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I. Introduction

Let (, T) be a transformation group with compact, metric phase space,
), and abelian phase group, T. (, T) is ergodic if every proper, closed, T-
invariant subset is nowhere dense. By [7] this is equivalent to requiring the
set of points, X, whose orbits are dense in , to be comeager. 0, T) is
weakly mixing if (2 X 2, T) is ergodic, where the action of T is given by
(x, x’)t (xt, x’t).
In [2], it was shown thut there exists on (X, T), a least, closed, T-invariant

equivalence relation, S, such that (/, T) is an equicontinuous trans-
formation group. is called the equicontinuous structure relation on ).
In [15], Veech made a thorough study of when (, T) is a minimal set.
However, when (, T) is not minimal, the relation could be quite obscure.
Consider, for example, the continuous flow acting on the unit interval with
two end points fixed. Then S X X X. If we restrict our attention to the
subflow (X, T), where X is the open interval, then there is a faithful homo-
morphism of (X, T) into the universal almost periodic minimal set. On the
other hand, consider the Stepanoff flows on the two torus with one fixed point
[13]. In this cse, is again equal to ) X , but in some instances, (X, T)
cunnot be mapped homomorphically into any nontrivial almost periodic
minimal flows. The differences between these two examples seem to indicate
it is more natural to consider the homomorphisms from (X, T) into almost
periodic minimal flows with compact phase space, when (, T) is ergodic and
nonminimal. In this note, we shall prove the existence of a least, closed,
invariant equivalence relation, S, on (X, T) such that there exists a faithful
homomorphism of (X/S, T) into a compact, almost periodic, minimal
transformation group with a certain universality property. We will demon-
strate a condition on (, T) equivalent to the existence of an invariunt, Borel,
probability measure on (, T) with support . Assuming one of these
conditions, we will characterize S, and show it is contained in the regional
proximal relation on (X, T) [2]. Finally, as applications, we will show the
eigenfunctions and spatial eigenfunctions of Keynes and Robertson [11] are
essentially equal and will give a sufficient condition for (, T) to be wekly
mixing.

II. Construction of an almost periodic, minimal factor of(X, T)
Standing Notation. Throughout this paper (, T) will denote an ergodic

transformation group with compact, metric phase space, ., and abelian phase
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group, T. (X, T) will denote the transformation group with phase space
x lx:lo(x) 2}.

In Section II, (Y, T) will denote an almost periodic, minimal transforma-
tion group with compact phase space Y.
We will construct an almost periodic minimal factor of (X, T) which has

compact phase space and is also a factor of (Y, T). In the spirit of Theorem
2.1 [16], we will construct invariant equivalence relations and on X and
Y so that (X/-, T) and (Y/, T) are transformation groups.

LEMMA 2.1. If (, T), (X, T), and (Y, T) are as above there exists a closed
set N c__. X X Y which is the orbit closure of each of its points, and for which
pl (N) X, (pl X >< Y --+ X is the projection onto the first coordinate).

Proof. Let

B {Zx IZx
___
X X Y, Zx is closed, invariant, and pl (Zx) }.

If {Z,[h cA} is a subset of B which is totally ordered by inclusion,
let Z [’lxZx. Z is not empty since 5 >< Y is compact. Z is closed and
invariant. If p (Z) X, pl (Z) is compact so p (Z) U is open.
PickV, open, such that V ? c_ U. (.- P) >< Yisopenin. >< Y,
Z

___
( ) >< Y, and . >< Y compact implies at least one of the Zx’s is

contained in (X- ) >< Y. Hence

2 p(Zx) -a contradiction and Z e B. By Zorn’s Lemma there exists a maximal element;
Z’, in B.

Let N Z’ n (X >< Y) N is closed in X X Y, invariant, nonempty, and
(x, y) e N implies cl 0 (x, y) Z’ where closure is with respect to )< Y. So

cl 0 (x, y) N Z’ n (X >< Y)

where closure is with respect to X >< Y. Since p (Z’) , p (N) X.

LEMMA 2.2. If (X, T), (X, T), and (Y, T) are as above then (X >< Y, T)
is the disjoint union of closed sets N.}, where N is the orbit closure of each of its
points and p (Nj) X. In fact all such sets are isomorphic.

Proof. Let N __c X >< Y be the set guaranteed by Lemma 2.1. If
(x0, y0)N, let clO(x0, y0) N0. Sincep(N) Xthere exists y’eY
with (x0, y’) e N. Since Y is a compact abelian group [3, p. 26, Remark 4.6]
we may define

a X X Y X X Y by a(x, y) (x, yy’-lyo).

a is an isomorphism and a (N) No, has the required properties.
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LEMMA 2.3. Let N

_
X X Y be the orbit closure of each of its points, where

(, T), (X, T) and (Y, T) are as before. Let x if there exists y Y such
that (x, y), (x’, y) N, and y y if y y, or if there exists x X such that
(x, y), (x, y’) e N. and are invariant equivalence relations and is
closed.

Proof. and are reflexive, symmetric, and invariant. In order to show
they are transitive we will demonstrate that (x, y), (x, y), and (xp, y) N
imply (x, y’) eN.

Let {t} and {s,} be nets in T such that

limx (x, y)t (x’, y’) and lim,(x’, y)s, (x, y).

Since the action of T on Y is equicontinuous [3, p. 25],

lim (lim xt)s, lim XSt X,

and

lim limx ytxs lim limx ys,tx limx lim ys,t, limx yt, y.
Hence ((x, y)tx)s, ---> (x, y’) and (x, y’) e N.

