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Introduction

The Dyer-Lashof algebra R is an algebra of operations which act on the
homology of infinite loop spaces. The algebra A may be considered as an
algebra of operations which act on the homotopy of simplical restricted Lie
algebras. The purpose of this paper is to describe the relation between R and A.
As an application, we use this relation, together with the Adams spectral
sequence, to obtain information about possible spherical classes in H.(f"S").
For each integer > 0, there is a Kudo-Araki operation Q which acts on the

mod-2 homology of each infinite loop space. The Dyer-Lashof algebra R is the
free associative algebra over Z2 generated by the Q, modulo the ideal of rela-
tions which hold in every infinite loop space. There are two types of relations:
(1) Q is 0 when applied to a homology class of dimension greater than i, and
(2) Adem-type relations which hold among iterates of the Q’s. The structure of
R is known from the work of Araki-Kudo, Browder, Dyer-Lashof, Madsen,
May, and Nishida. The properties ofR that we use are summarized in Section 1.
In particular, certain iterates of the Q’s (those which are called allowable of non-
negative excess) form a basis for the vector space R. Let fS be the com-
ponent containing the constant map of the space lim, f"S. The mod-2 homol-
ogy of fS is a polynomial algebra with generators in 1-1 correspondence
with the allowable basis elements of positive excess of R.
The algebra A is obtained (in [6]) as the homotopy of the free simplical

restricted Lie algebra on one generator. A is shown to be the free associative
algebra generated by certain elements , as 0, 1, 2,..., modulo an ideal
which turns out to be the same as the ideal of Adem relations for R. Not only
is the algebraic structure of R similar to that of A, but, as we shall show, the
action of the Steerod algebra and higher operations on A is related to the
differential 3 on A.
For each space X, the (unstable) Adams spectral sequence {Er(X)),

r 1, 2,..., is a sequence of differential groups, which, roughly speaking,
goes from the homology of X to the homotopy of X. Here we use the methods
of Bousfield and the author [5-1, (modifications of those of Massey-Peterson
[12]), to obtain the Adams spectral sequence for fS. The term E(fS),
defined by means of H,(fS) and A, is shown to be itself isomorphic to A.
This isomorphism is not filtration preserving, nor differential respecting. The
precise formulation of this isomorphism (Lemma (5.1)) is the basis of our calcu-
lations. We then show (in Sections 6 and 7) that, except for elements related
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either to the Hopf invariant, or to the Kervaire invariant, all of the elements
ofE’ *(Q(R)S) have nonzero differentials, and so cannot persist to E; *(S).
Thus the group of spherical classes in H,(S) can consist at most of the Hopf
classes in dimensions 1, 3, 7, and (possibly) the Kervaire classes in dimensions
2(2" 1) This includes the result of Browder I-9] that dimensions other than
2(2" 1) cannot contain a framed manifold, for such a manifold would, by the
Pontrjagin-Thom construction and [16], give rise to a spherical class in
H,(nS).

All the vector spaces, modules, algebras, etc, are to be taken over the field
Z2. For a topological space X, H,(X) will denote the homology groups of X
with Z2 Coefficients. Each space X is to have a base point, and fXstands for the
space of loops in X starting and ending at the base point QX is an H-space,
and u.v denotes the Pontrjagin product of u and v in H,(QX).
The symbol C(m, n) is the binomial coefficient m!/n! (m- n)! reduced

modulo 2, with the usual conventions: C(m, 0)- 1, and C(m, n)= 0 if
m<norn<O.

1. Homology operations

This section summarizes some of the results of [2], [8], [10], [11 ], [13], [ 14-1,
[15], and establishes notation A space X is called an infinite loop space if there
is a sequence of spaces (Xk}, k >_ O, with X Xo and Xk Xk+ for each
k >_ 0 If X is an infinite loop space, the Kudo-Araki operations

Q’: Hq(X) Hq+,(X)
are defined for each integer > 0. We let the operations act on the right in
homology, and the index refers to the dimension increase. These operations
have the following properties.

