will show that there is a unique subgroup of
0*, ,(H) which is minimal subject to these conditions; it is this latter sub
group which we shall call the v-layer of H.

THEOREM 2. Let H be a group in which the -layer of H H/O,(H)
is nontrivial, v a set of primes. Let Li 1 <_ i <_ r, be the v-components of i,
let Li be a minimal normal subgroup of O*,,(H) which covers 1 <_ i <_ r,
and let L be the minimal normal subgroup of O*,.(H) which covers the v-layer
of I. Then the groups L and L are uniquely determined, 1 <_ i r, and we
hae

()
(ii)
(iii)
(iv)

L I=L and L*,.(H)= LO,,(H).
L is characteristic in H.
O’(L) O’(L) [L,L] L, 1 <_ i <_ r.
O,(L) Li O,(H) and O,.(L) L O,,.(H), 1 <_ i <_ r.

.Proof. As each L and L(/) is normal in 0* (/), it follows that any sch
minimal normal subgroups L and L of O*,.(H) map onto L and L(/)
respectively, 1 _< i _< r. To establish the uniqueness of the L, suppose M
is another minimal normal subgroup of O*,.(H) covering ,i. Since/r L
and .L is perfect, it follows that [M, L] also has L as its image. But
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[M, L]

___
M n L and [M, L] is normal in O*,,(H). The minimality

of M and L now forces [M, L] Me and [M, L] L, whence M L
and the uniqueness of the L is proved, 1

_
i

_
r. The uniqueness of L is

similarly proved.
Since L(/) I]= L, L covers each L and hence L

_
L, 1

_
i r.

Thus L

_
M II=IL. On the other hand, clearly M is a normal

subgroup of O*,,(H) which covers L(/), so L

___
M by the minimality of

L. We conclude that L M. Since L*,,.(H) is the inverse image of
L(/) in H, we also have that L*,,(H) LO,(H), so both parts of (i)
hold.
By Theorem 1, L(/) O(L*), where ,* denotes the unique maximal

normal semisimple subgroup of/, and consequently L(//) is characteristic
in/7. Since O,(H) and O*,,(H) are each characteristic in H, it follows
that L" is a normal subgroup of O*,,(H) which covers L(//) for any a

in Aut(H). Since L" and L have the same order, the minimality of L forces
L" L. We conclude that L is characteristic in H, proving (ii).
By Theorem 1, we have 0 (L) (,) [L, L] L and conse-

quently 0’(L), O(L), and [L, L] each maps onto L. Since each of
these three groups is normal in 0*,,(H), being characteristic in Li, the
minimality of L now forces 0 (L) O(L) [L LI L 1

_
i

_
r,

so (iii) also holds.
Finally we clearly have

O,,(H) n L

_
O,(L) and O,,(H) n L

_
O,.(L),

so to prove (iv) it suffices to establish the reverse inclusions. Set
K O*,,(H). Since L is normal in K and O,(L), O,,(L) are char-
acteristic in L, we have that O,(L) and O,,(L) are normal in K, whence

O,(L)

_
O,(g) and O,,(L,) O,,(g).

But K is normal in H and so by the same argument

O,,(K)

_
O,(H) and O,,(K) O,,,,(H).

We conclude at once that

O,(L)

_
L O,(H) and O,.(L,) L O,,,(H), 1

_
i

_
r,

thus completing the proof of (iv).

DEFINITION 4. We call the subgroup L of Theorem 2 the r-layer of H
and denote it by L,,.(H). Moreover, we call its subgroups L the r-com-
ponents of H, 1

_
i

_
r. For completeness, we set L,,(H) 1 if the v-

layer of H/O,(H) is trivial.

We note that these definitions are consistent with those of Definition 2;
that is to say, if O,,(H) 1, then the terms -component and -layer of
Definition 4 have the identical meanings as those given in Definition 2.
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In the applications of these results to the local group-theoretic analysis in
general classification problems, it is very often necessary to pass back and
forth between the v-components of a group H and their images in
I H/O,(H). To facilitate this procedure, it is useful to introduce the
following terminology"

DEFINITION 5. Let L be a v-component of a group H, v a set of primes,
and let L be the image of L in I:I H/O,(H). Then we call L the asso-
ciated perfect quasi-simple component of L and we call L the associated covering
component of L.

3. Some properties of r-components
In this section we establish several additional results concerning the

-components and v-layer of a group.
As an immediate consequence of the various preceding definitions, we have

the following criterion for -constraint"

TI-IEOREM 3. A group H is -constrained for a set of primes v if and only if
O*,,(H) O,,(H) and L,,(H) 1.