If x x’, x’ x’ with (x, y), (x’, y), (x’, y’), and (x", y’) e N, we have
shown that (x, y’) e N and hence x x’. If y y, y’ y", y y, and
y’ y" then for some x, x’ e X, (x, y), (x, y’), (x’, y’) and (x’, y") e N. If
.we replace y by y’ and y’ by yP in the above paragraph we get (x, y") e N and
y y". If y y or y the result is obvious.

there exist y e Y such thatIf xx xx, e A, with xx -- x, and xx’ x,
(xx, yx), (x,’, y,) e N. Since Y is compact we may assume yx - y e Y, so
(xx, yx) -- (x, y) e N, and (xx’, yx) (x’, y) e N, x x’ and is closed.
We would like to find a closed, invariant equivalence relation on Y which

contains .
LEMA 2.4. If N

_
X X Y, (:, T), (X, T) and (Y, T) are as before, fix

a group structure on Y and assume (Xo, e) e N, for some Xo X and e the identity
of Y. H Yl (Xo, y) N} is a closed subgroup of Y and there is a natural
action of T on Y/H making (Y/H, T) a compact, almost periodic, minimal

transformation group.

Proof. Let y, y e H, so (Xo, e), (x0, y), and (x0, y) e N. Let {tx} be
net in T such that (x0, y)tx -- (xo, e). By our identification of T with
dense subgroup of Y [3, p. 26], {tx} is a net in Y and we may assume tx -+ p e Y.
Since yb, -- e we have p y-.

lira (x0, y)t (Xo yy) e N and yy- e H.

N, and hence H, is closed. (Y/H, T) can be made into a compact trans-
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formation group. Since T is abelian, (Y, T), and hence (Y/H, T), is almost
periodic and minimal [3, p. 26].

LEMMA 2.5. If y y’ then yy,-1 H, (y, y’ Y).

Proof. If y y’ and y y’ there exists x e X such that (x, y), (x, yP) e N.
Let {tx} be a net in T such that (x, y’)t, -- (xo, e) N. As before we may
assume tx - p e Y and y’p e implies p y

(x, y)tx -- (Xo yy and yy,-1 H.

If y the result is obvious.

LEMM 2.6. If ., H, (X, T) and (Y, T) are as before and .* is the least
closed invariant equivalence relation containing , then y ..* y’ if and only if
yy e H.

Proof. By the above lemma y . y’ implies yy’-e H. H [el= since
y e H implies (x0, y), (x0, e) e N. The proof is completed since H generates
a closed, invariant, equivalence relation.

We will now construct the homomorphism of (X, T) into (Y/H, T). Let

1" (X, T) --. (X/,-..,, T), 2" (Y/, T) ---, (Y/H, T),

and
-" (Y, T) ---> (Y/, T),

" (Y, T) -- (Y/H, T)

be the natural maps. r2 is well defined by Lemma 2.5 and r r.
Define the homomorphism

by ([x]) [y] where (x, y) N, y e Y. ([x]) [y] ([x’]) if and only if
(x, y), (x’, y) e N so q is well defined and one-to-one. Since r is a quotient
map, is continuous if r is continuous. If xx --* x and (xx, yx), (x, y) e N

y’we may assume yx - e Y and (xx y) -- (x, y’) e N so [y] [y’]. Q.E.D.
We would like to show

r ," (X/,,, T) --, (Y/H, T)

is one-to-one. r. o ([x]) [y], r ([x.]) implies r ([y]) r ([y.]) for
y, y. e Y such that (x, y), (x, y.)eN, yy-e H and (x0, yyK)eN.
There exists a net {s/ in T such that (x0, e)s, --, (x., y.). We may assume

s -- y, so (x0, yy-)s, ---. (x, y) e N and xl x. Q.E.D.
We have the following commutative diagram with r2 o one-to-one.
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(X, T)

’x (/" ’

Y/,, T)

(Y/H, TI

The following example shows that 7o need not be onto and
hence (X/-, T) need not be isomorphic to (Y/H, T).

Example 2.1. Let (., T) be the one point compactification of the trans-
formation group (R, R), with the group action. Let (Y, T) be the two torus
with the irrational flow. (, T) is ergodic and (Y, T) is almost periodic,
compact and minimal. (X, T) is just the transformation group (R, R). Fix
(x0,y0) eYandletN (t, (xo, yo)t) t. Tl. N X X Y, is the orbit
closure of each of its points and we may assume (x0, y0) e, the identity
of Y. (0, (xo, y0))eN and we can form H /(x, y) (0, (x, y)) eN}.
H {(xo,yo)} le}.

If r o (X/,, T) (Y/H, T) is onto then for each (x, y) e Y there
exists

(x’, y’)] q (Z/.)

y,)-leH {el. Hence must be onto. Ifsuch that (x, y)(x’,
p2" X )< Y-+ Y,

p2(N) O((xo, yo)) c Y.

Pick (x", y,t) O((xo, yo)). We have [(xt, y)] (X/). Q.E.D.