(1.1)
(u)Q 0 if dim (u) >

(u)Q u2 if dim(u)

(1.2) (Suspension). Let tr" H,(QX) ---, H, + t(X) be the homology suspension
homomorphism Then a((u)Q) (a(u))Qk

(1.3) (Co-product). Let " H,(X) H,(X) (R) H,(X) be the coproduct
(induced from the diagonal map A" X X x X), with

Then
J

1,1 k i-kO((u)Qi) ( )Q (R) (u.i)Q
j,O<k<i

(1.4) (Adem relations). Ifj < 2i, then

U i+l-m(u)Q*Q C(m- i- 1,2m-j)( )Q Q
m>O



THE DYER-LASHOF ALGEBRA AND THE A-ALGEBRA 233

(1.5) (Nishida relations). Let the Steenrod algebra act on the right in
homology, dual to its left action in cohomology; then

(u)Q’Sq C(j i, 2m)(u)Sq"Oi-+m.
m>O

(1.6) (Cartan formula). (u" v)O O<_k<_ ((u)Ok) ((v)oi-k)

The homology operations also satisfy formulas arising from the composition
action of the space G (the set of homotopy equivalence of the sphere with itself)
on infinite loop spaces, but these will not be needed in this paper.
For each sequence of nonnegative integers, I (ix, i2,. is), let Qt be the

iterated operation (.)Qt (’)Qi’... Qs. Then define

1(I) length of I s,

deg (I) degree of I

e(I) excess ofl is (il +’"+ is-l).

We note that e(I) 2is deg (I). A sequence I is called allowable if 2ij >
for eachj 1, 2,..., s 1.
The Dyer-Lashof algebra R is defined to be the quotient A/J where A is the

free associative, not commutative, algebra over Z2 generated by (Q, > 0},
and J is the homogeneous ideal generated by the relations

Q if excess (I) < 0

QQJ

_
C(m 1, 2m j)Qma+J-m ifj > 2i

m>O

That is, J is the ideal of relations satisfied by iterated operations applied to a
homology class in any infinite loop space. The calculation in [ 10-1 of H,(fS)
shows that no further relations hold in general. The relations imply that R has
a vector space basis {Q*}, where I varies over all allowable sequences of excess
>0.

2. The spaces

Let G,(n) be the space of all continuous maps (of any degree, not necessarily
basepoint preserving) of S"- to itself, with the compact-open topology. The
evaluation map b: G,(n) S"-1 is defined by b(f) f(p), where p is a fixed
basepoint in S 1. Then b is a fibration, and the fibre is (f’S),, the set of all
basepoint preserving maps of S to itself (of any degree). There are inclusions
G,(n) c G,(n + 1) for all n, and G, is defined to be limn G,(n). Similarly,
(fS), lim, (fnsn),. The inclusion (fS), G, is a homotopy equival-
ence. Each mapf of a sphere to itself has a degree, and for each integer j, let
Gj (or ([S)j) be the subspace of G, (respectively of (fS),) of maps of
degree j. Then each Gj and each (S)j is a component of G, or of (flS),
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and they all have the same homotopy type. We denote the component G by
SG, and the component (fS(R))o by fS.
The space (fS), is an infinite loop space, taking as the kth space

Xk lim, f"S"+k. The homology class of a point in the component (YS)j
will be called [j]. The class [0] is the unit for the Pontrjagin algebra
H,((fS),). In general, multiplication by [j] sends H,((S)k) isomorph-
ically onto H,((fS)k+.). For > 0, the operation Qi yields 0 when applied
to [0], but not when applied to the other [j]. The result of Dyer-Lashof ([10])
is that

H,(ES)
_

p([1]Q, [-2])Q’-. Qq)

where I (il,..., iq) varies over all allowable sequences of excess > 1, and
P(...) stands for the polynomial algebra on the stated generators.
The space SG has the same homotopy type as fooS, hence

H,(SG) H,(nS),

even as coalgebras over the Steenrod algebra. With composition as multiplica-
tion, H,(SG) has a different ring structure and a different action by the Dyer-
Lashof algebra ([14], [11]), but we do not need these here.