We next describe the action of H on its v-components"

THEOREM 4. For any group H and any set of primes v, H induces under
conjugation a group of permutations of the set of v-components of H.

Proof. We can clearly assume without loss that L,,,,(H) 1. Let
L, 1

_
i

_
r, be the v-components of H and set 1 H/O,(H). Then the

subgroups ,, 1

_
i

_
r, are the unique minimal normal nonsolvable sub-

groups of L(/) and so each element of/ acts as a permutation of the ,,
1

_
i

_
r. This implies that for any h in H and any i, L maps onto Lj

for some j, 1

_
i, j

_
r. But L is normal in O*,.(H) and hence so is L.

Hence by the uniqueness and minimality of Lj, it follows that L
___
L.

The same reasoning applied to L- shows that L

_
L-1, whence L

___
L.

Thus L L. and we conclude that h induces a permutation of the v-com-
ponents L of H, 1

_
i

_
r. Thus the theorem follows.

The following result is a direct corollary of Theorems 1 and 2"

THEOREM 5. For any group H and any set of primes v, the image in
H/O,.(H) of each v-component of H is a nonabelian simple group and the
image of L,(H) is the direct product of the images of the distinct v-components
of H.

Our next result i a direct extension of a well-known property of v-separable
groups.

THEOREM 6. ]f D is a ’-subgroup of the group H, v a set of primes,
and if [D, 0",, (H)] is a v’-group, then D O,(H).
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Proof. Setting/ H/O,,(H),/ 0"(/7), and [/, 1, our con-
ditions imply that is a v’-group, as/ is the image of O*,.,(H) in/, and
that is normal in/. But by Theorem 1, 0,,(/) 1, whence 1
and so/) centralizes/. Again by Theorem 1, C(/) is a w-group, thus
forcing/) 1. We conclude that D __. 0,, (H).
We also have the following variation of Theorem 6.

THEOREM 7. If D is a subgroup of the group H and if [L,.(H), D] is
v-solvable, v a set of primes, then [L,.(H), D]

___
O,,,(H).

Proof. Set L L,,,.,,(H) and I:l H/O,,,(H), so that by definition
L L(/). Our conditions imply that [,/)] is a v-solvable normal sub-
group of L. But by Theorem 1, either L 1 or L/Z(L) is the direct product
of nonabelian simple groups none of which is a v-group or a v’-group. In
either case it follows that [L, /)]

___
Z(L), whence L centralizes/ by the

three-subgroup lemma. Thus [L, D]

___
0,(H), as asserted.

Our next theorem gives conditions for a product of v-components of a
group to be semisimple.

THEOREM 8. For any group H and any set of primes v, the following con-
ditions hold:

(i) If L is a v-component of H, then L is perfect quasisimple if and only
if L centralizes 0,,, H)

(ii) Any product of perfect quasisimple v-components of H is semisimple
(iii) The v-layer of H is semisimple if and only if it centralizes O,(H).

Proof. Let L be a perfect quasisimple v-component of H, in which case
L/Z(L) is simple. If D O,(L), then D is a proper normal subgroup of
L inasmuch as O"’(L) L and consequently D Z(L). On the other
hand, as L and O,,(H) are normal in O*,.(H),

[L, 0,(H)]

_
L r O,,(H) D

by part (iv) of Theorem 2. Since D Z(L), it follows that L centralizes
[L, O,,(H)], whence L centralizes O,,,(H) by the three-subgroup lemma.

Conversely suppose a v-component L of H centralizes O,,,(H), in which case
L centralizes L n O,(H) D. Setting I H/O,(H), we know that L is
perfect quasisimple. Hence if E denotes the inverse image of Z(L) in L,
we have D

_
E, E/D is isomorphic to Z(L), and LIE is a nonabelian simple

group. Furthermore, Z(L) is a v-group by Theorem 1. Since D

___
Z(L),

this implies that E D X F, where F is a -group which maps onto Z(L)
and is normal in L. Since ], centralizes / Z(L), it follows that L cen-
tralizes F, whence L centralizes E. Thus E

_
Z(L) and, as L is perfect, we

conclude that L is perfect quasisimple, completing the proof of (i).
Next let L, 1

_
i

_
m, be distinct perfect quasisimple v-components

of H. Then each , is a component of the v-layer L(/) of 1 H/O,(H),
so[L,L] lforallij. Thus[L,L] 0,(H),i j,1

_
i,j

_
m.
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But Li centralizes O,(H) by (i) as Li is perfect quasisimple and consequently
L centralizes L. by the three-subgroup lemma for all i j. Hence the
product of the L is semisimple, proving (ii).

