THE EQUICONTINUOUS STRUCTURE RELATION FOR ERGODIC
ABELIAN TRANSFORMATION GROUPS

BY
Kent E. WESTERBECK AND TA-Sun Wu!

I. Introduction

Let (X, T) be a transformation group with compact, metric phase space,
X, and abelian phase group, T. (X, T) is ergodic if every proper, closed, T'-
invariant subset is nowhere dense. By [7] this is equivalent to requiring the
set of points, X, whose orbits are dense in X, to be comeager. (X, T) is
weakly mixing if (X X X, T') is ergodic, where the action of T is given by
(z, 2)t = (at, 2't).

In [2], it was shown that there exists on (X, T), a least, closed, T-invariant
equivalence relation, S, , such that (X/S., T) is an equicontinuous trans-
formation group. 8, is called the equicontinuous structure relation on X.
In [15], Veech made a thorough study of S, when (X, T) is a minimal set.
However, when (X, T') is not minimal, the relation S, could be quite obscure.
Consider, for example, the continuous flow acting on the unit interval with
two end points fixed. Then 8, = X X X. If we restrict our attention to the
subflow (X, T'), where X is the open interval, then there is a faithful homo-
morphism of (X, T') into the universal almost periodic minimal set. On the
other hand, consider the Stepanoff flows on the two torus with one fixed point
[13]. In this case, S, is again equal to X X X, but in some instances, (X, T')
cannot be mapped homomorphically into any nontrivial almost periodic
minimal flows. The differences between these two examples seem to indicate
it is more natural to consider the homomorphisms from (X, 7') into almost
periodic minimal flows with compact phase space, when (X, T') is ergodic and
nonminimal. In this note, we shall prove the existence of a least, closed,
invariant equivalence relation, S, on (X, T') such that there exists a faithful
homomorphism of (X/8., T) into a compact, almost periodic, minimal
transformation group with a certain universality property. We will demon-
strate a condition on (X, T') equivalent to the existence of an invariant, Borel,
probability measure on (X, T) with support X. Assuming one of these
conditions, we will characterize S., and show it is contained in the regional
proximal relation on (X, T) [2]. Finally, as applications, we will show the
eigenfunctions and spatial eigenfunctions of Keynes and Robertson [11] are
essentially equal and will give a sufficient condition for (X, T') to be weakly
mixing.

Il. Construction of an almost periodic, minimal factor of( X, T')

Standing Notation. Throughout this paper (X, T) will denote an ergodic
transformation group with compact, metric phase space, X, and abelian phase
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group, T. (X, T) will denote the transformation group with phase space
X ={zeX|0X) = X}.

In Section II, (¥, T) will denote an almost periodic, minimal transforma-
tion group with compact phase space Y.

We will construet an almost periodic minimal factor of (X, T') which has
compact phase space and is also a factor of (Y, T'). In the spirit of Theorem
2.1 [16], we will construct invariant equivalence relations ~ and = on X and
Y so that (X/~, T) and (Y/~, T) are transformation groups.

Lemva 2.1. If (X, T), (X, T), and (Y, T) are as above there exists a closed
set N & X X Y which ts the orbil closure of each of its points, and for which
p1t (N) = X, (pr: X X Y — X is the projection onto the first coordinate).

Proof. Let
B = {Z\|Z, € X X Y, Z, is closed, invariant, and p1 (%) = X}.

If {Zy|NeA} is a subset of B which is totally ordered by inclusion,
let Z = MZy. Z is not empty since X X Y is compact. Z is closed and
invariant. If p1(Z) # X, p1(Z) is compact so X — pi(Z) = U is open.
Pick V, open,such that VC V C U. (X — V) X Yisopenin X X Y,
ZC (X —V) X Y,and X X Y compact implies at least one of the Zy’s is
contained in (X — V) X Y. Hence

T=p@)SX-7V
a contradiction and Z e B. By Zorn’s Lemma there exists a maximal element,
Z',in B.
Let N = Z'n (X X Y). Nisclosedin X X Y, invariant, nonempty, and
(z, y) € N implies cl O (2, y) = Z' where closure is with respect to X X Y. So

AdO@y) =N=Zn X XY)
where closure is with respect to X X Y. Since p1(Z") = X, p(NV) = X.

Lemma 22, If (X, T), (X, T), and (Y, T) are as above then (X X Y, T)
18 the disjoint union of closed sets {N ;}, where N ; is the orbit closure of each of its
points and pr(N;) = X. In fact all such sets are isomorphic.

Progf. Let N € X X Y be the set guaranteed by Lemma 2.1. If
(2o, 40) ¢ N, let c1O(x0, 50) = No. Since p1(N) = X there exists ¢ ¢ ¥
with (20, y’) e N. Since Y is a compact abelian group [3, p. 26, Remark 4.6]
we may define

a: XXY—>XXY by al@y) = (3 ).

a is an isomorphism and a(N) = N, has the required properties.
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LemMA 2.3. Let N © X X Y be the orbit closure of each of its points, where
(X, T), (X, T) and (Y, T) are as before. Let x ~ &' if there exists y € Y such
that (z,vy), (@, y) eN,and y Xy if y = y, or if there exists ¢ X such that
(z, y), (&, ¥') eN. ~ and = are invariant equivalence relations and ~ s
closed.

Proof. ~ and = are reflexive, symmetric, and invariant. In order to show
they are transitive we will demonstrate that (z, y), (z, y), and (2, ¥') e N
imply (z,y') e N.

Let {#\} and {s,} be nets in T such that

limy (z, )t = (@, 9") and lim,(Z, y)s, = (2, 9).
Since the action of T on Y is equicontinuous [3, p. 25],

lim, (limy 2t)s, = lim, z's, = =
and

lim, limy, yhs, = lim, limy ys,fy = limy, lim, ysb = limy yt, = o/’

Hence ((z, y)t)ss — (z,y) and (z, y') e N.