3. Unstable A-coalgebras

As in [5], let MA be the category of right A-modules, and CA the category
of right homology A-coalgebras, where A is the mod-2 Steenrod algebra. That
is, M in MA is to be a non-negatively graded vector space with a right A action:
for x M,, (x)Sq M with (x)Sq 0 if 2i > n. C in CA is to be simul-
taneously an unstable right A-module and a connected, cocommutative co-
algebra, where the structures are compatible as follows. The comultiplication
of C satisfies a Cartan formula and the square root map x/" of C (the dual of
the squaring map for algebras) satisfies

a/" (’)Sq": Cz. C..
For example, if X is any connected space, H,(X) is in CA, and depends only on
the homotopy type of X.
For each M in MA with Mo 0, let U,(M) in CA be the free unstable right

A-coalgebra generated by M; U,(M) may be defined by a universal mapping
property. IfM is of finite type, then U,(M) is dual to U(M*), the free unstable
(left) A-algebra generated by M* (see [17;p. 29]).

Let M(fS) be the vector space with basis the symbols {Xo(I)}, as
I (i,..., iq) varies over all allowable sequences of excess >_ 0 and degree
> 0; put dim Xo(I) degree (I). The Dyer-Lashof algebra and the Steenrod
algebra are to act on M(fS) by the formulas (1.4) and (1.5). Specifically,

xo(ix,..., iq, i),
xo(ix,..., i)Q

(0,
> deg (I)
< deg (I)
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with the convention that the Adem relations are to hold. That is, if 2iq < i, then

xo(i,..., iq, i) , C(m- iq- 1, 2m- iq)(xo(i,..., iq_, m, 4- iq- m)).

Also,

xo(il,..., iq)Sq E C(i iq, iq 2m)xo(ix,..., iq_l)SqmQi-iq +m.

This defines the action of the Sq on M(fS(R)) inductively by length; thereby
M(fS) is in MA, and U,(M(S)) is in CA.

PROPOSITION (3.1). As members of CA, H,(fS) - U,(M(fS)).

Proof. As asserted in Section 2, H,(fS) is a polynomial algebras with
generators

{(E1]O". E-2])Q"... O’}
where I (ix,..., iq) varies over all allowable sequences of excess > 1. Thus
H,(S) has a simple system of generators of the same form except that now
the I (ix,..., i) vary over all allowable sequences of excess > O. Let

a" H,(nS) M(S).

be the homomorphism defined by

a(([1]Q". [-2])0i*... Qi,) xo(ix,..., i)
for the simple generators, and a(y) 0 when y is a product of two or more
distinct simple generators. From the universality of U,(’), we obtain a homo-
morphism . H,(S) U,(M(S)).

It follows from Madsen’s calculations that is an isomorphism ([11, Proposi-
tion 4.13], see also [13]).

We also need to consider the homology of the various spaces D"S"+k. For
each n > 1, k > 0, let M("S"+k) be the vector space with basis {Xk(I)}, as
I (ix,..., i) varies over all allowable sequences of excess > k, and with

i < n + k. For k 0, we are considering the component (flS)o, so the
empty sequence is to be excluded from M("S’). The Dyer-Lashof algebra and
the Steenrod algebra act on M("S"+k) by the formulas (1.4) and (1.5), taking
into account that dim (Xk) k, and that S"+k is only an H"--space. In
these cases, H*(D"S"+k) is not a polynomial algebra" for k > 1, it is an exterior
algebra, while for k 0, it is a truncated polynomial algebra. A result of
Araki-Kudo asserts that for n > 1, k > 1, H,("S"+k) - P(XkQ) as I
(ix,..., i) over all allowable sequences of excess > k and with i < n + k.
Again Madsen’s calculations show the following ([11], [13]).
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PROPOSITION (3.2). As members of CA, H,(f"S"+k) U,(M(f"sn+k)).

We next consider the James map ([18; p. 21]), h" fS"+k+l fS2"+2k+1.
The fiber of h (localized at the prime 2) is S"+k. Thus, after looping n times,
there is a fibration (at the prime 2)"

’.Sn+k ), ’)"+lsn+k+l nh
-n+ls2n+2k+l

This corresponds to a short exact sequence in MA,

(3.3) 0 M(dnsn+k) - M(’n+lsn+k+l) q- M(f"+IS2"+2k+) 0

where is the natural inclusion, and

rl(Xk(I)) _xz+,(i2,..., i) ifI (k + n, i1,..., i)
to otherwise.