THEOREM 2.1. Let (, T) be an ergodic transformation group with compact
metric phase space , and abelian phase group T, (Y, T) a compact, almost
periodic, minimal transformation group and (X, T) the transformation group on

x {x21 c (O(x))

There exists a closed, invariant, equivalence relation, -., on X such that (X/,-.., T)
can be immersed in a one-to-one fashion into a compact, almost periodic, minimal

factor (Y/U, T) of (Y, T).
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III. Certain universal almost periodic minimal
transformation groups

DEFINITION 3.1. (B (T), T) is a universal almost periodic minimal trans-
formation group if (B (T), T) is almost periodic and minimal, B (T) is com-
pact, T is abelian, there exists a continuous homomorphism, , from T onto a
dense subgroup of B(T), and (B(T), T) has the following universality
property" given any compact, almost periodic, minimal transformation group
(Y, T), there exists a continuous homomorphism 0’: (B (T), T) --+ (Y, T)
extending the natural homomorphism, 0, of T into Y.

Consider {(Zx, T)] (Zx, T) is compact, almost periodic, and minimal,
and x T -- Zx is the natural homomorphism}. Define r T -- II z by
r(t) {rx (t)} and let Z cl ((T))

_
IIx zx. (z, T) is the universal al-

most periodic minimal transformation group and O’ (Z, T) -- (Zx, T) is de-
fined by O’ ({zx}) zx.

DEFINITION 3.2. If X is Hausdorff, and T is abelian, then 0 is an almost
periodic immersion of (X, T) if 0 is a homomorphism from (X, T) onto a
dense subset of a compact, almost periodic, minimal transformation group
(Y, T). We say that

0: (X, T)--+ (Y, T) and 0’: (X, T)-- (Y, T)
are equivalent if there exists a homomorphism (Y, T) - (Y, T) such that
0 o0’.

Remar]c 3.1. A continuous automorphism of a compact almost periodic
minimal transformation group is an isomorphism, [1, p. 12], so the above
relation is an equivalence relation.

DEFINITION 3.3. 0: (X, T) -- (Y, T) is the universal almost periodic
immersion of (X, T) if, given any other almost periodic immersion
0’: (X, T) --> (Y’, T), there exists a homomorphism (Y, T) -- (Y’, T)
such that

If A {0xl 0x (X, T) --> (Yx, T) is an almost periodic immersion}, fix
x0 e X and let yx 0x (x0). Let Y cl {yx} T Iix Yx and 0 (X, T) -+ (Y, T)
be defined by O(x) {0x(x)}. (Y, T) is almost periodic and minimal
since IXx Yx, and hence Y, is a compact topological group with a homomorphic
image of T as a dense subgroup. If 0x (X, T) --+ (Yx, T) is any almost
periodic immersion there exists x (IL Y,, T) --+ (Yx, T) since
rx restricted to (Y, T) is the required homomorphism.
The material in Section II allows us to give the following representation of

the universal almost periodic immersion of (X, T).

THEOREM 3.1. If (., T) is ergodic, compact metric, T abelian, and

x xXlciO(x) },
let (B (T), T) be the universal almost periodic minimal transformation group.
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Choose N and H as before. If a (X, T) --+ (B (T)/H, T) is defined as in
Section II, it is the universal almost periodic immersion of (X, T).

Proof. If , (X, T) -- (Y, T) is an almost periodic immersion let

i" (B(T), T) -- (Y, T)
be the induced homomorphism. We may assume that , (X) contains, g, the
identity of Y and i (e) where e is the identity of B (T).
A [(x, y) e X X B(T) I’(x) i(y)I is closed undinwriant. Let x0be

some point in /- () and form

N clO(x0,e) X B(T) and H {yeB(T) (x0y) eN}.
We have (from the last diagram, with Y replaced by B(T)
a ’. " (Z, T) (B(T)/H, T)

and m (B (T), T) -- (B (T)/H, T).
If H ker (), we can define e (B(T)/H, T) --+ (Y, T) such that the
following diagram commutes"

(X, T)

’\

(B(T), T)

(B(T)/H,

(g, ’)

(Xo, e) eA since3,(Xo) (e), andN cl0(xo, e) A.
y,e.H, 3f(Xo) (y) and y e ker (ti) or H

_
ker (8).

For each

CORnOLLARY 3.1. The equivalence relation Se discussed in the introduction
is the one induced by N cl 0 (xo, e) X X B (T).

IV. An equivalent condition for the existence of an
invariant, Borei, probability measure on ( )

with support
We will follow the notation built up in Sections II nd III. If E is a subset

of T, let f denote the characteristic function of E. Let g be a real-valued
function of T and g denote the function thut has values g (s) g (st).
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DEFINITION 4.1. If f(t) is a bounded real-valued function on an abelian
group T, let A (tl, ..., t, al, ..., a) t,e T, a > O, = a, 1}.
The upper mean of fi 3r (f), is defined by

21r(f) 3,(f(x)) infa sup, 7=
The upper mean of E T is M (f).

DFNTmN 4.2. If X e X and U is a neighborhood of x, let

IV, x] {tlxt v}.

We will write fv. as flU, x] for convenience.

[U; x], flU; x], and/r (g) satisfy the following relations (x e X; U and W
are neighborhoods of x; s and e T; g, and h are bounded real-valued functions
on T; and a > 0), [4, p. 8]"

(I) ([U, x])t- [U, xt],
(II) JUt, xt] [U, x],

(III) flU, x](ts) f(tv,),-, (s) f[U, xt] (s),
(IV) U

_
W implies flU, x] <_ f[W, x],

(v))2. (e (st)) . (e’) (e) . (e (s)),
(VI) Jl.(f[U; x](s)) II.(f[U, x] (st) _]I.(f[U, xt] (s) ),
(VII) 3r (g -}- h) _< 2r (g) - (h),
(VIII) r (ag 2I (g a >_ O,
(IX) /I,(g(s) g(st)) I(g gt) O,
(X) g _< h implies (g) _< 3r (h),
(XI) U

_
W implies/r(f[U, z]) _< 3r(f[W, x]).