If 2 ~ &, 2 ~ 2" with (z, y), &, ), @, ), and (&, y') e N, we have
shown that (z, ¥') e N and hence e ~ ¢”. Ify~y, 9y ~y”, y = v, and
y  y” then for some z, &’ ¢ X, (z,9), (, %), (,y) and (z, y”) eN. If
we replace y by 4’ and 5’ by y” in the above paragraph we get (z, ¥”) ¢ N and
y~vy’. Ify=1y ory = y” the result is obvious.

If 2y ~ Z'x, N € A, with 2, — z, and 2 — 2, there exist yx ¢ ¥ such that
(@, 1), @', 1) e N. Since Y is compact we may assume 3 — y ¢ Y, so
(@, 1) — (@, y) eN, and (@', 1) — @, y) eN,  ~ 2’ and ~ is closed.

We would like to find a closed, invariant equivalence relation on ¥ which
contains ~.

Lemma 24, IfFNC X XY, X, T), (X, T) and (Y, T) are as before, fix
a group structure on Y and assume (%o , e) ¢ N, for some 2o ¢ X and e the identity
of Y. H = {y]| (@, y) e N} is a closed subgroup of Y and there is a natural
action of T on Y/H making (Y/H, T) a compact, almost periodic, minimal
transformation group.

Proof. Letyi, ye e H,s0 (20, e), (X, y1), and (xo, y2) e N. Let {#} be a
net in 7T such that (2o, y2)in — (@0, €). By our identification of T with a
dense subgroup of Y [3, p. 26, {#\} is a net in ¥ and we may assume fh = p e Y.
Since yaty — € we have p = 45

lim (o, y1)b = (0, ylyz—l) eN and y1y2_1 eH.

N, and hence H, is closed. (Y/H, T') can be made into a compact trans-
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formation group. Since 7T is abelian, (Y, T'), and hence (Y/H, T), is almost
periodic and minimal [3, p. 26].

LemMa 2.5. Ify =~y then yy " e H, (y,y € Y).

Proof. Ify~7y andy # y there ex1sts z € X such that (z,y), (z,y’) eN.
Let {#} be a net in T such that (z, ¥ )t — (0, €) e N. As before we may
assume f, — p e Y and y'p = e impliesp = ¢y

@, y)h— (@0, yy ) and yy ' eH.
If y = y the result is obvious.

LemMa 2.6. If =, H, (X, T) and (Y, T) are as before and * is the least
closed invariant equivalence relation containing =2, then y ~* v if and only if
/—1
yy eH.

Proof. By the above lemma y ~ y implies yy ' e H. H = [e]. since
y ¢ H implies (%, y), (%0, e) e N. The proof is completed since H generates
a closed, invariant, equivalence relation.

We will now construct the homomorphism of (X, T) into (Y/H, T). Let
m: X, T)— X/~ T), m: ¥/~,T)— (Y/H,T),

m: (Y, T)— (Y/~, T)
and
g:(Y,T)— (Y/H, T)

be the natural maps. s is well defined by Lemma 2.5 and 8 = m o w3 .
Define the homomorphism

o X/~ T)— (Y/=,T)

by ¢([z]) = [y] where (z,9) e N,ye Y. o(z]) = [y] = ¢(I&']) if and only if

(x,y), (&', y) e N so ¢ is well defined and one-to-one. Since m; is a quotient

map, ¢ is continuous if ¢ oy is continuous. If 2x — zand (2n, %), (@, y) e N

we may assume y — % € Y and (2, 1) — (2, v)YeNsolyl = [¥]l. QE.D.
We would like to show

mog: (X/~,T)— (Y/H,T)

is one-to-one. w0 ([z1]) = [ylg = me o @ ([2,]) implies w2 ([y1]) = w2 ([5a]) for
Y1, Y2 € Y such that (21, 1), (x2, y2) e N. yis e H and (zo, yiyz') eN.
There exists a net {s,} in T such that (2, ¢)s, — (%2, ¥2). We may assume
Sy — Yz, 80 (o, Yz ) — (22, 41) eNand o ~ . Q.E.D.

We have the following commutative diagram with s o ¢ one-to-one.
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x,
w1

¥, T)
X/~ T)

3

(Y/=, T)

lm

(Y/H,T)

The following example shows that mo¢ need not be onto and
hence (X/~, T) need not be isomorphic to (Y/H, T).

Exzample 2.1. Let (X, T) be the one point compactification of the trans-
formation group (R, R), with the group action. Let (Y, T) be the two torus
with the irrational flow. (X, T') is ergodic and (Y, T) is almost periodic,
compact and minimal. (X, T) is just the transformation group (R, R). Fix
(@, y0) eYandlet N = { (¢, (xo, yo)t) [t . T}. N € X X Y, is the orbit
closure of each of its points and we may assume (x,, ) = e, the identity
of Y. (0, (x, y)) e N and we can form H = {(z, y) | (0, (z, y)) eN}.
H = {(20, y0)} = 1¢}.

If mog: (X/~,T) — (Y/H, T) is onto then for each (x, y) ¢ Y there
exists

(@, 4] ee(X/~)

such that (z, )@, ¥') " e¢eH = f{e}. Hence ¢ must be onto. If
Ppe - X X Y — Y,

pe(N) = O((mo, ) T Y.
Pick (2", y”) ¢O((xo, y0)). We have [(&”, ¥")] ¢ e(X/~). Q.E.D.

TueoreM 2.1. Let (X, T) be an ergodic transformation group with compact
metric phase space X, and abelian phase group T, (Y, T) a compact, almost
pertodic, minimal transformation group and (X, T') the transformation group on

X ={zeX]| e (0®@) = X}.