To verify that f"h induces q in homology, observe that h is not a loop map, and
that h," H,(fSn/k/l) H,(fSn/2k+l) does not commute the homology
operations. Instead (as in [18]),

h,(Xn+k) O,

h,(Xn+kQn+kQ2(n+k) Q2,(n+k)) X2(n+k)Q2(n+k) Q2(n+k).
Then f"h is an H"-l-map, and (fPh), r/on M(F"+ 1sn++ 1).

4. The Unstable Adams spectral sequence

In [6], (see also [5]), there is constructed for each space X, a spectral sequence
{E’t(X)}, r 1, 2,..., with the following properties.

(1) For a connected nilpotent space X, the Er(X) converge to rc.(X) modulo
the subgroup of elements of odd order. This convergence is valid when X is an
H-space, in particular, for the space

(2) Ez’t(X) Ext(Z2, H,(X)).
(3) The Hurewicz homomorphism (reduced mod 2) factors as the composite

,(X)--, Eog’(X) =...= E"(X) = H,(X).

We shall b dealing with spaces Z for which H,(X) U,(M). In this
situation, a theorem of Massy and Ptrson (r12]) assrts that

E2’t(X) - Ext (Z2, M).

We retain the notation of [5], where it is further shown that Exta (Z2, M)
may be calculated as the homology of a complex which we shall describe shortly.

First the algebra A is defined to be the free associative, not commutative,
algebra with unit, which has

(i) for each integer > 0, a generator 2 of degree i;
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(ii) for each pair of integers > 0, rn > 0, a relation

2i12i+ +m Z C(m 1 j, j)2i+m_j/2i+ +j’
jO

(iii) a differential d, d(2i) j C(i j, j)2i_j2_ 1.

For each M in MA, let (M ( A, 6) be the chain complex as follows. M (R) A is
the subspace ofM (R) A spanned by Xk (R) 2z where Xk Mk and I (il, is)
is allowable with il < k (or I is empty). The differential 6 on M A is defined
by

6(x (R) 2z) x (R) (c32i) + y (x)Sq (R)2_x2.
j>0

As the relations in A are homogeneous,

A 0)oA, M( A s,oM)A.
The term Xk (R) 2i is given bi-degree (s, t), where s length (I), and
s + k + degree (1). Theorem (3.3) of [5] asserts that if H.(X) U.(M) then,

E 2’ *(X) - Hs’ ’(M A).
In particular,

ES2’t(nsn+k) ’ HS’t(M(nsn+k) A).

Passing to the homology of the sequence (3.3), we obtain for each n >_ 0, k >_ 1,
a long exact sequence

ES2, t(-nsn+k)
’, , US2 t(’n+ 1sn+k+ 1)

(4.2) .,
> ,,(.+ s,,++ ,) > +,,,(ta.s.+) >

which is a form of the EHP sequence at the E2=level.

5. The complex M ( A

Let M(fS) be the vector space as defined in Section 3, and A the algebra
of Section 4, with A the ideal of positive dimensional members of A. There is
an isomorphism 0" M(fS) A N defined by

O((xo)I’ (R) 2r,) 2i,i,,.

To see that 0 is an isomorphism, observe that for each allowable sequence
I (il, is) there is a unique index q for which the sequences I’ (il,..., iq)
and 1"= (iq+x,..., is) satisfy excess (I’)> 0 and iq+l < degree (I’). We
write I (I’ I") to indicate this decomposition.
The isomorphism 0 is not filtration preserving, as the filtration degree of

Xo(I’) q) 2i,, is length (I"), while the filtration degree of 21,2I,, is length (I’, I").
Nor does 0 commute with the differentials. However, the differentials 6 of
M(fS) @ A and t9 of A are related as follows.
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LEMMA (5.1). Let I (ix,..., is) be allowable with I (I’ I"). Suppose
that

’I Z Oj,j, j e Z2

where the J vary over allowable sequences of length s + 1. Then

6((Xo)I’ (R) 2i-) * ZjXo(J’) (R) )j,,

where the sum * is taken over those allowable sequences J (J’ J")for which
length (J") length (I") + 1.