DEFINITION 4.3. If (Z, T) is any transformation group, with T abelian,
we will say that (Z, T) is strongly ergodic at z0 e Z, if given any neighborhood
U of z0, (flU, z0]) > 0. (Z, T) is said to be strongly ergodic if it is strongly
ergodic at each of its points. (Note that the terminology "strongly ergodic"
is not standard.)

TnEOnEM 4.1. If (, T) is an ergodic transformation group with compact
metric space X, and abelian phase group, T, then the following are equivalent"

(a) there exists an invariant, Borel, probability measure on (, T) with
support X,

(b) (J, T) is strongly ergodic,
(c) (, T) is strongly ergodic at some point in X.

Proof. (a) implies (b). Let U be an open set containing x0 e X, and
(h, t. al, Otn} { A.
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where the second equality follows since (x) is invariant.
For every e > 0, there exists an e X such that

sup(fv(xt) ,fv(x’t).
There exists > 0 such that d(x", x’) < implies "t e U whenever

x’t re. Since 0 (x0) is dense in X there exists n s e T such that

d(xos, x’) < nd fv(xoSf) fv(’t).
We hve

which holds for some s given any e > O, and

< fzfvd. SUpx2( aifv(xt)) sup, aifv(xosti)0

for all (tl, t, a, a,}. Finally,

< f2fv du infa sup afv(xost) (f[V, Xo]).0

(b) implies (c). Obvious.
(c) implies (a). Let {W} i1 be a countable basis of made up of com-

pact sets. Fix one of the W’s and call it W. We will produce an invar-
iant, Borel, probability measure, v on X such that v* (W) > 0. Let (X,
T) be strongly ergodic at x0 e X.
Let L be the linear space generated by {f[U, x0] U X}, and let H be the

subspace generated by the identically one function. is a positive, sub-
additive function on L th the invariance property V above.

If we define M on H by M (nl) n then M (h) (h) (h H). f[W, x0]
is an element of L H and

sup{-(-h--f[W, x0]) M(h) [heM}

(f[W, Xo]) inf { (h + f[W, x0]) M (h) [h e H}.

By the Hahn-Banach Theorem [10, p. 454-455] we may extendM to linear
functional, M, on all of L such that

if[W, xo]) if[W, x0]) and (g) (g) (geL).

has the follong properties, (see [4, p. 8] for (i) and (fii))"

(i) inftr f (t) M-(f) ) ff) suptr f(t) where M-if)
(-f),

(ii) M is positive linear functional on L,
(iii) t(f(st)) tff(t)).
If U is an open or closed subset of X define n(U) M ff[U, Xo]). If
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S

___
define 7"(S) inf {i=17(U)i the U’s are open and

S

_
Ui=l U}. 7 is a Carateodory outer measure and hence defines a Borel

measure. 7" (X) 1 so 7 is bounded. 7, and hence 7 is T-invariant, vis

(At) I if[At, x0] (s)) r if[At, x0] (st)) I, (f[At, Xot] (s))

M (f[A, Xo] (s)) 7 (A)

(A open or closed in 2). Since W is compact, 7" (W) 7 (W) and
,
(w) (w) if[w, x0]) if[w, x0]).

Since (X, T) is strongly ergodic at x0 (W) > 0.
Let 7i denote the normahzed measure associated with W and define

i----1 12 */ 7i.
is the required measure.

DEFINITION 4.3. A subset S of T is (left) syndetic if there exists a com-
pact subset, K, of T such that SK T.

DEFINITION 4.4. A transformation group (Y, T) is regionally almost
periodic if for each open set U in Y there exists a syndetic subset S of T such
that Us U (s S).

LEMMA 4.1. [5, p. 61]. If ll (f.) > 0 then EE-1 is a syndetic subset of T.

THEOREM 4.2. If (, T) is an ergodic and strongly ergodic transformation
group with compact metric, and T abelian then it is regionally almost periodic.

Proof. If U is open and [U, x0] E then there exists a e T with x0 e U.
(2, T) is strongly ergodic at xot so

if[u, x0]) if[u, xo ]) > o
and EE- is syndetic.

If s, e E, xo s, Xo s U. Uss’-I U is nonempty since x0 e Us’- implies
Xo s Us’- s U.

V. A Characterization of S
In this section we will retain the notation built up in the first four sections

and give the characterization of S mentioned in the introduction.

LEMMA 5.1. If (X, T) is strongly ergodic, (Y, T) and N c__. X X Y are as
in Section II, then (N, T) is strongly ergodic.

Proof. Given (x., y) e N, we will show that there exists (x, y’) e N such
that for each neighborhood V X W of (x, y’),

M(f[(V W) N, (x, y)]) > 0.

If not, for each (x, y’) e N, there exists P, (V, X W,) N such that

3r(f[P,, (xl, y)]) 0.
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Qxl {yeYI (xl, y) eN} is compact sinceNis closed in X )< Y. Pick
yl, yn such that W Wyl u u W QI Let V f’l= V.
C {veVI (v,y) eNandyeWc, for some y e Y} is closed in X since Y is

compact. V’ V C is open in X and contains x. If xseV then
(x, y) e N implies (xl s, ys) e N and hence ys e W. Hence,

f[V’, x] (s) <_ f[ (V’ X W) oN, (xx y)] (s) for all seT.