There exists a closed, invariant, equivalence relation, ~, on X such that (X/~, T)
can be immersed in a one-to-one fashion into a compact, almost periodic, minimal

factor (Y/H, T) of (Y, T).
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lll. Certain universal almost periodic minimal
transformation groups

Derinimion 3.1, (B(T), T) is a universal almost periodic minimal trans-
formation group if (B(T), T) is almost periodic and minimal, B(T') is com-
pact, T' is abelian, there exists a continuous homomorphism, 7, from 7’ onto a
dense subgroup of B(T), and (B(T), T) has the following universality
property: given any compact, almost periodic, minimal transformation group
(Y, T), there exists a continuous homomorphism ¢ : (B(T), T) — (Y, T)
extending the natural homomorphism, 6, of T into Y.

Consider {(Zx, T) | (Z», T) is compact, almost periodic, and minimal,
and m, : T — Z, is the natural homomorphism}. Definer : T — 1L 2\ by
@) = {m@®)} andlet Z = o («(T)) S [ILZ.. (Z, T) is the universal al-
most periodic minimal transformation group and 6’ : (Z, T) — (Zx, T) is de-
fined by § ({a}) = 2 .

DerintrioN 3.2. If X is Hausdorff, and T is abelian, then 6 is an almost
periodic immersion of (X, T') if 6 is a homomorphism from (X, T') onto a
dense subset of a compact, almost periodic, minimal transformation group
(Y, T). Wesay that

0: (X, T)— (Y, T) and ¢ : (X, T)— (¥, T)

are equivalent if there exists a homomorphism ¢ : (Y, T) — (Y, T') such that
9 =¢of.

Remark 3.1. A continuous automorphism of a compact almost periodic
minimal transformation group is an isomorphism, [1, p. 12], so the above
relation is an equivalence relation.

DerintTiON 38.3. 6: (X, T) — (Y, T) is the universal almost periodic
immersion of (X, T) if, given any other almost periodic immersion
¢ : (X, T)— (Y, T), there exists a homomorphism ¢ : (¥, T) — (Y', T)
such that o 8 = 6.

IfA ={6]|6: X, T)— (Y\, T) is an almost periodic immersion}, fix
zoe X andletyn = O (z). Let Y = cl{pT S []h Yaand6: (X, T) — (Y, T)
be defined by 6(z) = {6 (x)}n. (¥, T) is almost periodic and minimal
since [ ] Y», and hence Y, is a compact topological group with a homomorphic
image of T as a dense subgroup. If & : (X, T) — (Y, T) is any almost
periodic immersion there exists m, : ([, Y., T) — (Y», T) since 6 e A.
m restricted to (Y, T') is the required homomorphism.

The material in Section II allows us to give the following representation of
the universal almost periodic immersion of (X, T').

Taeorem 3.1. If (X, T) is ergodic, X compact metric, T abelian, and
X={zeX|clO@) = X},

let (B(T), T) be the universal almost periodic minimal transformation group.
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Choose N and H as before. If o: (X, T) — (B(T)/H, T) s defined as in
Section 11, it ©s the unversal almost pertodic immersion of (X, T).
Proof. Ifv: (X, T)— (Y, T) is an almost periodic immersion let
2B, T)— (Y, T)
be the induced homomorphism. We may assume that v (X) contains, &, the
identity of Y and 6 (e¢) = € where e is the identity of B(T').
A ={(r,y) eX X B(T) |v(x) = §(y)} is closed and invariant. Let x, be
some point in v ' (€) and form
N =clO(,e) S X XB(T) and H = {yeB(T)| (x0,y) eN}.
We have (from the last diagram, with Y replaced by B(T))
a=mogpom: (X,T)— (B(T)/H, T)
and B8 = mom;: (B(T), T) —> (B(T)/H, T)
If H C ker (6), we can define ¢ : (B(T)/H, T) — (Y, T) such that the
following diagram commutes:

X, 1) B(M), T)

N4

B(T)/H, T)

S,
(20, ¢) e A since y(x) = € = 6(e),and N = ¢l O(xp, ¢) & A. For each
yeH, &= v(x) = §(y) and y e ker (6) or H C ker (3).

CorROLLARY 3.1. The equivalence relation S. discussed in the introduction
is the one induced by N = ¢l O (zp,e) € X X B(T).

IV. An equivalent condition for the existence of an
invariant, Borel, probability measure on (X, T')
with support X
We will follow the notation built up in Sections II and ITI. If E is a subset

of T, let fr denote the characteristic function of E. Let g be a real-valued
function of 7' and ¢' denote the function that has values ¢° (s) = g (st).
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DrrFiniTion 4.1.  If f(¢) is a bounded real-valued function on an abelian
group T, let A = {<t1:_"' yboyom, 00, (ant;eT, a; > 0, ZLIO‘:' = 1}.
The upper mean of f, M (f), is defined by

M(f) = M.(f(x)) = inf, sup, 2 i af (tts).
The upper mean of E C T is M (fz).
DerintTion 4.2. If ¢ ¢ X and U is a neighborhood of z, let
(U, z] = {t| «t e U}.
We will write fiv,«; as fl[U, z] for convenience.

[U; z), flU; ], and M (g) satisfy the following relations (ze X; U and W
are neighborhoods of z; s and ¢t € T'; g, and h are bounded real-valued functions
on T; and « > 0), [4, p. 8]:

@ (U, e = (U, ],
(In) [Ut, ) = [U, |,
(III) fIU, z](ts) = fav=ne1(s) = flU, ] (s),
(IV) U < W implies f[U, z] < fIW, =],
(V) M,(g(st)) = M(g") = M(g) = M,(g(s)),
(VI) M.(flU; 21(s)) = M:(flU, z](st)) = M,(flU, «t](s)),
(VII) M(g+ h) < M(g) + M),
(VIII) M(ag) = aM (g); @ > 0,
(IX) M,(g(s) —g(st)) = M(g—g¢') =0,
(X) ¢ < himplies M (g) < M (h),
(XI) U C W implies M (f{U, z]) < M (fIW, «]).