Proof. Consider first the special case where I is allowable of excess > 0;
that is, I I’ and I" is empty. Suppose c2i j2s. We shall show by
induction on length (I) that

(Xo(I)) * ajXo(J’) (R)

where the sum * is taken for those J (J’ J"), with length (J")= 1.
Observe that this is equivalent to the assertion that for each positive integer j,
Xo(I)Sqj= ejXo(J’) the sum taken for those J (J’ J") for which
J" =(j- 1).

For length (I) 1, the sequence I is merely (i). Then

6(xo(i)) (xo(i))Sq j (R) 2j_x
j>l

C(i j,j)xo(i j) (R)

by the Nishida relations which define the action of the Sq on M(gzS). As
the expression for O is given by (Section 4, (iii)), the formula (5.2) is valid for
length 1.
Assume inductively that (5.2) is valid for lengths <s, and let I (il,

be allowable of excess > 0, and of length s. Then

3(Xo(I)) Xo(I)Sq j (R) 2j_
j>l

C(is j, j 2m)xo(i,..., is_ 1)SqmQis-j+m ( j-1
j> m>O

C(is j, j)xo(i,..., is-x, is-j) ( 2j-1
j>l

+ C(is j, j 2m)xo(ix,..., is_ 1)SqmQis-j+m ( j- 1"
j>_ m>

Suppose now that

E OKtK’Im + E OKK’IK"
K" =m- K" #m-
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where the first sum is taken for those K + (K’ K") with K" m 1, and the
second sum is taken for K" 4: m 1. The inductive assumption asserts that

x0(il’’’’’ is- 1)Sq 2 arxo(K’).
K"=m-

The expression for 6(Xo(1)) becomes

6(Xo(I)) C(i j,j)xo(ia,..., _, _j) ( 2j_x
j>

+ C(i j, j 2m)arxo(K’, is-j+m) (R) 2j-l"
j> m>_ K"=m-

Also,

C(i j, sj)2i,"" 2i, _,2i,_2j_
jl

We next show that to obtain the expression for 6(Xo(I)), we must delete from
this sum those K for which length (K") > 1, and that the expression for 6(Xo(I))
then becomes the sum* of (5.2). For this, we make use of the following, which
is easily established inductively by length.

SUBLEMMA (5.3). Let K (kl,..., ks) be allowable, and > 2ks. Suppose
that 2r2 2s2s, J allowable, 2s Z2. Let K (K’ K"), and each J
(J’ J"). Then for those J with l(J") < l(K"), 2s must be O.

By means of this sublemma, the expression for (/I) becomes

0(,) c(i j, s),, ,_,,_/j_
j>l

"4i- E OKK,m-lis "Jl- 2 (KIK’K"Iis
m> K"=m- /(K")>, c(i, j, j)X,...;_,_;_

j>_l

m> K"=m-1 j>_ O /(K")>I

Thus the formula (5.2) has been established for the special case when l(I") O.
The general case follows easily by further use of the sublemma.

Continuation. Let M(nSn+k) be the vector space as described in Section 3.
Let A(n + k) be the subspace of A spanned by allowable 2x 21""2, with

il < n + k. (Thus A(n + k) - EI(S"+k) as in [4; (5.4)].) There is an iso-
morphism

O: m(nSn+k) ) A A(n + k)

where O(Xk(I’)(R) 2r,) ,i,2I,,, As before, to see that 0 is an isomorphism,



240 EDWARD B. CURTIS

observe that for each allowable sequence I (ia,..., is), there is a unique
index q for which the sequences

I’ (ia,...,iq) and I" (iq+a,...,

I")satisfy excess (I’) > k and t+a < k + deg (I’). We write I (I’ Ik to
stand for this decomposition.

LEMMA (5.4). Let I be allowable with 1 (I’ Ik I"). Suppose that d2x
as2s, J allowable, as Z2. Then in M(f"S"+k) A,

6(xk(I’) (R) 2x,,) * asXk(J’) (R) 2s,,
where the sum * is takenfor those allowable sequences J (J’ [k J") for which
length (J") length (I") + 1.

The proof is similar to the proof of (5.1).