Since V’ X W V X W

_
(Ji V X W we have

as well as

(V’ X W) n N Ui= (V, X W,,) n N UL1 Pv,,

f[[3, Pu,, (xx, y)] _< 7]7= f[Py,, (x, y)].

0 < ;r (f[V’, xx]) _< r (f[ (V’ X W) n N, (xl, y)])

<_ il (=f[P, (x y)])

_< ,2r (f[P,, (x,, y)]) 0

and we have a contradiction.
If A is any neighborhood of (xl, y) in N we have (x, yr) as above and

(x, y’)t e A for some e T. Hence there exists a neighborhood B of (xl, y’)
such that Bt A. Choose E X F a neighborhood of (x, y’) such that
(EXF) nNB.
0 < 3r(f[(E >(F) n N, (xl, y)]) _< 2r(f[B, (xl, y)]) il(f[Bt, (x, y)t])

_< 3rA, (xl, y)t]) 2rA, (x, y)])
and N is strongly ergodic.

In [6] Flner proved the following useful theorem"

THEOREM 5.1. Let V have upper mean greater than zero and let S be an arbi-
trary neighborhood of the identity of T. There exist continuous characters
Xl x such that the set of

eF(x, x) {tiRe x.(t) > 0, j 1, 2, ..., n/
-1not expressible as tlt s, t t V, s S, has upper mean equal to zero.

Following [15, Theorem 1.1] we shall characterize , defined from
N X X B (T), in the same way as Veech characterized the equicontinuous
structure relation of a minimal transformation group.

THEOREM 5.2. If (X, T) is ergodic and strongly ergodic, X is compact
metric, T is abelian, and (X, T), (B (T), T) and N are as before, then x
if and only if there exist nets {tx} and {t} in T such that

limx xtx x, limx xlt x and limx xtxt’-= x:.
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Proof. Consider the following commutative diagram"

(X, T)x (B(T), T)

(Xl T)

(B (T)/,., T)

(B(T)/H, T)

If xl x2 then ([xl]) [yo]= ([x.]) for some yo e B (T) with (xl, yo),
(x., yo) e N. Let yo be the identity of B (T) and choose U, and S neighbor-
hoods of xl and yo respectively. Since M (’[U, xl]) > 0, we have the characters
xl, xn generated by FOlner’s Theorem. {xi} i may be considered as the
restrictions to T of continuous characters on B (T). Since yo
and the x are continuous on B (T) there exists a neighborhood V of yo such
that yo e V implies e F (xl, x).

Let W be any neighborhood of x2. Since (x, yo), (x., y0) e N, there exists
a e T and a neighborhood W’ V’ of (xx, yo) such that (W’
WXV.
0 < 3r(f[(W’ X V’)n N, (xl, yo)])

_
3r([W’ X V’, (xl, yo)])

3r(f[(W’ X V’)t, (xl, yo)t])

_
3r(f[W X V, (xl, y0)t])

3r(f[W X V, (xl, yo)]).

The first inequality follows since N is strongly ergodic and the others by
relations II, III and XI in Section IV.

[W X V, (xl,y0)]___F for (xl,yo)teW X V

implies yo e V and e F. Since 3r (f[W X V, (xl, yo)]) > 0 we can find a

t(v,,s) e [W X V, (x, y0)]
such that

--1

with l,(v,w,s), t2,(v,,s) e [U, xl] and s(v,,s) e S.

Choose a neighborhood, Q, of t(v, w,s) such that e Q implies xl e W. Choose
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and let h.<v. w.s) [.(v. w.s) t(v. w.s) t<v. w.s) -- e in T and hence

Xtl,(U, w,s) t(u, w,) Xt

x h,(v, ,) x Xl h,(u, ,) t:u, ,) x2 and {tl,(U, ,s)}, {t2,(u, ,s)} are the
required nets.

Conversely, if the contion holds, then

limx (Xl tx) (x,), limx (x t) (x)

and {tx}, {t} converge to the identity, e, of B (T)/H. Since (B(T)/H, T) is
equicontinuous we have

a(x) limx a(x tx t-1)
t_

limx a (/1) (tx tx limx (limx a(x)tx)t-1 limx a(x)t-1 -If (xl) [y], and o (x2) [y2], then
--1

YY2 eH or (x0,yly) eN.

Let {s,} be a net in T such that lim,(x0, e)s, (x2, y2). We may assume
{s,} converges to y as a net in B (T)/H, so

--1 --1(x0,yly2)s. (x2,yly Y2) (x2,y) eN

which ves x x2.

COROLLARY 5.1. If (X, T) is as in Section II a if X then Veech’s
result roll.s [15, p. 723, Theorem 1.1].

Proof. See [11, p. 365, Theorem 2.10].

COROLLARY 5.2. If (X, T) is as in the above theorem we can characterize the
relation S of (X, T) and we kn that S Q (X), the regional proximal
relation on (X, T).

Proof. Q(X) {cl(aT) a is an index of X}. If x x2 and {tx}, {t}
satisfy the conditions in the above theorem then

(xx, xl tx t-)t; (xl, xl) and ((Xl, 1 tX t-l)t)t;-l (x, x2).

If a is an index of X, we may assume (x, x tx t-)tx a for all h. We have

.V x,
(x, x2) e cl (aT) and the proof is completed.