DeriniTioN 4.3. If (Z, T) is any transformation group, with T' abelian,
we will say that (Z, T') is strongly ergodic at 2o € Z, if given any neighborhood
Uofz,M(f[U,2]) >0. (Z,T)is said to be strongly ergodic if it is strongly
ergodic at each of its points. (Note that the terminology ‘‘strongly ergodic”
is not standard.)

TuaeoreM 4.1. If (X, T) is an ergodic transformation group with compact
metric space X, and abelian phase group, T, then the following are equivalent:

(a) there exists an invariant, Borel, probability measure on (X, T) with
support X,

(b) (X, T) is strongly ergodic,

(¢) (X, T) is strongly ergodic at some point in X.

Proof. (a) implies (b). Let U be an open set containing x, e X, and
(tl, sy lnyon, e ,Ot,.)éA.

0< [ fodn = Tiaew [ fule) au(e) = Tiaas [ folats) dule)
= LZZ% a; fo(at;) du
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< Supgex (D i1 a; folats)),

where the second equality follows since u (2) is invariant.
For every ¢ > 0, there exists an ¢’ e X such that

SUPLex (D i i fu(ats)) — & < Dor aifu(@ts).

There exists a § > 0 such that d(z”, ¢') < & implies ¢”t; ¢ U whenever
Z't; are. Since O (x,) is dense in X there exists an s e T such that

d(xes, #) <6 and foy(xosts) > fo(a'ts).
We have
supu}(ZZL: a; fo(@t)) —e < Z?———l aifo(@'t) < 2:';1 o fu (xosts),

which holds for some s given any ¢ > 0, and

0< ‘/Efu du < sup.ex (D im o fo () < sups D i a; fu (zost:)

forall (¢, -+, tu; a1, -+, a,). Finally,

0< f~ fodu < inf, sup, D iy o fu (zost:) = M (f[U, xo)).

(b) implies (¢). Obvious.

(¢) implies (a). Let {W,}7= be a countable basis of X made up of com-
pact sets. Fix one of the W,’s and call it W. We will produce an invar-
iant, Borel, probability measure, 1%, on X such that n* (W) > 0. Let (X,
T) be strongly ergodic at xo ¢ X.

Let L be the linear space generated by {f[U, zo] | U € X}, and let H be the
subspace generated by the identically one function. M is a positive, sub-
additive function on L with the invariance property V above.

If we define M on H by M (n1) = nthen M (h) = M) (h e H). f[W, 5]
is an element of L — H and

sup { =M (—h — fIW, 2o]) — M (h) | h ¢ H}
< MW, «]) < inf (M (¢ + fIW, %)) — M () | heH).

By the Hahn-Banach Theorem [10, p. 454-455] we may extend M to a linear
functional, M, on all of L such that

MW, m]) = MfIW, z]) and M(g) < M(g) (geL).
M has the following properties, (see [4, p. 8] for (i) and (iii)):

() infer F(¢) < M—(f) < M) < M(f) < super f(¢) where M_(f)
= - M(:f)7
(iil) M is a positive linear functional on L,

(i) M.(f(st)) = M(F(2)).
If U is an open or closed subset of X define n(U) = M (f[U, o). If
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S C X define 7*(S) = inf {D.run(U;)|the Uss are open and
Sc UL U} N 7" is a Carateodory outer measure and hence defines a Borel
measure. 7" (X) = 1s0 9™ is bounded. 7, and hence 7, is T-invariant, vis

n(At) = M,(flAt, 2] (s)) = M, (flAL, @] (st)) = M, (flAt, 2t] (5))
= M,(fl4, @] (s)) = n(4)
(A open or closed in X). Since W is compact, n* (W) = (W) and
W) = q(W) = MW, 2]) = M (fIW, a]).
Since (X, T') is strongly ergodic at 2, n*(W) > 0.
Let 77 denote the normalized measure associated with W, and define

¥
o= D a1/2';.
p is the required measure.

DEerinNiTiON 4.3. A subset S of T is (left) syndetic if there exists a com-
pact subset, K, of T such that SK = T.

DeriNiTION 4.4. A transformation group (Y, T) is regionally almost
periodic if for each open set U in Y there exists a syndetic subset S of T' such
that UsN U = @ (seS).

Lemma 4.1. [5, p. 61]. If M (fs) > O then EE " is a syndetic subset of T.

TaeoreM 4.2. If (X, T) is an ergodic and sirongly ergodic transformation
group with X compact metric, and T abelian then it is regionally almost periodic.

Proof. If U is open and [U, 2] = E then there exists a ¢t ¢ T with 2o ¢ ¢ U.
(X, T) is strongly ergodic at 2o ¢ s0
and EE" is syndetic.
Ifs,s € E, 28, 208 ¢ U. Uss " N U is nonempty since zoe Us™* implies
zseUs 'sNU.
V. A Characterization of S,

In this section we will retain the notation built up in the first four sections
and give the characterization of S, mentioned in the introduction.

Lemma 5.1. If (X, T) s strongly ergodic, (Y, T) and N C X X Y are as
an Section I1, then (N, T) is strongly ergodic.

Proof. Given (21, y) € N, we will show that there exists (z1, y') ¢ N such
that for each neighborhood V X W of (21, %),

Mf(V X W) aN, (&,y)]) > 0.
If not, for each (z;,y’) e N, there exists P,» = (V,» X W, )N N such that
M (flPy: , (@, y)]) = 0.
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Q:, = {yeY | (21, y) e N} is compact since N is closed in X X Y. Pick
Y, -, Yasuchthat W= W, u---uW, 2Q.,, .Let V=N7V,.