6. Calculations in E2(/nS" + k)
The results of Section 5 show that E2(f"S"+k) may be calculated as the

homology of the complex M(f"S"+) ( A. We shall use (5.1), (5.4), and the
EHP sequence (4.2) inductively to calculate E2’ *(f"S"+), and also to make
some partial calculations of E’ *(f"S"+) and E’ *(f"S"+).
To simplify notation, the term x(Qv) (R) 2r, will sometimes be written as

x(I’) (R) (I"), or x(I), where I (I’ I I"). For such a term, let the width be
the length of I’, and thefiltration degree be the length of I". As the differential
preserves the width, the homology of the complex becomes tri-graded; we con-
sider elements homogeneous in width, filtration, and dimension. The basis
{xk(I’) (R) I"} is ordered according to the sequences I (I’, I"), lexicographic-
ally from the left. If

x atXk(I’ Ik I")

where the I (I’ Ik I") vary over allowable sequences (of a fixed length), and
the az Z2, then the greatest term for which at 4:0 is called the leading term
of x, and the other terms are called lower terms.

Facts about A. (6.1). Let and j be nonnegative integers, with dyadic expan-
sions v av2, J b2 respectively. The binomial coefficient C(i, j)
!/j! (i j)! satisfies

C(i, j) I-I C(a, bv) mod 2
>0

and is nonzero mod 2 if and only ifa > b for all v.

For o av2, let p(= p(i)) be the least index v for which av 0. Then
2p + 2p+ iN. For any j, the binomial coefficient C(i j, j) mod 2

can be nonzero only ifj mod 2(. Thus for the element 2(0 2 in A,
its differential, given by (Section 4, (iii)), is a sum of terms of the form
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(i 2Pn, 2Pn 1), and the leading term is (i 2, 2 1), unless 2 1,
in which case t3(i) 0.
The relations of (4.1) imply that if (ix,. iq) is a sequence of nonnegative

integers with ij -1 mod 2, for each j 1, 2,..., q, then the allowable
expression for d(ix,..., iq) is a sum of terms (mx,..., mq) with also mj -1
mod 20 for each j l, 2,..., q. Similarly, the allowable expression for
O(ix,..., iq) will be a sum of terms (kx,..., kq+x), with kj -1 mod 20 for
eachj 1, 2,..., q + 1.
We notice that if I (ix, i) is an allowable sequence of excess >_ 0, then

the allowable expression for c3(I) will be a sum of terms (kx, kq+ x), each of
negative excess, and with excess (kx,..., k) < excess (ix,..., iq).

LEMMA (6.2). Let I (ix,..., iq) be an allowable sequence of excess >0
which also satisfies 2i i+x < 2iJ)for each j 1, 2,..., q 1. Then the
allowable expression for 3(I) is a sum of sequences (kx,..., kq, kq+ x), each of
which satisfies

excess (kl,..., kq) < excess (ix,..., i) 2pq).

Proof It is sufficient to show that (Oix, i2, i) is a sum of such sequences,
and this will be done by induction on the length q. For q 1, it is true because
the leading term of O(i) is (i 2, 2) 1). Assume inductively the above
statement for lengths <q 1, and let (ix,..., iq) satisfy the hypotheses. The
hypotheses imply that p(ix) > p(i2) >"" > p(i). The inductive assumption
implies that the allowable expression for (Oix, i2, iq_ x) is a sum of sequences
(rex,..., m), each of which satisfies excess (rex,..., mq_ x) --< excess (ix,...,
iq_ 1) 2iq-

From this, it follows that

2m_x < 2i_x mq

and hence, using the hypothesis that 2i_ i < 2pq-l, we find that

2m_x < i- mq 1.

Let (mq, i) be expressed as a sum of allowable sequences of the form (n, n+
Then each n must be of the form iq m 2t, with > 0. Thus the
allowable expression for (rex,..., m-x, n, n+x) is either 0, or is a sum of
sequences (kx,..., kq+x), with k < i m 2. Hence excess
(kx,..., k) < excess (ix,..., iq) 2, and the lemma is proven.

THEOREM (6.3). A basisfor E’ *(f"Sn+k) consists of those Xk(ix, i) which
satisfy

(1) k < il < n / k,
(2) 0 < e(I) k < 2),
(3) 0 < 2i t’+x < 2PJ)forj 1, 2,..., q 1.
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Proof. By induction on the width q. For q l, we are dealing with elements
of the form Xk(i), with k < < n + k. Then

cS(Xk(i)) Xk(i 2p, 2p0 1) + lower terms.