VI. igenfncfions nd the wekl mixin9 propert
Let (, T) be an ergodic transformation group with Baire phase space X.

Consider, (), the algebra of all bounded complex-valued functions on
whose restriction to X is continuous. If f and g are dements of () we will
say they are equal if {x e If(x) g (x)} is comeager.
f e () is a topolocal eigenfunction of (, T) th eigenvalue x, if f is
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not equal to the zero function and x T -- S is a continuous character of T
such that f(xt) f(x)x(t) for all e T and a comeager subset of x e . A
topological eigenfunction is invariant if its eigenvalue is the trivial character.
A topological eigenfunction, f, is a spatial topological eigenfunction of

(, T) iff(xt) f(x)x(t) for all T and x e 2.
As in [11] let B () be the algebra of all bounded complex-valued functions,

fi on such that c (f) x If is continuous at x} is comeager. Again, f and g
elements of B () are said to be equal if {x ]f(x) g (x)} is comeager.
f e B () is an eigenfunction of 0, T) with eigenvalue x, if f is not equal

to the zero function and x’T -- S is a character (not necessarily cox-
tinuous) such that f(xt) f(x)x(t) for all e T and a comeager subset of
x e . An eigenfunction is invariant if its eigenvalue is the trivial character.
An eigenfunction, fi is a spatial eigenfunction if f(xt) f(x)x(t) for all

xeXandteT.

Remark 6.1. Let (Z, T) be a point transitive transformation group with
Baire phase space, Z. LetW zeZIclO(z) Z} and letf:Z--Cbea
spatial eigenfunction on (Z, T) with eigenvalue x T -- S. By a theorem
due to Kakutani (cf. [8, p. 506]), c (f) contains W. Since the eigenvalues of
a spatial eigenfunction are always continuous each spatial eigenfunction
f Z -- C is also a (spatial) topological eigenfunction.

Remark 6.2. If f is a topological eigenfunction of (, T) then

X {xlf(xt) f(x)x(t) for all e TI.
Remark 6.3. If we give T the compact open topology, 5, then (T, 5) is

second countable and 5 is the smallest topology on T making T -continuous ((x, t) -- xt). The eigenvalue, x, of each eigenfunction, f, of
(., (T, 5)) is sequentially continuous and hence continuous on (T, 3). If
$ is the original topology on T, x (T, 8) --* (T, 5) -+ S is continuous and all
eigenvalues are continuous.

Given a topological eigenfunction f . -- C with eigenvalue x T - S we
would like to construct a spatial eigenfunction which equals f on the comeager
subset X and has the same eigenvalue.

Let f" - C be a topological eigenfunction with eigenvalue x T -- S.
Fix x0 e X and define X -- C by (x) f (x)/[ f (x0) I. (Note’f (x0) 0
for f(x0) 0 implies f(x0 t) 0 and hence fiX 0). is a topological
eigenfunction with eigenvalue x. Let F X -+ S be the restriction of to X.

If we define an action of T on S by st sx(/) (s e e T) then (S, T)
is an equicontinuous transformation group and F" (X, T) --, (S1, T) is a
homomorphism, (cf. Remark 6.2). Let Z cl F (X)

___
S1. (Note that if

x(t) is incommensurable with for any e T, then Z $1.) (Z, T) is point
transitive, compact and equicontinuous and hence is minimal and almost
periodic. F" (X, T) -- (Z, T) is an almost periodic immersion of (X, T).

If N (x0) cl 0 (x0, F (x0)) X X Z then N (x0) is the orbit closure of
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each of its points and defines an almost periodic immersion

G" (X, T) -+ (Z/H(xo), T)

where H (Xo) {y e Z (xo, y), (xo, yo) e N (xo) and yo F (xo) is the iden-
tity of Z.

LEMMA 6.1. If
F" (X, T) -- (Z, T),

and

N (Xo) cl 0 (xo, F (xo)) X X Z, H (xo),

are as above then H (Xo) {e}, F G and N (xo) is a "graph" in X X Z, i.e.,

{Yl (x, y) N(x0)}
is a singleton (x e X).

hence
N(xo) clO(xo,yo) cl{(xot, F(xot)) It eT} X X Zand

N(xo) (x, F(x)) Ix e X}

andisagraph. H(xo) {y eZ (xo,y) eN(x0)} {y0}.
F (xo) so F -= G.

G(xo) [yo](,)=

COROLLARY 6.1. y (x, y) e cl O (xo Yo) where closure is in X Z} is a
singleton for each x e X.

We would like to extend our almost periodic immersion

F" (X, T) - (Z, T)

to a spatial eigenfunction, h - -+ C. To do so we first extend it to an open
subset of which contains X.

Partition into the disjoint union- UlX x
whereX x’ e cl 0 (x’) cl 0 (x)}. X is such a set and will be denoted
by X for x0 e -. (Notice that we can pick - so that this x0 is the one we
used to define F X -- S1.)
We have already constructed an almost periodic immersion

F" (Z, T) --+ (Z, T)
of the set X We will construct an almost periodic immersion

),:" (X=, T) -- (Y, T)
for each x e {xo}. (, T) satisfies the hypotheses of Lemmas 2.1, and
2.2, where X {x’ cl 0 (x) }. Hence X X Z is the disjoint union
of sets {Nj} of the type described. Choose an element N (x) of {N.} so that

c] O(xo, yo) N(x)

G" (X, T) (Z/H (xo), T)
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(here closure is in X Z). Let (x, y) be an element of

N(x) _cl0(xo,yo) X Z

and define/" X Z -+ . X Z by /y (x’, yr) (x, -1
Y Y). tisan

isomorphism. N’ (x) (N(x)) is also the orbit closure of each of its
Npoints and (x, y0) e (x) If

N’H(x) {ye Z (x, y) e (x)}

we have by Lemma 2.4 that H (x) is a closed subgroup of Z and (Z/H (x), T)
is an almost periodic, minimal transformation group. Following the method
of Section II we define the almost periodic immersion

T)(X, T) (X/,-, T) ; (Z/, T) (Z/H(x),

where -, and are the equivalence relations defined in Lemma 2.3.
Let

A lx llx} z cl0(xo, yo)}
and

B Ix’ H(x) Z, and U(x) yo} where x e X}.