C=1{veV]| (v,y) e N and y e W’, for some y ¢ Y} is closed in X since Y is
compact. V' = V — Cis open in X and contains z;. If z1se V' then
(21, y) e N implies (18, ys) e N and hence ys e W. Hence,

IV, @l (s) < fI(V X W)naN, (@,y)](s) forall seT.
Since VX WC VX W C UL, V,, X W,, wehave
(VX W)nN CUk(Vy,, X Wy)nN = U, P,
as well as
flUZ Py, @, )] < 20 fIPy,, (a1, 9)).
0 <MV, &) <MV X W)naN, (@,)])
< M(flUia Py, (21, 9)])
< M (2 flPy,, (@, 9)])
< 2 M(fIPy,, (z1,9)]) =0

and we have a contradiction.

If A is any neighborhood of (21, y) in N we have (z;, y') as above and
(21,9 )te A for some ¢t ¢ T. Hence there exists a neighborhood B of (z1,y)
such that Bt € A. Choose E X F a neighborhood of (21, y') such that
(EXF)nNCB.

0 < M{(E X F)nN, (x,y)]) <M B, (@1, y)]) = MJIBt, (21, y)t])

< M(flA, (a, ) = MFA, (@, y)])
and N is strongly ergodic.

In [6] Fglner proved the following useful theorem:

TaEOREM 5.1. Let V have upper mean greater than zero and lel S be an arbi-
trary neighborhood of the identity of T. There exist continuous characters
X1, **° > Xn Such that the set of

teF(xl’ ’X") = {tIReXi(t) > 0).7 = 172; ot ;n}
not expressible as titz's, ti, t, € V, s € S, has upper mean equal to zero.

Following [15, Theorem 1.1] we shall characterize ~, defined from
N € X X B(T), in the same way as Veech characterized the equicontinuous
structure relation of a minimal transformation group.

TusoreM 5.2. If (X, T) is ergodic and strongly ergodic, X is compact
metric, T is abelian, and (X, T), (B(T'), T') and N are as before, then x, ~ x,
if and only if there exist nets {th} and {t{} wn T such that

. . ’ . 1—1
Ly 2y = @1, lim oy = @ and limy oty = 2.
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Proof. Consider the following commutative diagram:
X, 1) (B(T), T)

]

(B(T)/=, T)

™2

(B(T)/H, T)

If 21 ~ x then ¢([21]) = [yo]~ = ¢ ([x2]) for some yo e B(T) with (21, ),
(x2, ¥o) e N. Let yo be the identity of B(T") and choose U, and S neighbor-
hoods of z; and y, respectively. Since M (f[U, 21]) > 0, we have the characters
X1, ', X generated by Fglner’s Theorem. {x.} ;- may be considered as the
restrictions to T' of continuous characters on B(T'). Sinceyo € F (x1, *** 5 Xn)
and the x; are continuous on B (T) there exists a neighborhood V of y, such
that yo¢ e Vimpliest e F (xa, - 5, Xn).

Let W be any neighborhood of 2. Since (21, %), (22, %) € N, there exists
a t e T and a neighborhood W' X V' of (z1, %) such that (W X V')t C
WX V.

0 < MW X V')aN, (@, y))) < MEW X V', (21, w)])
= MFW X V), (@1, yo)tl) < MEW X V, (21, %))
= M(f[W X V; (x17 yo)])°

The first inequality follows since N is strongly ergodic and the others by
relations II, III and XI in Section IV.

WXV, @, )] SF for (x,y)te W XV
implies yof ¢ V and ¢t ¢ F. Since M (f{]W X V, (21, %)]) > 0 we can find a

b, € W X V, (21, %)
such that

’ T —1
ko, wes = bw,we b(uws Sw,ws
with &,w,w.s) , bw,w.e €U, 21] and sw,w,s) € S.
. ’ . .
Choose a neighborhood, @, of ¢(v, w,s) such that ¢ € Q implies 21t e W. Choose

21
twws €T nbwws tywws @0 S,
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and let tl,(U,W,S) = Zl,(U,W,S) t(U,W,S) . t(U,W,S) — e in T and hence
ol w,w,s tw,w,s — 1.

—1
b, w2, T b w,w.s oo, ws — T2, and {h,w, w9}, {&.w, w5} are the
required nets.
Conversely, if the condition holds, then

]im)‘ a(xl t)\) = a(xl), lim)‘ a(xl t)’\) = a((l?l)

and {&}, {&} converge to the identity, e, of B(T)/H. Since (B(T)/H, T) is
equicontinuous we have

a(zy) = hmy a(z bty h)
= limy o (z1) (b ta ") = limy (limy (@)t " = limy @ (@) " = a(z).
If o o m(21) = [3], and @ o m(x2) = [12], then
1ys e H or (%, y1yz') eN.

Let {s,} be a net in T such that lim,(x,, €)s, = (22, ¥2). We may assume
{s.} converges to y» as a net in B(T')/H, so

(o, 1Y2 )8 — @2, Y1z y2) = (@2, %) eN
which gives 2 ~ x, .

CororLrary 5.1. If (X, T) is as in Section II and if X = X then Veech’s
result follows [15, p. 723, Theorem 1.1].

Proof. See [11, p. 365, Theorem 2.10].

CoroLLARY 5.2. If (X, T) is as in the above theorem we can characterize the
relation S, = ~ of (X, T) and we know that S, C Q (X), the regional proximal
relation on (X, T).

Proof. Q(X) = N{cl(aT) | ais an index of X}. If 2y ~ 2, and {h}, {#}
satisfy the conditions in the above theorem then

(@1, 21 tx b Dt — (21, 21) and  ((@1, 1 & ¢ B 06— (21, 7).
If @ is an index of X, we may assume (21, 1 & . )t;\ eafor all\. We have
)t " eal for all A,
(21, 22) €cl (@T) and the proof is completed.