Finally, the r-layer L,, (H) is, by definition, the product of all the r-com-
ponents of H (with L,.(H) i if H has no v-components). Hence (iii)
is an immediate consequence of (i) and (ii).
Our last result is a direct corollary of Theorem 1"

THEOnnM 9. If H is a group in which O,(H) := 1, v a set of primes, and
ifL is a normal semisimple subgroup ofH such that O’S(L) L, then L L,,(H)
and each component of L is a r-component of H.

Proof. If L* denotes the unique maximal semisimple normal subgroup of
H, we know that L is a semisimple factor of L*. Moreover, by Theorem 1,
L,(H) O(L*). Since Or(L) L, it follows that L

_
L,,(H). Thus L

is, in fact, a semisimple factor of L,,(H) and so each of its components is a
component of L,,(H) and hence is a v-component of H.

d. Some 9enercl ]emms

In this section we shall prove some general results which are useful when
studying the v-components of a given group.

If the r-group A acts on the r’-group B, it is well known that [B, A, A]
[B, A]. We can establish quite easily the following variation of this result:

LEMMA 1. Let A be a group which acts on the v-group B, v a set of primes.
If Or’ (A) A, then

[B, A, A] [B, A].

Proof. Let/P, 1 i _< m} denote the set of all Sylow p-subgroups of A
as p ranges over the primes in r. Clearly the P generate a normal subgroup
N of A such that A/N is a v’-group. Since 0r’(A) A by assumption,
A/N" must be trivial and consequently

A (P11

_
i_ m).

Since B is a r’-group and P is a p-group for some p in v, we have [B, P]
[B, P, P], whence

[B, P] [B, A, A]
foralli, 1

_
i_< m.

We argue now that if Pj, 1

_
j_ It, are chosen arbitrarily from the set

{P I1 _< i <_ m}, then

[B, PI Pi2 Pi]

_
[B, A, A].

Indeed, we have already proved this above when k 1. We proceed by
induction on k. Hence if we set Q P P P,_, then we can assume
that

[B, Q]

___
[B, A, A]
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and we must prove that
B QP] [B A, A].

But it is an immediate consequence of the commutator identity of Lemma
2.4 (ii) of [3] together with the fact that [B, Q] and [B, Pk] are each normal
in B that

[B, QP,k] [B, Pk][B, Q][B, Q, Pi].

Since [B, Q] [B, A, A] B and since [B, Pik]

___
[B, A, A], it follows that

each term on the right side lies in [B, A, A] and hence so does [B, QP].
Finally, every element x of A lies in PI P P for some/ and some

choice of the groups Pij, 1 _< j _</, and consequently

[B, x] [B, A, A]

for all x in A. Hence [B, A]

___
[B, A, A] and the lemma follows.

Another result similar in spirit is the following:

LEMMA 2. Let H be a group of the form AB, where B is a normal -’-sub-
group ofH and 0’’ (A) A. IfK is a subgroup ofA such that A K(A n B)

[B, K] [B, A].

Proof. Setting X [B, K], we have that X is normal in (B, K). But

H AB K(AnB)B KB,

so X is normal in H. Moreover, KX/X centralizes BX/X and consequently
also KX is normal in H. Thus KX n A is normal in A. But A/KX A is
isomorphic to AX/KX KX(A B)/KX and so is a r’-group inasmuch
as B is a v’-group. However, O*’(A) A by assumption, whence
A/KX n A 1 and therefore A KX. We conclude that [B, A] [B, KX].
We claim that [B, KX] [B, K]. Indeed, if R.[ KB/X, then

[/, /] [/,/] 1 as X [B, K], and the assertion follows. Thus
[B, A]

_
[B,K]. On the other hand, [B, K] [B, A]asK___ A and we

obtain the desired conclusion [B, K] [B, A].
As an immediate consequence of the three-subgroup lemma, we also have

LEMMA 3. If the group A acts on the perfect group B and if A centralizes
B/Z(B), then A centralizes B.

Finally, we prove

LEMMA 4. Let L be a group such that 0’(L) O(L) L and L/O,,(L)
is perfect quasisimple for some set of primes ’. If K is a normal subgroup of
L with K = 0,.(L), then L K.

Proof. Setting L/O,(L), our conditions imply that O(L) ,,
that L is perfect quasisimple, and that O,(L) 1. In particular, Z(L)

then
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is a r-group and 0(f) L. Since L/Z(f,) is simple, this forces
o(L) z(L).
Furthermore,/ is normal in f, and/ 0(f,), whence/ Z(f). Since

f is perfect quasisimple, it follows that R: L and hence that L KO,(L).
This in turn implies that L/K is a v’-group. Since Of’(L) L, we con-
clude that L K.
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