A is closed and invariant. Since {Yl (x, y) e cl 0 (Xo, yo)} is a singleton for
allxeXwehaveAnX 0.
LEMMA 6.2. X 0 and [ is invariant.

Proof. If x* *e/ there exists a net {xx}x in B such that xx -- x
xx e X and choose yx e Z such that

Let

(x,y) eN(xx) cl0(xo,yo)

___
X Z (hek).

(Remember that p (N (xx)) Xx .) Since H (xx) S it must be finite
cyclic and we can choose the generating element, nx, from each H (xx).

H(xx) {y (xx, y) e

N!implies (x, nx) e (xx) and hence (xx, yx nx) e N (xx) If

(xx yx)t, (x, y) and tx,, px

in Z then (x, Yx px) (x, yx) el 0 (Xo, yo).

(xx y nx)tx., (x, yx nx px) (x, yx px nx) e cl O(xo, yo).

X*If (x, y;) -- (x*, y,) and (x;, yx nx) (x*, y q), where xx and nx q,
then x* e X implies y y q or y0 q limx nx. The cardinality of {nx r is
an integer} will go to infinity in h. Hence

r)(xx,yx (nx) r is an integer} cl0(xo,Yo)

must have each point in x*} X Z as a cluster point, and x*} X Z cl 0 (xo,
yo), a contradiction to Corollary 6.1. B, and hence , is invariant.
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LEMMA 6.3. Let f" --+ C be a topological eigenfunction with eigenvalue
x T ---> S and hxo F (X, T) -- (Z, T) be defined as before. If we define

by

and

:X’X- (Au/)-+Z

/Xx " (Xx, T)-- (Z, T) (xe-- (A u[) ),

(x) 0 (x eA u 3),
then is continuous at each point in X.

Proof,. Let {x:} be a net in . (A u B) which converges to x e X. As-
sume x e X,,. Since H (z) e} if z’ e X, n IX (A u/)] there exists but
one y, e Z such that (x’, y) e N(x). If {y} has subnets {y,,1} and
converging to yl and y2 respectively then

lim (x:a y.) (x, y) and lim (x:.2, y.2) (x, y.)

and (x, yl), (x, y.) ecl O(xo, yo). By Corollary 6.1, yl y2 and {y} con-
verges to y e Z. (x, y), (x, o(x)) e cl 0(x0, y0) implies that ,0(x)
[y].(0) {y}. Q.E.D.

THEOREM 6.1. Let (, T) be ergodic, compact metric and T abelian.
There exists a (spatial) topological eigenfunction, f, of (, T) if and only if
there exists a spatial eigenfunction, g, of (X, T) which is equal to fi i.e. {x If (x)

g (x) is comeager.

Proof. The "if" portion follows from Remark 6.1.
If f -- C is a (spatial) topological eigenfunction, define

F" (X,T)- (Z, T) and ,’X- (A uB)--Z

as in the above lemma. Define h 2 -- C by h (x) (x) If(x0){ (x e 2).
h is the required spatial eigenfunction.

LEMMA 6.4. Let (, T) be ergodic, compact metric, T abelian and count-
able. There exists an eigenfunction, f" -- C, of (, T) if and only if there
exists a spatial eigenfunction, g" --> C, which is equal to f, i.e {x If(x)
g (x) is comeager.

Proof. The "if" portion is obvious.
If f" X -- C is an eigenfunction of (X, T) let c (f) {x if is continuous at

x} and D {x If(xt) f(x)x(t) (t T)}. We will find a spatial eigen-
function which equals f on c (f).

If for each x e X n D there exists a e T such that xt c (f) then

(X n D) c(f) )T Z n D

is meager since (X n D) c (f) is meager and T is countable. Hence

(XnD)*u (XnD) X
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is meager, a contradiction. Hence there exists x0 e X o D o c(f) with
0 (x0)

___
X o D o c (f).

Define F’ 0 (xo) S by

F’ (x0 t) f (x0 t)/i f (x0) !,
and let Z clF’(O(x0))

_
SI. E’’ (O(xo), T) -+ (Z, T) is an almost

periodic immersion if we define the action of T on Z as at the beginning of this
section.