(@1, 21 t;_l

V1. Eigenfunctions and the weakly mixing property

Let (X, T') be an ergodic transformation group with Baire phase space X.
Consider, B(X), the algebra of all bounded complex-valued functions on X
whose restriction to X is continuous. If f and ¢ are elements of B (X) we will
say they are equal if {x ¢ X | f(z) = g(z)} is comeager.

f ¢ B(X) is a topological eigenfunction of (X, T') with eigenvalue ¥, if f is
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not equal to the zero function and x : 7 — S is a continuous character of T'
such that f(2t) = f(z)x(¢) for all ¢ ¢ T and a comeager subset of z ¢ X. A
topological eigenfunction is invariant if its eigenvalue is the trivial character.

A topological eigenfunction, f, is a spatial topological eigenfunction of
(X, T)if f(xt) = f(x)x(t) forallt e T and z ¢ X.

Asin [11]let B(X) be the algebra of all bounded complex-valued functions,
f, on X such that ¢(f) = {x | fis continuous at z} is comeager. Again, f and g
elements of B(X) are said to be equal if {z ¢ X | f(2) = g(x)} is comeager.

f € B(X) is an eigenfunction of (X, T') with eigenvalue ¥, if f is not equal
to the zero function and x : T — ' is a character (not necessarily con-
tinuous) such that f(xt) = f(a)x () for all ¢ ¢ T and a comeager subset of
z ¢ X. An eigenfunction is invariant if its eigenvalue is the trivial character.

An eigenfunction, f, is a spatial eigenfunction if f(zt) = f(x)x () for all
reXandteT.

Remark 6.1. Let (Z, T') be a point transitive transformation group with
Baire phase space, Z. Let W = {2¢Z|clO() = Z} andletf: Z— Cbhea
spatial eigenfunction on (Z, T') with eigenvalue x : T — S'. By a theorem
due to Kakutani (cf. [8, p. 506]), ¢ (f) contains W. Since the eigenvalues of
a spatial eigenfunction are always continuous each spatial eigenfunction
f: Z — Cis also a (spatial) topological eigenfunction.

Remark 6.2. If f is a topological eigenfunction of (X, T') then
X C{al|f@t) = fx)x@) for all ¢ e T}.

Remark 6.3. If we give T the compact open topology, 3, then (7, 3) is
second countable and 3 is the smallest topology on T making X X T — X
continuous ((x, t) — «t). The eigenvalue, x, of each eigenfunction, f, of
(X, (T, 3)) is sequentially continuous and hence continuous on (T, 3). If
$ is the original topology on T, x : (T, 8) — (T, 3) — S'is continuous and all
eigenvalues are continuous.

Given a topological eigenfunction f : X — C with eigenvalue x : T — 8" we
would like to construct a spatial eigenfunction which equals f on the comeager
subset X and has the same eigenvalue.

Let f : X — C be a topological eigenfunction with eigenvalue x : T — S".
Fix 2, ¢ X and define F : X — Cby F(z) = f(2)/|f(x) |. (Note: f(xo) = 0
for f(z) = O implies f(2ot) = 0 and hence f/X = 0). F is a topological
eigenfunction with eigenvalue x. Let F : X — S be the restriction of F to X.

If we define an action of T on 8" by st = sx(t) (s e S, t ¢ T) then (S, T)
is an equicontinuous transformation group and ¥ : (X, T) — (S, T) is a
homomorphism, (cf. Remark 6.2). Let Z = ¢l F(X) < S'. (Note that if
x (t) is incommensurable with 7 for any ¢ € T, then Z = S'.) (Z, T) is point
transitive, compact and equicontinuous and hence is minimal and almost
periodic. F : (X, T) — (Z, T) is an almost periodic immersion of (X, T').

If N(x) = clO(x, F(x)) € X X Z then N (x9) is the orbit closure of
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each of its points and defines an almost periodic immersion
G: (X,T)— (Z/H(x), T)
where H (z0) = {y e Z | (@0, y), (@, ¥0) € N(x0)} and 4o = F (x,) is the iden-
tity of Z.
Lemma 6.1, If
F:(X,T)—> (Z,T), N(@)=cO@,F(x) <X X ZH ),
and
G: (X, T)— (Z/H(x), T)
are as above then H (x)) = {e}, F = G and N (o) is a “graph” in X X Z, t.e.,

{y] (z,9) e N(z)}
18 a singleton (z € X).

Proof. N (@) = clO(xo, yo) = cl{(xot, F(aot)) |t eT} € X X Z and
hence
N (@) = {(2, F(2)) | z e X}

andisagraph. H(x) ={yeZ| (20,y) eN(20)} = {yo}. G (%) = [Yolawy =
F(x) soF = G.

CoroLLARY 6.1. {y| (z, y) € cl O(x0, yo) where closureisin X X Z} is a
singleton for each x e X.

We would like to extend our almost periodic immersion
F: X, T)— (Z7T)

to a spatial eigenfunction, » : X — C. To do so we first extend it to an open
subset of X which contains X.
Partition X into the disjoint union

X=U{X.X|zeX}
where X, = {2’ € X|cdo@) =clO(@)}. X is such a set and will be denoted
by X,, for , e X. (Notice that we can pick X so that this 2, is the one we

used to define F : X — §.)
We have already constructed an almost periodic immersion

F: (X, T)— (2, T)
of the set X,,. We will construct an almost periodic immersion
Nt (X, T)— (Y, T)

for each ¢ ¢ X — {2}. (X., T) satisfies the hypotheses of Lemmas 2.1, and
2.2, where X, = {'|cl O(z) = X,}. Hence X, X Z is the disjoint union
of sets {N;} of the type described. Choose an element N (z) of {N;} so that

el O(zo, yo) N N(z) = 0
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(here closure is in X X Z). Let (z, y.) be an element of
N@) CclO@,yw) SXXZ

and define 8,,: X X Z - X X Zby B, &, y) = &, vz%). B, isan
isomorphism. N’ (z) = B,,(N (z)) is also the orbit closure of each of its
points and (z, y) e N’ (z). If

H@) ={yeZ| (z,y) eN ()}

we have by Lemma 2.4 that H (z) is a closed subgroup of Z and (Z/H (x), T')
is an almost periodic, minimal transformation group. Following the method
of Section II we define the almost periodic immersion

Nt (X, T) - (Xofmis, T) 25 (Z/~0, T) —2 (Z/H(2), T)

where ~, , and /X, are the equivalence relations defined in Lemma 2.3.
Let
A ={z|{z} XZ<S 0@, y)}
and
B = {d' |H(x) # Z, and H(z) # {yo where 2’ ¢ X,}.