Thus Xk(i) is a cycle if and only if i- 2 < k; that is, if and only if
i- k < 2.
Assume inductively the theorem for widths q- 1. Consider the EHP

sequence (4.2), with n decreased by 1"

o , ,.

o
;E >E ;’".

The set of elements Xk(ia,..., i) which satisfy (1), (2), (3) for ix < n + k
form a basis of E2’*(n-Sn+-) inductively on n- 1, and are mapped
monornorphically by z.. To this set we must adjoin a basis for r/ (ker c). Let
X Xk+i(i2,..., iq) be a basis element of E2’*(’nS2i+l), where
n + k- 1. Then

tX Xk(ti i2,... iq).
If 2i i2 < 2’<), then Lemma (6.2) and the inductive assumption imply that
each nonzero term in tgx has filtration > 2; hence tgx 0 in E’ *(fl- iSn+k- ).
Take r/: (x) to be Xk(ii,..., iq), which satisfies (1), (2), (3) as desired. On the
other hand, as x Xk+i(i2,..., iq) varies over the basis of E2 *(flnsi+ 1), with
2i i2 > 2a<i), the leading terms of tgx, namely

Xk(i 2p(i), i2 2a(o,..., iq 2a(i) + q- 2) () (2(i)+ q- 1)

are nonzero and distinct, even as n varies. Thus no sum of such x can be in
ker tg, which shows that a basis of E2 *(fnsn+k) is as described.

Remark (6.4). If xo(il,..., iq) is a basis element of E’t(fnS) of dimension

il + + i, there is a family of elements of the form

xo(il, i, t, 2t,..., 2mt)

each in E’ Era+ lt(’nsn). Some typical generators of these families are Xo(1) (the
rest of the family is Xo(1, 1), Xo(1, 1, 2), Xo(1, 1, 2, 4),...), Xo(3), Xo(7),...,
Xo(2 1),..., Xo(3, 5, 9), Xo(7, 9, 17), Xo(7, 11, 19), Xo(5, 9, 17, 33, 65),...,
Xo(15, 27, 51, 99, 195),

PROPOSITION (6.5). Let x xo(it,..., iq) be a basis element of E2’* (fnS)
which has none of the followin7.forms"

(1) Xo(2- 1),
(2) Xo(2- 1, 2o- 1),
(3) xo(ix, iq), where excess 0, and i is even.

Then there is a nonzero class y E2 *(nsO, with dZx .1;.
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Proof. For x x0(il,... iq), consider its ancestors in the EHP-sequence.
Namely, for each j 1, 2,..., q- 1, let z(J)= Xk(ij,..., iq), where k
+ + iq_ 1. We shall show inductively on the width (q j + 1), that if x

has not one of the excluded forms, then d2z (j) y(J) is a nonzero class in

E. *(nS).

For width one, we are dealing with z( x(i), where i is of the
form 2a + 2a+lm, and k_< < k + n. The element y x(R) 9(i)
in E’+i+ (flS+) is a dl-cycle which is not a dl-boundary because
El’+i+l(flS+) contains no terms of width zero (the candidate x (R) i is
not present as k _< i; indeed, x appears as the homology class under con-
sideration). We consider the EHP-sequence

2i(s2i+ 1)
P g

1)
H

_
(S) ,

_
(S+ ;....

The Whitehead product (xi, xi) in z2i_(Si) is represented by xi (R) (t92i) in

E’ *(S), as in [-7, p. 198]. As the Whitehead product suspends to zero in
zr2i_,(flSi+ 1), we must have

d2(xiQi) Xi (

in E’ *(fSi+ 1). After looping k times, we must also have

dE(xkQi) Xk (R) ;) + lower terms

which is nonzero in E’ .(fi-k+ 1Si+ 1).
Assume inductively for widths <q -j + 1, that if z () Xk(ij,... iq) is a

basis element of E2 *(fYSn+k) not of the excluded forms, then

dEz(J) Xk(ij,’’’, iq-1)()(cOiq) + lower terms

is a nonzero class y(J in E22 *(KYs+k). Let

z(S-1) x_,(i, ij,..., iq)

be a basis element of E’*(fl2+I-S+I), with q,(z (s-1)) z (s) in the homo-
morphism ,. . ,(n,+,-s,+,)

_ o, ,(n,+ -s,+ ).