If /" (B (T), T) -- (Z, T) is the induced homomorphism let
-1 (F (x0))

and formN=cl0(x0,y)_XXB(T),andH {yeB(T) (xo,y) eN}.
If

" (X, T) -- (B (T)/H, T)

is the universal almost periodic immersion induced by N and H then

/o(o) (O (xo), T) --, (B (T)/H, T)

is the universal almost periodic immersion of (0 (x0), T) induced by

N’=elO(x0,y)_O(x0) XB(T) and H’ lyeB(T) (xo,y) eN’} H.
We have a homomorphism (B (T)/H, T) -- (Z, T) such that the following
commutes"

(O(xo), T)

(z, T)

(B(T)/H, T)

(X, T)

F e o 0" (X, T) -- (Z, T) is an almost periodic immersion of (X, T)
which extends F’ and c(f) Ix IFr(x) F(x)}. By Lemma 6.3 and

Theorem 6.1 we can extend F’ to an eigenfunction k -+ S1. g - S1
defined by g (x) h (x) f(xo)l is a spatial eigenfunction and equals f on the

comeager set c (f).

THEOREM 6.2. Let (, T) be ergodic, X compact metric and T abelian.

There exists an eigenfunction, f" -- C, of (, T) if and only if there exists a

spatial eigenfunction, h ---. C, which is equal to f, i.e. x f (x) h (x)} is

comeager.
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Proof. The "if" portion is obvious.
If f" - C is an eigenfunction of (:, T) let c (f) {x If is continuous at

x} and D lx lf(xt) f(x)x(t) (t T)}. Give T the compact-open
topology, 5, and choose a dense subgroup S in T. f X -- C is an eigenfunc-
tion of (, S) and by Lemma 6.4 there exists a spatial eigenfunction, g -C, of (, S) which equals f. By a theorem due to Kakutani (cf. [8, p. 506])
the set of points with dense orbit (with respect to S) are contained in c (g).
If cl xS then x e c (g) and e T implies

clxtS clxSt XsoxTc c(g).

g - C is also an eigenfunction of (., T) and there exists an x0 e X with
x0 T

_
X n D n c (f). We may now use the proof of Lemma 6.4 to construct

the spatial eigenfunction, h X - C, which is equal to g and f.
THEOnEM 6.3. If (, T) is ergodic, strongly ergodic, compact metric and T

abelian then the following are equivalent"

(a) (, T) is weakly mixing,
(b) there exists no nontrivial almost periodic immersion of (X, T),
(c) there exist no nonconstant (spatial) topological eigenfunctions of (, T),
(d) there exist no nonconstant (spatial) eigenfunctions of (, T),
(e) for every x e X there exists no nontrivial almost periodic immersion of

(o (x), T).

Proof. (a) implies (b). Let 0" (X, T) - (Y, T) be an almost periodic
immersion and (, T) be weakly mixing. (X X X, T) is point transitive
and since (0 X 0( (X X X) is a dense subset of Y X Y, (Y X Y, T) is point
transitive. Since (Y X Y, T) is equicontinuous it is minimal and hence
trivial.

(b) implies (a). If there exist no nontrivial almost periodic immersions,
X X. Let A be a closed invariant subset of X X X with nonempty

interior. We would like to show A X ). Let p X X X - be the
projection onto the first coordinate, p is open so p (A) is open and non-
empty. Pick x e pl (A) X. Since A is open we can pick an open set V
with Ix} X V A. Sincex eXthereexistsat e Twith (x, xt) e{x} X
V A. Consider the homorphism

defined by 0t (xl, x.) (x, x2 ). B 0t (A) is open and contains (x, x).
/ is closed, invariant, has nonempty interior and/ contains 0 (x, x) for some
xeX. SinceA X if and only if / X we may assume that
0 (x, x) A for some x e X.

If x x. and xl e 0 (x) we have by Theorem 5.2 two nets tx}, {t} in T with
the given properties

t;
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(xl, xl (tx t-))t -- (x, x) A
P--1 Aand we may assume (x, xl (tx tx ))t for all k,

((x, x (tx t-i))t)t-1 (x x (tx t-) AT

and (x, x) clAT A.
We have shown that 0 (x) X X

_
A and hence

c {O(x) Xl _A _2 2.

(b) implies (c) and (c -spatial. If f" X - C is a (spatial) topological
eigenfunction we can define the almost periodic immersion F" (X, T) --(Z, T) as in the discussion following Remark 6.3.

(c) or (c)-spatial implies (b). If O" (X, T) (Y, T) is an almost
periodic immersion, let x be a nontrivial continuous character of the compact,
abelian, topological group Y. x/r’T -- S is a nontrivial continuous
character since T is dense in Y. x 0" X -- S is continuous and can be
extended to by defining x O(x) 0 (x XC). The extension is a
(spatial) topological eigenfunction with eigenvalue x.

(c) or (c)-spatial if and only if (d)-spatial. See Theorem 6.1.
(d) if and only if (d -spatial. See Theorem 6.2.
(b) if and only if (e). If x e X, (Y, T) is a compact almost periodic

minimal transformation group and X Y [J N. is the partition of X X Y
discussed in Section II, let N (0 (x) Y) n N. {N} is a partition of
0 (x) X Y and the method of section II can be applied to produce an almost
periodic immersion of (0 (x), T). If Y B (T), we get a universal almost
periodic immersion of (0 (x), T) which is defined by

O" (O (x), T) -- (B (T)/Hp, T),

(U’ y e B (T) (x, y) e N’} N’ N n (O (x) B (T) ).
IfH {y eB(T) (x,y) eN} thenH HandH B(T) if and only

if H’ B (T) which yields our conclusion.

As a corollary we have the following result by Peterson [12].

COROLLARY 6.2. If (X, T) is a minimal transformation group with X
compact metric, T abelian and Se X X X, then (X, T) is weakly mixing.

Proof. Let X , and use Theorem 6.3 with Corollary 3.1, and [11,
Theorem 2.10].
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