A is closed and invariant. Since {y | (z, y) € cl O (o, yo)} is a singleton for
allz e X wehave A n X = 0.

LemMma 6.2. Bn X = @ and B is invariant.

IProof. If z* ¢ B tlllere exists a net {Zx}aca in B such that o — 2. Let
x)\ € X,, and choose y» € Z such that

(@, y0) eN@) SdO@,y) SXXZ (\ed).

(Remember that p1 (N (22)) = X, .) Since H(z) > S' it must be finite
cyclic and we can choose the generating element, n, , from each H ().

H(@m) = {y] @, y) eN (@)}
implies (zx , ) ¢ N’ (2) and hence (zx , ¥, ™) e N(m). If

(@n 5 Yor)oru — (x;. , y)'\) and &, AN y2r

in Z then (x{ s Yo DA) = (:1:)( , y{) eclO(x, o).

(@ 5 Yor M) —— (@05 Yon T D) = (@, Yur Pr 1) € €1 O (o, Yo).

If (2r, ) — @ y0) and (@5, yr m) — (¥, y1q), where zx — z* and my — g,
then «* ¢ X implies 41 = 41 g or yo = ¢ = limy ny. The cardinality of {ny | ris
an integer} will go to infinity in \. Hence

{ @,y (m)") | 7 is an integer} < el O (2o, Yo)

must have each point in {z*} X Z as a cluster point, and (2"} X Z € ¢l O (o,
1), & contradiction to Corollary 6.1. B, and hence B, is invariant.
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Lemma 6.3. Let f: X — C be a topological eigenfunction with eigenvalue
x:T—Sand\, =F: (X,T)— (Z, T) be defined as before. If we define
\:X— AuB)—7Z

by
MX:=X: X, T)— (Z,T) (xeX — (AuB)),
and
MNz) =0 (reduB),

then \ s conlinuous at each point in X.

Proof. Let {x,'.} be a net in X — (4 u B) which converges to z ¢ X. As-
sume ’m,'. ¢ X, . Since H(z) = {¢} if ZeX,n [X — (Au B)) there exists but
one y, € Z such that (z,, y.) € N(z.). If {y,} has subnets {y.1} and {y..s}
converging to y; and y, respectively then

lim (@1, Ye1) = (@, y1) and lim (2, yee) = (z, %)
and (2, y1), (&, y2) € cl O(x, o). By Corollary 6.1, y1 = y. and {y;} con-
verges to y € Z. (2, y), (@, Asy(@)) € cl O(x, yo) implies that \,(z) =
[Ylreo = {y}. Q.E.D.

Tusorem 6.1. Let (X, T) be ergodic, X compact metric and T abelian.
There exists a (spatial) topological eigenfunction, f, of (X, T) #f and only if
there exists a spatial eigenfunction, g, of (X, T) which is equal to f, i.e. {z | f (x)
= g(x)} s comeager.

Proof. 'The “if” portion follows from Remark 6.1.
If f : X — Cis a (spatial) topological eigenfunction, define

F: X, T)—>(ZT) and N:X — (AuB)—Z

as in the above lemma. Defineh : X —Cby h(z) = A () |f(20)] (= € X).
h is the required spatial eigenfunction.

LemMa 6.4. Let (X, T) be ergodic, X compact metric, T abelian and count-
able. There exists an eigenfunction, f : X — C, of (X, T) if and only if there
exists a spatial eigenfunction, g : X — C, which is equal to f, i.e {z|f(z) =
g (x)} is comeager.

Proof. The ““if”” portion is obvious.

If f : X — Cis an eigenfunction of (X, T') let ¢(f) = {x | fis continuous at
a} and D = {z|f(xt) = f(x)x(®) (¢t e T)}. We will find a spatial eigen-
function which equals f on ¢ (f).

If for each 2 € X n D there exists a ¢ e T' such that «t ¢ ¢(f) then

(XnD) —c(f))T=XnD
is meager since (X n D) — ¢(f) is meager and T is countable. Hence

(XnD)Yu (XnD) =X



438 KENT E. WESTERBECK AND TA-SUN WU

is meager, a contradiction. Hence there exists o ¢ X n D n ¢(f) with
O(x) € XnDnc(f).
Define F’ : O (zy) — S* by

F'(@t) = f@ot)/|f(@) |,

and let Z = dF'(O@)) S 8. F : (0@), T) — (Z, T) is an almost
periodic immersion if we define the action of T on Z as at the beginning of this

section.
Ifv: (B(T),T) — (Z, T) is the induced homomorphism let

yey (F(m))

sitndformzv = 0(,y) SX X B(T),andH = {y ¢ B(T) | (20 ,y) ¢ N}.
f
6: (X, T)— (B(T)/H, T)

is the universal almost periodic immersion induced by N and H then
/0wy * (0(x), T) — (B(T)/H, T)
is the universal almost periodic immersion of (O (x,), T') induced by

N =clO(z,y) SO(@) XB(T) and H ={yeB(T)| (x0,y) eN'} =
We have a homomorphism ¢ : (B(T)/H,T) — (Z, T) such that the following
commutes:

0o, T) c X, 1)

Fl

(B(T)/H, T)

+ €
“, 1)

F =¢00: (X, T)— (Z,T) is an almost periodic immersion of (X, T)
which extends F' and ¢(f) € {z|F (z) = F(z)}. By Lemma 6.3 and
Theorem 6.1 we can extend F’ to an eigenfunction \ : X->8. 9:X— S’y
defined by ¢ (z) = N (z) | f(x0)| is a spatial eigenfunction and equals f on the
comeager set ¢ (f).