As r/, commutes with the differentials,

d2z(j 1) Xk(i ij,..., i) (R) (3iq) + lower terms

which is some nonzero element y(j-1) in E22’*()2i+l-ksi+l). It is straight-
forward to verify that y(J-1) does not suspend to zero in any of the

E,*(.S.+-)

for n > 2i + k, and the proposition is proved.
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7. Spherical classes in H,(fI=S)

From the discussion of Section 4, we s that Eg t(Z) is isomorphic to the
group of spherical classes in H,(X; Z). Recall our notation

xo(i,,..., i) ([1]Qh. [-2])Q’=... g’
in H,(nS).

THEOREM (7.1). The only possibilities for spherical classes in H,(S; Z2)
are Xo(1), Xo(3), Xo(2" 1), and Xo(2" 1, 2" 1)for n 1, 2, 3,

The proof will be completed at the end of this section.

Remark. This recovers Browder’s result [9] that dimensions other than
2(2" 1) cannot contain a framed manifold of Kervaire invariant one, because
such a manifold would, by the Pontrjagin-Thom construction, give rise to a
spherical class in H.(SG) - H.(S), which would be nonzero [16]. The
classes Xo(2" 1, 2" 1) plus decomposables are spherical if and only if there
is a manifold of Kervaire invariant one in dimension 2(2" 1). This is the case
in dimensions 2, 6, 14, 30, and 62 (Barrat-Mahowald). The remaining dimen-
sions 2(2" 1), n > 6, are undecided.

Towers. An element in E, t(X) is said to generate a tower if the elements
2 are nonzero for all n > 0, and is not of the form f12o. The set {a2, n > 0}
is called a tower.

PROPOSITION (7.2). The only towers in Ez’t(fS) occur in dimensions
congruent to -1 or to 0 modulo 4.

Proof We use the method of [3] to locate the towers in EXtMa (Z2, M),
for M M(fS). The tower detector is the complex

T’(M)
2 M2k 22k_ 12 1, S 2.

2+ + xSq 2k 22k_2 forxMk,S 1
6(x 2)

[xSq + otherwise.

The allowable monomial basis of A gives a projection of complexes

y.M -- (M).

In [3], it is shown that (ker y, 6) is a chain complex whose homology has no
towers, so the towers in H*(M A) correspond to those in H*(T(M)).

To find the towers in E2(=S=), we consider T(M(D=S=)). If (ix,..., i)
is allowable of excess 0, and i is odd, then (i,..., i+ ) is also allowable and

6(xo(i,..., i+) 2) xo(ia, i) 2+a + possibly another term.
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Thus when iq is odd, neither xo(il,..., iq) nor xo(il,..., iq+ 1) generate towers.
The remaining elements of filtration zero are the xo(il,..., i) with excess 0,
and i even, which must have dimension 0 mod 4. In filtration one, we have
elements Y2k ( ’’2k-1 for Y2k M(’S)2k which occur in dimensions

mod 4. In particular, the elements xo(il,..., i) described in (6.3)
generate towers if iq_ +"" + iq-2 and 2i_ i, and not otherwise.
For each n >_ 1, the groups Et(fS), with s + n, are finite, and only

finitely many are nonzero; they are the quotients of a filtration of n,(S), the
stable n-stem. As only a tower can kill another tower by a differential dr, the
towers of E2(fS) must be paired by the differentials. Thus, each tower
generator ofdimension 4k and filtration 0, must have a differential drct fl 0.
In particular, the elements

Xo(2"- 1,2"- 1,...,2q(2"- 1))

for q > 1, do not persist to E(R)(f)S). The elements Xo(2" 1), n > 4 are
shown not to be spherical by Adams 1-1 ]. After excluding the elements accounted
for by (6.5), this leaves for possible spherical classes in H,(S) only the Hopf
classes Xo(1), Xo(3), Xo(7), and the classes Xo(2" 1, 2" 1), for n 1, 2,
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