TuroreM 6.2. Let (X, T) be ergodic, X compact metric and T abelian.
There exists an ezgenfunctwn f:X—C,of (X, T)if and only if there exzsts a
spatial eigenfunction, h : X — C, which is equal to f, i.e. {x|f(x) = h(x)} %
comeager.
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Proof. The “if”” portion is obvious.

If f : X — Cis an eigenfunction of (X, T') let ¢ (f) = {z | fis continuous at
2} and D = {a|f(at) = flx)x(®) @ e T)}. Give T the compact-open
topology, 3, and choose a dense subgroup Sin T. f: X — C is an eigenfunc-
tion of (X, S) and by Lemma 6.4 there exists a spatial eigenfunction, g : X —
C, of (X, S) which equals f. By a theorem due to Kakutani (cf. [8, p. 506])
the set of points with dense orbit (with respect to S) are contained in ¢(g).
If cl S = X then z e c(g) and ¢ e T implies

cl2tS = cl 28t = X so 2T C ¢(g).

g : X — Cis also an eigenfunction of (X, T') and there exists an z, ¢ X with
2T S XnDnc(f). Wemay now use the proof of Lemma 6.4 to construct
the spatial eigenfunction, 4 : X — C, which is equal to g and f.

TaroreM 6.3. If (X, T) is ergodic, strongly ergodic, X compact metric and T
abelian then the following are equivalent:

(a) (X, T) is weakly mixing,

(b) there exists no nontrivial almost periodic tmmersion of (X, T),

(c) there exist no nonconstant (spatial) topological eigenfunctions of (X, T),
(d) there exist no nonconstant (spatial) eigenfunctions of (X, T),

(e) for every x € X there exists no nontrivial almost periodic immersion of
O (@), T).

Proof. (a) implies (b). Let 8: (X, T) — (Y, T) be an almost periodic
immersion and (X, T) be weakly mixing. (X X X, T) is point transitive
and since (8 X 6( (X X X)isadensesubset of Y X ¥V, (Y X Y, T) is point
transitive. Since (¥ X Y, T') is equicontinuous it is minimal and hence
trivial.

(b) implies (a). If there exist no nontrivial almost periodic immersions,
~ = X X X. Let A be a closed invariant subset of X X X with nonempty
interior. We would like to show 4 = X X X. Letp: X X X — X be the
projection onto the first coordinate. p is open so p(A°) is open and non-
empty. Pick ¢ € p1(4°) n X. Since A° is open we can pick an open set V
with {2} X V © A°. Since « ¢ X there exists a ¢ ¢ T with (x, 2t) € {2} X
V < A°. Consider the homorphism

,: X X X—-XxX

defined by 0,(x1, 22) = (@1, 22t ). B = 6,(A°) is open and contains (z, z).
B is closed, invariant, has nonempty interior and B° contains O (z, ) for some
zeX. Sinced = X X X if and only if B = X X X we may assume that
O(z,z) C A°for some x € X.

If 2, ~ 22 and 2, € O (z) we have by Theorem 5.2 two nets {&}, {&} in T with
the given properties

(@, m ™)) — (@1, 2),
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(@1, 2@ tx 2))tx — (21, 21) € A°

and we may assume (1, 1 (i t{"l) )t{ e A° for all ),

-1

(@1, 2l N = (@1, @t i) € A°T

and (1, ;) ecl A°T = A.
We have shown that O(z) X X C A and hence

d{O@ XX} =XxXxXcAacXxX.

(b) implies (¢) and (c)-spatial. If f: X — C is a (spatial) topological
eigenfunction we can define the almost periodic immersion F : (X, T) —
(Z, T') as in the discussion following Remark 6.3.

(¢) or (c)-spatial implies (b). If 6: (X, T) — (¥, T) is an almost
periodic immersion, let x be a nontrivial continuous character of the compact,
abelian, topological group Y. x/r: T — 8 is a nontrivial continuous
character since 7T is dense in Y. xo6: X — S'is continuous and can be
extended to X by defining xc8(z) = 0 (z ¢ X°). The extension is a
(spatial) topological eigenfunction with eigenvalue x.

(¢c) or (c)-spatial if and only if (d)-spatial. See Theorem 6.1.

(d) if and only if (d)-spatial. See Theorem 6.2.

(b) if and only if (). If ¢ ¢ X, (Y, T) is a compact almost periodic
minimal transformation group and X X Y = U; N; is the partition of X X ¥
discussed in Section II, let N; = (O(z) X Y) n N;. {Nj} is a partition of
O (z) X Y and the method of section II can be applied to produce an almost
periodic immersion of (O (z), T). If Y = B(T), we get a universal almost
periodic immersion of (O (z), T) which is defined by

6: (0@), T)— (B(T)/H, T),

H ={yeB(T)| (z,y) eN'}, N = Nn (0(z) X B(T))).
ItH={yeB(T)| (2,y) e N} then H = H and H = B(T) if and only
if H = B(T) which yields our conclusion.

As a corollary we have the following result by Peterson [12].

CoroLLARY 6.2. If (X, T) is a minimal transformation group with X
compact metric, T abelian and S, = X X X, then (X, T) is weakly mixzing.

Proof. Let X = X, and use Theorem 6.3 with Corollary 3.1, and [11,
Theorem 2.10].
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